MTH 4110: Abstract Algebra 2 - Spring Semester 2019 Problem List 1

Prof: Mandi Schaeffer Fry

Due 2/1/19
You are encouraged to ask questions during office hours. You are also encouraged to work through problems together and bounce ideas off of one another; however, the actual write up should be done on your own. This means your homework should not be identical to another person's.

NOTE: Late homework will NOT be accepted without the use of a "full redo". Solutions should be submitted by email to Dr. Mandi (aschaef6@msudenver.edu) as a single PDF file in clear writing, written neatly, using complete sentences. (This may require re-writing your final draft to turn in!) Recall that if you use LaTeX (including Overleaf) to typeset your homework, you'll get an extra "full redo".

1 Before Class On...

- Mon, 1/28: Read Chapter 12
- Wed, 1/30: Read Chapter 13

2 Notation, Definitions, Theorems to Know

An $*$ denotes Flashquiz - eligible items.

- *ring
- *subring
- *subring test
- *commutative ring
- *ring with unity
- unit, unity, inverse, identity, and other terms from group theory in Abstract 1...

3 For Practice...

- Let $n \geq 2$ be an integer. Prove that the set $n \mathbb{Z}:=\{n z: z \in \mathbb{Z}\}$ is a subring of \mathbb{Z}.
- Is $n \mathbb{Z}$ a ring with unity? Prove your answer. (Careful: what did you notice about the unity in Problem 2?!)
- Book Chapter 12 , problems $2,4,8,9,19,30,38,40-43$ (these are the same in the 6 th- 9 th editions)
** The problems to turn in are on the other side**

4 To Turn In On 2/1/19

Recall that $M_{2}(\mathbb{R})$ is defined as 2×2 matrices with entries in \mathbb{R} :

$$
M_{2}(\mathbb{R}):=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: a, b, c, d \in \mathbb{R}\right\}
$$

Matrix addition is defined component-wise:

$$
\left[\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right]+\left[\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right]:=\left[\begin{array}{ll}
a_{1}+a_{2} & b_{1}+b_{2} \\
c_{1}+c_{2} & d_{1}+d_{2}
\end{array}\right]
$$

and matrix multiplication is done using the "row-dot-column" rule:

$$
\left[\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right] \cdot\left[\begin{array}{cc}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right]:=\left[\begin{array}{ll}
a_{1} a_{2}+b_{1} c_{2} & a_{1} b_{2}+b_{1} d_{2} \\
c_{1} a_{2}+d_{1} c_{2} & c_{1} b_{2}+d_{1} d_{2}
\end{array}\right]
$$

0. (BONUS) Prove that $\left(M_{2}(\mathbb{R}),+, \cdot\right)$ is a ring, where + and \cdot are matrix addition and multiplication as above.
1. (a) Prove that the subset $S:=\left\{\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]: a, b \in \mathbb{R}\right\}$ is a subring of $M_{2}(\mathbb{R})$. (Hint: use the subring test.)
(b) Is $M_{2}(\mathbb{R})$ a commutative ring? Prove your answer.
(c) Is S a commutative ring? Prove your answer.
(d) Is $M_{2}(\mathbb{R})$ a ring with unity? Prove your answer. (Just the unity part - it is already a ring by part 0).
(e) Is S a ring with unity? Prove your answer.
2. Prove that the subset $S^{\prime}:=\left\{\left[\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right]: a \in \mathbb{R}\right\}$ is a commutative ring with unity. (Note: to show it is a ring, it suffices to show that it is a subring of $M_{2}(\mathbb{R})$.)
3. Let R be a ring. Prove or disprove: If a and b are elements of R such that $a b=0$, then $b a=0$. (Hint: $M_{2}(\mathbb{R})$ would be a good place to look.)
