# MTH 4110: Abstract Algebra 2 - Spring Semester 2019 Problem List 9 

Prof: Mandi Schaeffer Fry

Due Monday 5/06/19
You are encouraged to ask questions during office hours. You are also encouraged to work through problems together and bounce ideas off of one another; however, the actual write up should be done on your own. This means your homework should not be identical to another person's.

NOTE: Late homework will NOT be accepted without the use of a "full redo". Solutions should be submitted by email to Dr. Mandi (aschaef6@msudenver.edu) as a single PDF file in clear writing, written neatly, using complete sentences. (This may require re-writing your final draft to turn in!) Recall that if you use LaTeX (including Overleaf) to typeset your homework, you'll get an extra "full redo".

## 1 Before Class On...

- Mon, 4/29: Read Chapter 21
- Wed, 5/1: Read Chapter 22
- Mon, 5/6: Read Chapter 32 (BOOM! WE MADE IT!)


## 2 Notation, Definitions, Theorems to Know

An $*$ denotes Flashquiz - eligible items.

- *extension field
- *degree of an extension
- ${ }^{*} F\left(a_{1}, \ldots, a_{n}\right)$
- *splitting field
- *separable polynomial
- Statement of the theorem saying $F(a) \cong F[x] /\langle p(x)\rangle$
- Statement that splitting fields are unique
- *algebraic elements, extensions
- *transcendental elements, extensions
- statement that $[K: F]=[K: E][E: F]$
- statement that finite implies algebraic, and its proof
- statement about the structure of finite fields
- statement that for each power of a prime, there is a unique field of that size


## 3 For Practice...

- Ch. 20, 6th or 8th Edition: Problems 1-5, 13, 18-21, 28
- Ch. 21, 6th or 8th Edition: Problems 1, 3, 5, 8, 9, 14, 15, 17
- Ch. 22, 6th Edition: Problems 1-7, 21, 27, 31, $33 \quad$ OR $\quad$ th Ed: Problems 1,2,7,8,9, 10, 11, 27, 33, 37, 39
** The problems to turn in are on the other side**


## 4 To Turn In On 5/06/19

1. In each of the following, find a polynomial $p(x)$ such that $\mathbb{Q}(a) \cong \mathbb{Q}[x] /\langle p(x)\rangle$. Prove your answers.
(a) $a=\sqrt{5}$
(b) $a=\sqrt{3+\sqrt{5}}$
2. (a) Show that $\mathbb{Q}(\sqrt{5}) \subseteq \mathbb{Q}(\sqrt{3+\sqrt{5}})$.
(b) Find a polynomial $p(x)$ such that $\mathbb{Q}(\sqrt{3+\sqrt{5}}) \cong \mathbb{Q}(\sqrt{5})[x] /\langle p(x)\rangle$. Prove your answer.
(c) Determine each of the following (and, you guessed it, prove your answer):
i. $[\mathbb{Q}(\sqrt{5}): \mathbb{Q}]$
ii. $[\mathbb{Q}(\sqrt{3+\sqrt{5}}): \mathbb{Q}]$
iii. $[\mathbb{Q}(\sqrt{3+\sqrt{5}}): \mathbb{Q}(\sqrt{5})]$
3. (a) Show that $\mathbb{Q}(\sqrt{3-\sqrt{5}})=\mathbb{Q}(\sqrt{3+\sqrt{5}})$. Why does this imply that $\mathbb{Q}(\sqrt{3+\sqrt{5}})$ is a splitting field for the polynomial you found for $1(\mathrm{~b})$ ?
(b) However, show that $\mathbb{Q}(\sqrt{2-\sqrt{5}}) \neq \mathbb{Q}(\sqrt{2+\sqrt{5}})$.
4. Show that there are exactly two automorphisms of the field $\mathbb{Q}(\sqrt{5})$. (Hint: You may use the fact that you proved...well, maybe...on the exam, which states that any automorphism of a field containing $\mathbb{Q}$ must act as the identity map on $\mathbb{Q}$.)
