MTH 4110: Abstract Algebra 2 - Spring Semester 2019 Problem List 7

Prof: Mandi Schaeffer Fry
Due Friday 4/19/19
You are encouraged to ask questions during office hours. You are also encouraged to work through problems together and bounce ideas off of one another; however, the actual write up should be done on your own. This means your homework should not be identical to another person's.

NOTE: Late homework will NOT be accepted without the use of a "full redo". Solutions should be submitted by email to Dr. Mandi (aschaef6@msudenver.edu) as a single PDF file in clear writing, written neatly, using complete sentences. (This may require re-writing your final draft to turn in!) Recall that if you use LaTeX (including Overleaf) to typeset your homework, you'll get an extra "full redo".

1 Before Class On...

- Wed, 4/10: Finish Reading Chapter 18
- Mon, 4/15: Read Chapter 19

2 Notation, Definitions, Theorems to Know

An $*$ denotes Flashquiz - eligible items.

- *Unique Factorization Domain (UFD)
- $* \mathrm{PID} \Rightarrow \mathrm{UFD}$
- *Euclidian Domain (ED)
- $* \mathrm{UFD} \Rightarrow \mathrm{ED}$
- vector space
- *linearly independent
- *subspace
- *basis
- *dimension

3 For Practice...

- Ch. 18, 6th Edition: Problems 13, 23, 29, 30, 32, 33, 38

OR 8th Edition: Problems 13, 23, 33, 34, 36, 37, 42

- Ch. 19, 6th or 8th Edition: Problems 1-10, 19
${ }^{* *}$ The problems to turn in are on the other side ${ }^{* *}$

4 To Turn In On 4/19/19

1. Show that \mathbb{Z} does not satisfy the "descending chain condition". (That is, show that there exist infinite chains $I_{1} \supset I_{2} \supset I_{3} \supset \ldots$ of ideals in \mathbb{Z}, where the containments are proper.)
2. Show that if D is an integral domain satisfying the descending chain condition (every chain of ideals $I_{1} \supset I_{2} \supset$ $I_{3} \supset \ldots$ with proper containments is finite), then D is a field.
(These first two problems correct a hasty non-truth that Dr. Mandi said aloud in class. Minus 5 points from Gryffindor.)
3. Prove or disprove (by providing a counterexample):

Let $v_{1}, \ldots, v_{k} \in V$ for some vector space V and some $k \geq 2$. If $\left\{v_{1}, v_{2}, \ldots v_{k-1}\right\}$ is a linearly dependent set, then $\left\{v_{1}, . ., v_{k}\right\}$ is also linearly dependent.
4. Prove or disprove (by providing a counterexample):

Let V be a vector space of dimension 3 and let $v_{1}, v_{2}, v_{3} \in V$. If v_{3} is not a linear combination of v_{1} and v_{2}, then $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a linearly independent set.

