DR. MANDI'S LECTURE OUTLINE SECTION 6.1: VELOCITY AND NET CHANGE

Think about it!. Suppose we know a function $s(t)$ for the position of an object at time t, How do we find a function for velocity? Speed? Acceleration?

Example 1. A stampede of zombies is accelerating at a rate of $5 \mathrm{ft} / \mathrm{sec}^{2}$. At time $t=0$, they start 70 feet away from you and move at 1 foot $/ \mathrm{sec}$. Find an equation for (a) the velocity $v(t)$ at time t
(b) the distance $s(t)$ from you at time t.

Position from Velocity from Acceleration

For an object moving in a straight line,

- Given an equation for the acceleration $a(t)$ at time t and the initial velocity $v(0)$, to find an equation for velocity $v(t)$:
(1) Determine \qquad
(2) Solve for \qquad using the value of \qquad
- Given an equation for the velocity $v(t)$ at time t and the initial position $s(0)$, to find an equation for position $s(t)$:
(1) Determine \qquad
(2) Solve for \qquad using the value of \qquad

Example 2. On day 0, there were 50 zombies. The CDC estimates that the zombie population is growing at a rate of $e^{0.2 t}$ zombies per day. Write an equation for the size $P(t)$ of the zombie population after t days.

Displacement vs Distance Travelled

Example 3. Think about the following situation:
An object is moving up and down. For 5 seconds, it moves up with velocity $30 \mathrm{~cm} / \mathrm{s}$. It then moves down with velocity $10 \mathrm{~cm} / \mathrm{s}$ for 5 seconds.

- Write an equation and sketch a graph of the velocity.
- What does the expression $5 \cdot 30-5 \cdot 10$ represent? (Physically? Mathematically?)
- What does the expression $5 \cdot 30+5 \cdot 10$ represent? (Physically? Mathematically?)

Displacement and Distance

Given the velocity $v(t)$ of an object moving in a straight line:

- the displacement can be determined by
- the distance traveled can be determined by

But the same idea applies to net change in other situations:

Example 4. Suppose again that the zombie population is growing at a rate of

$$
P^{\prime}(t)=e^{0.2 t}
$$

zombies per day. Determine the net change in the population between days 5 and 10 of the zombie apocalypse.

Net Change More Generally

Given that a population of something changes at a rate of $P^{\prime}(t)$, the net change from time a to time b is

Think about it!. Given a function $f(x)$, what are the units of $\int f(x) d x$?

Example 5. Suppose still that the zombie population is growing at a rate of

$$
P^{\prime}(t)=e^{0.2 t}
$$

zombies per day and that on day 5 , there are 150 zombies. How many zombies are there on day 10 ?

