MTH 3110: Abstract Algebra I
 Fall Semester 2018
 Problem List 6

Prof: Mandi Schaeffer Fry

Due 11/28/18

You are encouraged to ask questions during office hours. You are also encouraged to work through problems together and bounce ideas off of one another; however, the actual write up should be done on your own. This means your homework should not be identical to another person's.

NOTE: Late homework will NOT be accepted. Solutions should be submitted by email on Wednesday, Nov 28 in clear writing, written neatly, using complete sentences. (This may require re-writing your final draft to turn in!)

1 Before Class On...

- Wed, 11/14: Read Chapter 5
- Mon, 11/26: Read Chapter 7

2 Notation and Definitions to Know

An $*$ denotes Flashquiz - eligible items for a Flashquiz Monday, 11/26/18.

- symmetric group S_{n}
- *even permutation, *odd permutation
- *alternating group A_{n}
- *statement of Cayley's Theorem
- * coset

3 For Practice...

All exercises listed as practice problems are from Gallian 6th edition - compare with me or a classmate to make sure you have the right ones.

- Chapter 5, exercises $9,14,18-21,28,36,46,50$
- Chapter 7, exercises 1-5, 14-16
- Determine the cycle forms of the elements of $D_{3}, U(10)$, and $U(20)$ in their left regular representations.
- Let G be a group and H a subgroup. Prove that $g_{1} H=g_{2} H \Longleftrightarrow g_{1}^{-1} g_{2} \in H$. Recall that the left coset of G corresponding to $g \in G$ with respect to H is

$$
g H:=\{g h \mid h \in H\}
$$

(Turn-In problems on back)

4 To Turn In by email on $11 / 28 / 18$

1. Let $n \geq 2$, and let $\alpha \in S_{n}$ have order m. Show that if m is odd, then $\alpha \in A_{n}$.
2. Prove $\Phi: S_{n} \rightarrow\{ \pm 1\}$, given by $\Phi(g)=1$ if g is even and $\Phi(g)=-1$ if g is odd, is a homomorphism. What is $\operatorname{ker} \Phi$?
3. Let $\beta \in S_{n}$ with $n>1$. Prove that if $\alpha \in A_{n}$, then $\beta \alpha \beta^{-1}$ is in A_{n}.
4. Write the permutation, in disjoint cycle form, corresponding to (a) R_{90} and (b) V in the left-regular representation of D_{4}.
5. Let G be a group and H a subgroup. Prove that the relation $g_{1} \sim g_{2} \Longleftrightarrow g_{1}^{-1} g_{2} \in H$ is an equivalence relation on G.

Fun Fact!
In terms of cosets, Number 5 proves that the set of cosets $\{g H \mid g \in G\}$ of H in G partition G ! This is because of the practice problem that says $g_{1} H=g_{2} H \Longleftrightarrow g_{1}^{-1} g_{2} \in H$.

