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Abstract

The Alperin-McKay conjecture relates height zero characters of an `-block with the ones of
its Brauer correspondent. This conjecture has been reduced to the so-called inductive Alperin-
McKay conditions about quasi-simple groups by the third author. Those conditions are still
open for groups of Lie type. The present paper describes characters of height zero in `-blocks of
groups of Lie type over a field with q elements when ` divides q − 1. We also give information
about `-blocks and Brauer correspondents. As an application we show that quasi-simple groups
of type C over Fq satisfy the inductive Alperin-McKay conditions for primes ` ≥ 5 and dividing
q − 1. Some methods to that end are adapted from [MS16].

Mathematics Classification Number: 20C15, 20C33
Keywords: local-global conjectures, characters, McKay conjecture, Alperin-McKay conjecture,
finite simple groups, Lie type, Harish-Chandra series, Blocks, Height-Zero Characters

1 Introduction

The well-known McKay conjecture from 1972 posits that for a finite group G and a prime ` dividing
|G|, there should be a bijection between the irreducible characters of degree prime to ` of G and
those of NG(P ) for a Sylow `-subgroup P of G. The blockwise version of the McKay conjecture,
known as the Alperin-McKay Conjecture, states that the number of height-zero characters of an
`-block B of G with defect group D should be the same as the number of height-zero characters of
the Brauer correspondent of B in NG(D).

Reduction theorems for the McKay and Alperin-McKay conjectures are proven in [IMN07] and
[Spä13], respectively. In particular, in each case it is shown that to prove the conjecture, it suffices
to prove certain “inductive” conditions for all finite non-abelian simple groups. From [Spä13]
and [Den14], we know that the alternating groups satisfy the inductive Alperin-McKay conditions
and that the simple groups of Lie type satisfy the inductive Alperin-McKay conditions when ` is
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the defining characteristic. The situation that a simple group has abelian Sylow subgroups was
considered in [Mal14], and certain low-rank cases have been settled in [Mal14, SF14]. Further,
[CS15, BS19] consider the case of groups of Lie type A.

In the present paper, we describe the height-zero characters in blocks of finite groups of Lie
type and of an appropriate subgroup containing the normalizer of a defect group for certain good
primes. We prove sufficient conditions for a group of Lie type G in this situation to satisfy the
inductive Alperin-McKay conditions and, as an application, further prove that if G is of type C,
then these conditions hold. That is, we prove:

Theorem 1.1. The simple groups PSp2n(q) with q odd and n ≥ 2 satisfy the inductive Alperin-
McKay conditions from [Spä13, 7.3] for primes ` ≥ 5 dividing (q − 1).

Section 2 deals with height zero characters in `-blocks of groups of Lie type over Fq when `
divides q−1. Then Section 3 gives a streamlined version of the inductive Alperin-McKay conditions
in that case, see Proposition 3.2. Section 4 uses some methods from [MS16] and the description of
normalizers of split Levi subgroups to check those conditions in the case of finite symplectic groups.

1.1 Notation for characters and blocks

Given finite groups H ≤ G, we write Irr(G) for the set of irreducible (complex) characters of G,
Irr(G | ϕ) for the set of irreducible constituents of ϕG := IndGH(ϕ) when ϕ ∈ Irr(H), and Irr(H | χ)
for the set of irreducible constituents of χ|H := ResGH(χ) for χ ∈ Irr(G). More generally, for any
subset X ⊆ Irr(H) we write Irr(G | X) := ∪ϕ∈XIrr(G | ϕ).

Let ` be a prime number. Given a defect `-subgroup D of G, we write Irr(G | D) and Irr0(G | D)
for the set of irreducible characters lying in an `-block with defect group D and the set of those
characters with height 0 within their block, respectively. We denote by Bl(G) the set of `-blocks
of G and whenever χ ∈ Irr(G), we write bG(χ) for the block of G containing χ. We will write Gχ,
respectively GB, for the stabilizer in a group G of a character χ, respectively block B, of some
normal subgroup. For b a block of some subgroup of G, we denote by bG the corresponding Brauer
induced block of G when defined (see [Nav98, p. 87]).

For any integer n, we write n` for the largest power of ` dividing n. Further, for an abelian
group H, we write H` for the Sylow `-subgroup of H.

Finally, for H CG, the following definition will be useful.

Definition 1.2. Let H C G and let I be a subset of Irr(H). An extension map with respect to
H CG for I is any map

Λ: I→
∐

G′ : HCG′≤G
Irr(G′)

associating to each ϕ ∈ I an extension Λ(ϕ) of ϕ in Irr(Gϕ).

2 Constructing the Bijection

The inductive Alperin-McKay conditions from [Spä13] require a bijection between height-zero char-
acters having certain properties. In the present section, we introduce the finite groups of Lie type
and we describe a bijection of characters for certain primes ` (see Corollary 2.13).

2



The Framework and More Notation

We refer to [DM91] for characters of finite groups of Lie type. Throughout this section, we let
G = GF be a group of Lie type defined over Fq, where q is a power of a prime p, G is a connected
reductive algebraic group, and F is a Frobenius endomorphism on G. Further let (G∗, F ∗) be dual
to (G, F ) and let G∗ := G∗F

∗
.

We write E(G, s) for the rational Lusztig series corresponding to the conjugacy class of the
semisimple element s ∈ G∗ (see [DM91, 14.41]). Recall that E(G, s) depends only on the conjugacy
class of s in G∗ and that Irr(G) is the disjoint union of the various sets E(G, s). Let ` be a prime
not dividing q. If s is a semisimple `′-element, then we write E`(G, s) for the union of series of
the form E(G, st), where the union ranges over `-elements t ∈ CG∗(s). By Broué-Michel’s theorem
[CE04, 9.12(i)], E`(G, s) is also a union of `-blocks. We will write E(G, `′) for the union ∪sE(G, s)
where s ranges over semisimple `′-elements of G∗.

Now, we let L be a fixed split Levi subgroup of G (i.e. L is F -stable and the Levi supplement
of some F -stable parabolic subgroup) and L := LF the corresponding Levi subgroup of G. We fix a
character λ ∈ Irrcusp(L), where Irrcusp(L) is the set of irreducible cuspidal characters of L, so that
(L, λ) is a cuspidal pair (see [DM91, Ch. 6]). Further, assume that λ ∈ E(L, `′).

Assume ` divides q−1 and let b := bL(λ) denote the `-block of L containing λ, which by the main
results of [CE99, KM15] often (and in particular in the situations considered here) parametrizes
a block B := bG(L, λ) of G. A defining property (see [CE99, 4.1(a)]) is that B contains the
constituents of RGL (λ), where RGL denotes here Harish-Chandra induction (see [DM91, 4.6(iii),
6.1]). Further, we have B = bG (see Proposition 2.1 below).

Let N := NG(L)F be the fixed points under F of the normalizer of L in G and let b̃ be a block
of N lying above b. Further, for a block c, let D(c) denote a fixed defect group for c.

For a cuspidal pair (L,ψ), the irreducible constituents of RGL (ψ) are in bijection with the
irreducible characters of W (ψ) := Nψ/L, and we will write the constituent corresponding to η ∈
Irr(W (ψ)) as RGL (ψ)η ∈ Irr(G), as in [MS16, 4.D].

2.1 First Steps: The Global Side

Proposition 2.1. Let G = GF be a finite group of type as in the previous section, with F defining
G over a field with q elements. Let ` be a prime good for G and dividing q−1. Let ψ ∈ Irr(L) (not
necessarily cuspidal) for L := LF with L a split Levi subgroup of G. Assume ` - [Z(G)F : Z◦(G)F ].
Then L = CG(Z(L)`) and

RGL (ψ) ∈ ZIrr(bG)

where b is the `-block of ψ in L.

Proof. The first equality comes from [CE99, 3.2]. We now check the second statement.
First, note that it suffices to show that all constituents of RGL (ψ) lie in the same block B, using

[Nav98, 6.4] for example, since RGL (ψ) is the induction of the inflation of ψ and hence we must have
bG = B.

If ψ ∈ E(L, `′), then the statement follows from [CE99, 2.5]. So assume ψ 6∈ E(L, `′) and let b
be a block of L with Irr(B) ⊆ E`(L, s) for some semisimple `′–element s of L∗. By a theorem of
Geck-Hiss [CE04, 14.4], we know d1E(L, s) forms a basic set for E`(L, s), where d1 is the function
that restricts a class function to `′ elements. (Note here that ` is good for L and ` - [Z(L)F : Z◦(L)F ]
by [CE99, 3.3].) In particular, d1ψ is an integral linear combination of members of d1E(L, `′).
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Note that d1 and RGL commute, see [DM91, 7.5]. Further, the constituents of RGL (ψ) lie in the
same block if and only if the same is true for d1RGL (ψ) = RGL (d1ψ), since this is a sum of Brauer
characters in the same blocks as the constituents of RGL (ψ).

Let ζ ∈ E(L, `′) such that d1ζ appears in the decomposition of d1ψ. The character ζ must
be in the same block b as ψ, and we have RGL (ζ) ⊆ ZIrr(bG) from above. Then the irreducible
constituents of RGL (d1ζ) = d1RGL (ζ) must lie in the block bG as well. Since this is true for every
such ζ, it is also true for RGL (d1ψ), and hence we must have RGL (ψ) ⊆ ZIrr(bG).

The following can be seen from [KM15, Theorems A and B] or [CE99, 4.1], by considering the
case G = L and e = 1.

Lemma 2.2. Let L be a split Levi subgroup of a reductive algebraic group G and let λ be a cuspidal
character of L := LF . Let ` be a prime dividing q − 1 such that ` ≥ 5 and ` ≥ 7 if G has a
component of type E8. Suppose λ ∈ E(L, `′) and let b be the `-block of L containing λ. Then λ is
the unique member of Irr(b) ∩ E(L, `′). If (L′, λ′) is another cuspidal pair such that λ′ ∈ E(L′, `′)
and bG(L, λ) = bG(L′, λ′), then (L, λ) is G-conjugate to (L′, λ′).

2.2 First Steps: The Local Side

For the remainder of the section, we will be interested in the situation that L = CG(Z(L)`). We
begin by recording two useful consequences of this assumption.

Lemma 2.3. Assume that L = CG(Z(L)`) and let c ∈ Bl(L) with defect group D := D(c). Then

(a) CG(D) ≤ CG(Z(L)`) = L

(b) If N ′ is a subgroup of N = NG(L)F containing L, then cN
′

is defined and is the unique `-block
of N ′ covering c.

Proof. The first point comes from the fact that D contains any normal `-subgroup of L. For the
second point, let c′ ∈ Bl(N ′|c) be a block of N ′ covering c. Then we may find a defect group D(c′)
for c′ such that D ≤ D(c′). Using (a) we know CN ′(D(c′)) ≤ CN (D(c′)) ≤ CN (D) ≤ L. Then by
[Nav98, 9.20], it follows that c′ is regular with respect to N ′, and hence cN

′
is defined and c′ = cN

′

by [Nav98, 9.19].

We continue with (L, λ) as in the situation of Lemma 2.2. Recall our notation B := bG(L, λ)
and b := bL(λ) with λ ∈ E(L, `′). Further, recall that we let b̃ ∈ Bl(N | b), and hence b̃ is the unique
`-block of N above b, by Lemma 2.3(b).

Lemma 2.4. Let ` be a prime dividing q − 1 and not dividing [Z(G)F : Z◦(G)F ], such that ` ≥ 5
and further ` ≥ 7 if G has a component of type E8. Let D := D(B). Then the group N = NG(L)F

contains NG (D) and is Aut([G,G])B,D-stable.

Proof. We know from [CE99, 4.16] that D has a unique maximal abelian normal subgroup, Z,
such that NG(C◦G(Z)) ≤ N and that the extension 1 → Z → D → D/Z → 1 is split. Hence
NG(D) ≤ NG(Z) ≤ NG(C◦G(Z)) ≤ N . The second statement follows from arguing as in the fifth
paragraph of the proof of [BS19, 5.1].

Lemma 2.5. Keep the assumptions of Lemma 2.4. The defect groups may be chosen so that
D(̃b) = D(B).
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Proof. From Lemma 2.3(b) and Proposition 2.1, we have b̃ = bN and B = bG = b̃G. Then by
[Nav98, 4.13], we may choose the defect groups such that D(b) ≤ D(̃b) ≤ D(B), so CG(D(̃b)) ≤
CG(D(b)) ≤ L ≤ N by Lemma 2.3(a). Then b̃ is admissible, and by [Nav98, 9.24] and Lemma 2.4,
D(̃b) = D(B) ∩N = D(B).

We will write Irrcusp(L) and Irrcusp(b) for the set of irreducible cuspidal characters of L and in

the `-block b, respectively. The next lemma describes the members of Irr(̃b).

Lemma 2.6. Keep the assumptions of Lemma 2.4. Then

Irr(̃b) = {IndNNψ(ψ̃η) | ψ ∈ Irrcusp(b); η ∈ Irr(Nψ/L)},

where for each ψ ∈ Irrcusp(b), ψ̃ is a fixed extension of ψ to Nψ.

Proof. For ψ ∈ Irrcusp(L), we know by [Gec93] and [Lus84, 8.6] that ψ extends to some ψ̃ ∈ Irr(Nψ).

Then Gallagher’s theorem [Isa06, 6.17] implies that the characters of the form ψ̃η, where η ranges
through all members of Irr(Nψ/L), are all of the characters of Nψ above ψ. Clifford theory (see

[Isa06, 6.11]) then implies IndNNψ(ψ̃η) is irreducible for η ∈ Irr(Nψ/L) and that the set Irr(N |ψ) is

comprised of the characters of this form. Then since b̃ = bN is the unique block of N above b by
Lemma 2.3(b), we see {IndNNψ(ψ̃η) | ψ ∈ Irrcusp(b), η ∈ Irr(Nψ/L)} is a subset of Irr(̃b). Here for

each ψ ∈ Irrcusp(b), we have fixed an extension ψ̃ of ψ to Nψ.

Conversely, if ϕ ∈ Irr(̃b), then the constituents of ResNL ϕ lie in N -conjugates of b, and hence
ResNL ϕ must contain ψg as a constituent for some ψ ∈ Irr(b) and g ∈ N . But this means that
ResNL ϕ also contains ψ as a constituent. Let ψ lie in the Harish-Chandra series of L indexed by
the cuspidal pair (M,µ). Then note that bM (µ)G = bG by Proposition 2.1 and the transitivity
of Harish-Chandra induction. Further, applying [CE99, 4.1] and Proposition 2.1 to bM (µ), we see
that bM (µ) = RMM1

(bM1(µ1)) for some cuspidal pair (M1, µ1) of M such that µ1 ∈ E(M1, `
′). But

then again by transitivity of Harish-Chandra induction, we have bG(L, λ) = bG(M1, µ1), and hence
(L, λ) is G-conjugate to (M1, µ1), by Lemma 2.2. Then L = M and ψ ∈ Irrcusp(L), completing the
proof.

2.3 Height-Zero Characters and the Map Ω

Keep the notation and assumptions from the previous section, and let Irr(B,L) denote the subset
of Irr(B) comprised of characters of the form RGL (ψ)η for ψ ∈ Irrcusp(b) and η ∈ Irr(W (ψ)), where

W (ψ) := Nψ/L. Recall that for each ψ ∈ Irrcusp(b), we have fixed an extension ψ̃ of ψ to Nψ.

Recall that b̃ is the unique `-block of N above b.

Definition 2.7. Let Ω: Irr(B,L)→ Irr(̃b) be defined via

Ω(RGL (ψ)η) = IndNNψ(ψ̃η) (1)

for each ψ ∈ Irrcusp(b) and η ∈ Irr(W (ψ)) (see Lemma 2.6).

In this section, we aim to show that Ω induces a bijection Ω: Irr0(B) → Irr0(̃b), where we
write Irr0(c) for the set of height-zero characters of a block c. Recall that for a finite group H
and c ∈ Bl(H), a character χ in Irr(c) satisfies χ ∈ Irr0(c) if and only if χ(1)` = |H|`/|D(c)|.
That is, the `-part of χ(1) is as small as possible. Let χ ∈ Irr0(B) and write χ = RGL (ψ)η, so

Ω(χ) = IndNNψ(ψ̃η).

The next lemma describes Irr0(̃b).
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Lemma 2.8. Let ψ ∈ Irrcusp(b) and η ∈ Irr(W (ψ)). Then IndNNψ(ψ̃η) ∈ Irr0(̃b) if and only if all of
the following hold:

• ψ ∈ Irr0(b);

• η(1)` = 1; and

• [Nb : Nψ]` = 1.

Proof. Let χ′ denote the character IndNNψ(ψ̃η) and write τ for the irreducible character τ :=

IndNbNψ(ψ̃η) of Nb, so that IndNNbτ = χ′. Write bNψ and bNb for the blocks of ψ̃ and τ , respec-

tively, which are the unique blocks of Nψ and Nb, respectively, above b by Lemma 2.3(b). By

[Nav98, 6.2], we have bNb = (bNψ)Nb and b̃ = (bNψ)N = (bNb)
N . By [Nav98, 9.14], the defect groups

of bNb and b̃ are the same and the height of τ is the same as the height of χ′. So χ′ is of height zero
if and only if τ is, and hence it suffices to show that τ is of height zero if and only if the claimed
conditions hold.

Now, by [Nav98, 9.17], Lemma 2.3(b) implies that

|D(̃b)| = |D(bNb)| = |D(b)| · [Nb : L]` and |D(bNψ)| = |D(b)| · [Nψ : L]`,

so
|D(bNb)| = |D(bNψ)| · [Nb : Nψ]`.

Then τ has height zero if and only if τ(1)` = [Nb : D(bNb)]` = |Nb|`
|D(b)|·[Nb:L]`

= [L : D(b)]`. But
this happens if and only if

η(1)` · ψ(1)` · [Nb : Nψ]` = [L : D(b)]`.

Hence, we immediately see that if the stated conditions hold, then τ has height zero. Now assume
conversely that τ has height zero. Then

ψ(1)` · η(1)` = [Nψ : D(bNb)]` =
|Nψ|`

|D(bNψ)| · [Nb : Nψ]`
≤ [Nψ : D(bNψ)]`.

But ψ̃η ∈ Irr(bNψ) implies ψ(1)` · η(1)` ≥ [Nψ : D(bNψ)]`, so it must be that ψ̃η ∈ Irr0(bNψ) and

[Nb : Nψ]` = 1. Then since ψ̃(1)` · η(1)` ≥ ψ̃(1)` ≥ [Nψ : D(bNψ)]`, we also have ψ̃ is of height
zero and η(1)` = 1. Finally, [Nav98, 9.18] now implies that ψ ∈ Irr0(b) by applying Lemma 2.3(b)
again.

Next we describe the height-zero characters in Irr(B,L).

Lemma 2.9. Assume the conditions on ` from Lemma 2.4. Let ψ ∈ Irrcusp(b) and η ∈ Irr(W (ψ)).
Then the character χ = RGL (ψ)η ∈ Irr(B,L) has height zero if and only if all of the following hold:

• ψ ∈ Irr0(b);

• η(1)` = 1; and

• [Nb : Nψ]` = 1.
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Proof. By [MS16, (7.2)] or [Mal07, 4.2], we have

χ(1) = [G : L]p′Dχ(q)ψ(1)

where Dχ is a rational function with numerator and denominator prime to X − 1 and Dχ(1) =
η(1)/|W (ψ)|. Further, by [Mal07, 6.3], Dχ(q)/Dχ(1) ≡ 1 mod ` and is a rational number with
numerator and denominator prime to `. Hence we have

χ(1)` = [G : L]` · η(1)` · ψ(1)`/|W (ψ)|` = [G : L]` · η(1)` · ψ(1)`/[Nψ : L]` = [G : Nψ]` · η(1)` · ψ(1)`.

Now, applying Lemma 2.5, we see χ has height zero if and only if χ(1)` = [G : D(B)]` = [G :
D(̃b)]`, if and only if

[G : Nψ]` · η(1)` · ψ(1)` = [G : D(̃b)]`.

But this occurs if and only if

η(1)` · ψ(1)` = [Nψ : D(̃b)]` =
|Nψ|`

|D(b)|[Nb : L]`
=

[L : D(b)]`
[Nb : Nψ]`

.

Here the second equality holds by the proof of Lemma 2.8.
Hence we see that if the stated conditions hold, then χ has height zero. Conversely, suppose

that χ has height zero. Then we must have η(1)` = 1, since χ(1)` ≥ χ′(1)`, where χ′ = RGL (ψ)1W (ψ)
,

which lies in the same block by Proposition 2.1. Then we have

[L : D(b)]` ≤ ψ(1)` =
[L : D(b)]`
[Nb : Nψ]`

≤ [L : D(b)]`,

implying equality throughout, so ψ ∈ Irr0(b) and [Nb : Nψ]` = 1.

Next, we aim to show that Irr0(B) is exactly the set of height-zero characters in Irr(B,L). The
following result is key in this direction.

Proposition 2.10. Keep (L, λ) as in Lemma 2.2 with B = bG(L, λ) for ` a prime dividing q − 1,
not dividing 6[Z(G)F : Z◦(G)F ] and ≥ 7 if G has components of type E8. If Irr0(B) contains a
cuspidal character, then L = G.

Proof. Let χ ∈ Irr0(B) be assumed to be cuspidal. Denote s ∈ L∗F semi-simple and `′ such that
λ ∈ Irrcusp(L)∩E(LF , s). Then all components of RGL (λ) are in E(G, s). So B meets E(G, s) and is
therefore included in E`(G, s) (see [CE04, 9.12]). So we have χ ∈ E(G, st) where t ∈ CG∗(s)

F
` . We

know that C◦G∗(t) is a Levi subgroup (see [CE04, 13.16(ii)]), let G(t) be an F -stable Levi subgroup
of G in duality with it. Denote by t̂ the linear character of G(t)F associated with t by duality (see
[DM91, 13.30]). For an F -stable Levi subgroup M of G, we write RG

M to denote Deligne-Lusztig
induction. If L is a split Levi subgroup of (G, F ) then RG

L coincides with Harish-Chandra induction
previously denoted by RGL .

(a) Assume t is central in G∗, so that G(t) = G. Then t̂−1χ ∈ Irr(B) since t̂−1 has `-order.
Moreover t̂−1χ ∈ E(G, s) by [DM91, 13.30]. Using now the description of Irr(B) ∩ E(G, `′) (see
[CE99, 4.1(b)]), t̂−1χ is a component of RG

L λ. Then χ is a component of t̂RG
L (λ) = RG

L (ResGL (t̂)λ)
and cuspidality implies that L = G.

Let us now use the decomposition G = GaGb from [CE04, 22.4]. In our case, this means that
Ga is generated by Z◦(G) and the F -stable components Gi of [G,G] such that GF

i is of type
Ani(q

mi) (untwisted) with mi, ni ≥ 1, while Gb is generated by the other components of [G,G].
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(b) Assume G = Gb. Then any non central `-element t ∈ G∗F is such that CG∗(t) embeds
in a proper 1-split Levi subgroup C∗ of G∗ thanks to [CE04, 13.19 and 22.2]. On the other hand
χ = RG

C(χ′) for some χ′ ∈ E(CF , st) by [DM91, 13.25(ii)]. This contradicts cuspidality, so indeed t
is central and case (a) gives our claim.

(c) Assume G = Ga. Let T∗ := C◦G∗(st). This is a Levi subgroup and it is included in no
proper 1-split Levi while having a unipotent cuspidal character corresponding with χ by Jordan
decomposition (see for instance [CE99, 1.10]). In type untwisted A, only tori can have a unipotent
cuspidal character (hence trivial). So this implies that T∗ is a Coxeter torus of G∗ and χ is a
component of RG

T (ŝt). In particular

χ(1)` = |GF |`/|CG∗(st)
F |` (†)

by [DM91, 13.24]. On the other hand, by the main theorem of [BDR17] the block B as an algebra
over a finite extension of Z` is Morita equivalent to a block BM of a subgroup M of G where CFCM
with C∗ = C◦G∗(s) and M/CF ∼= CG∗(s)

F /C◦G∗(s)
F an abelian group with order prime to ` (see for

instance [DM91, 13.15(i)]). Moreover BM covers a block BC of CF with Irr(BC) ⊆ E`(CF , s). Then
ŝ−1BC is a unipotent block. We have C = Ca (see comment after [CE94, 2.3]) so there is only one
CF -conjugacy class of unipotent cuspidal pairs (LC , λC) in CF by [CE94, 3.3(i)]. Therefore ŝ−1BC
is the principal block of CF , so both BC and BM have maximal defect. So height zero characters
of BM have degree prime to `. Now the Morita equivalence and the fact that χ has height zero
imply that

χ(1)` = [GF : M ]` = [GF : CF ]` . (∗)

Combining (†) and (*) implies that [CF : TF ]` = |AG∗(st)
F |` where we use the standard notation

AG∗(x) = CG∗(x)/C◦G∗(x) for x ∈ G∗. One has

|AG∗(st)
F |` = |AC∗(t)

F |` ,

again because AG∗(s) is an `′-group. Using now [DM91, 13.14(ii)], we get that

[CF : TF ]` divides |(Z(C)/Z◦(C))F |. (∗∗)

Let us show that (∗∗) implies C = T. We have CF /TF = (C/T)F . The variety C/T can be
seen in the adjoint group of C. Assuming CF = CF

a has type
∏
i Ani−1(qi) (ni ≥ 2), we get

[CF : TF ]` =
∏
i

(qni−1
i − 1)`(q

ni−2
i − 1)` . . . (qi − 1)`.

Notice that qi is a power of q, hence ≡ 1 mod `. On the other hand |(Z(C)/Z◦(C))F | is a divisor of
the order of the rational fundamental group (see proof of [CE04, 13.12(iv)]) which is

∏
i(qi− 1, ni).

So (∗∗) implies ∏
i

(qni−1
i − 1)` . . . (qi − 1)` divides

∏
i

(qi − 1, ni).

For any i involved, ni ≥ 2, so the LHS above is a multiple of
∏
i(qi− 1)`. This implies on the RHS

that for any i we must have ` | ni and therefore ni ≥ ` > 3. But then the LHS is a multiple of∏
i `(qi − 1)` and this can’t divide the RHS unless both products are empty. We then get that C

is a torus, hence equals T.
We now have C◦G∗(s) = T∗, a Coxeter torus of G∗ and therefore all elements of E(G, s) are

cuspidal, again by [CE99, 1.10]. But the elements of Irr(B)∩E(G, s) are the components of RG
L (λ)

as was recalled before. This forces L = G.
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(d) Before going into the general case, let us notice that if L = G = Ga or L = G = Gb

then all elements of Irr(B) are cuspidal. In the first case this is because as said at the beginning
of (c) we must have that C◦G∗(s) is a Coxeter torus of G∗ but then it is also the case for any
C◦G∗(st) with t = (st)` and therefore any element of E`(G, s) is cuspidal by [CE99, 1.10]. In
the second case, by [CE99, 2.8] an element of Irr(B) has to be a constituent of some RG

G(t)(t̂χt)

with t ∈ CG∗(s)
F
` , G(t) a Levi subgroup of G in duality with C◦G∗(t), χt ∈ E(G(t)F , s) and all

components of RG
G(t)(χt) are in Irr(B)∩E(G, s). By the description of Irr(B)∩E(G, s) (see [CE99,

4.1(b)]), the last requirement implies that RG
G(t)(χt) is a multiple of the cuspidal character χ. This

forbids that G(t), or equivalently C◦G∗(t), embed in a proper 1-split Levi subgroup. As said in (b),
this implies that t is central. Therefore RG

G(t)(t̂χt) = t̂RG
G(t)(χt) is a multiple of t̂χ hence cuspidal.

(e) Let us now return to the proof of the statement of the proposition. We look at the general
case where G = GaGb and χ ∈ Irr0(B) is cuspidal. Let H := GF

a GF
b , a normal subgroup of

GF with abelian `′ factor group (see [CE04, 22.5(i)]). It is a group with split BN-pair given by
intersection of the one of GF . The standard parabolic subgroups correspond in the same way with
same radical, and therefore

∗RHM∩H ◦ ResGH = ResMM∩H ◦ ∗RGM on ZIrr(G)

for each split Levi subgroup M = MF of G, where ∗R denotes Harish-Chandra ”restriction” (see
[DM91, Ch. 4], [CE04, 3.11]). One deduces easily that the restriction of χ to H is a sum of cuspidal
characters. Let us choose χ′ ∈ Irr(H | χ) and let B′ be its block. Since G/H is an abelian `′-
group, B and B′ have a common defect group (see for instance [Nav98, 9.26]). By Clifford theory,
χ(1)` = χ′(1)` so χ′ ∈ Irr0(B′). Now H is also the quotient of GF

a ×GF
b by a central subgroup

H = (GF
a × GF

b )/Z where Z ∼= Z(GF
a ) ∩ Z(GF

b ) = Z(Ga ∩ Gb)F is also `′ by [CE04, 22.5(i)].
The blocks and characters of H can be seen as blocks and characters of GF

a ×GF
b with Z in their

kernel. This obviously preserves cuspidality. So B′ corresponds to a block B′′ of GF
a ×GF

b with
a character χ′′, corresponding to χ′, that is of height zero and cuspidal. By (b) and (c) above
we have B′′ = bGF

a ×GF
b

(GF
a ×GF

b , λ0) for some λ0 ∈ Irrcusp(GF
a ×GF

b ). Now (d) implies that all

characters of B′′ are cuspidal. Therefore the same is true for B′ and B as discussed before. Then
all components of RG

L (λ) have to be cuspidal. This clearly implies L = G.

Remark 2.11. (a) It is easy to deduce from the above proof that the `-blocks of the form B =
bG(G,λ) with λ ∈ Irrcusp(G) ∩ E(G, `′), have only cuspidal characters, i.e. Irr(B) ⊆ Irrcusp(G).

(b) There are indeed `-blocks bG(L, λ) (notation of [CE99]) with ` satisfying the hypotheses
of Proposition 2.10 and L 6= G but with cuspidal characters in Irr(bG(L, λ)). An example is as
follows. Let G be GL`(Fq) with the ordinary Frobenius endomorphism F such that GF = GL`(q)
and ` | (q − 1). Let L be the diagonal torus, L := LF and λ = 1L. Then bG(L, 1) is the principal
block with E(G, 1) ⊆ Irr(bG(L, λ)) again by [CE94, 3.3(i)] and in fact Irr(bG(L, λ)) = E`(G, 1) by
[CE04, 9.12(ii)]. Let T be the Coxeter torus of G with TF of order q` − 1. It is easy to find a
regular element in TF of order (q` − 1)` = `(q − 1)` and dually a regular character θ ∈ Irr(TF ) of
multiplicative order a power of `. Then RG

Tθ is up to a sign a cuspidal character and an element of
E`(G, 1). So it is also an element of Irr(bG(L, 1L)), though not of height zero.

Corollary 2.12. Let L be a split Levi subgroup of a reductive algebraic group G and let λ be a
cuspidal character of L := LF . Let ` be a prime dividing q − 1 such that ` ≥ 5, ` ≥ 7 if G has
a component of type E8, and ` - [Z(G)F : Z◦(G)F ]. Suppose λ ∈ E(L, `′) and let b = bL(λ) be
the `-block of L containing λ and B = bG be the `-block of G = GF containing the irreducible
components of RGL (λ) (see Proposition 2.1). Then

Irr0(B) = Irr0(bG) ⊆ {RGL (ψ)η | ψ ∈ Irr0(b) cuspidal ; η ∈ Irr(W (ψ))}.
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Proof. Let χ ∈ Irr0(B). Note that by Lemma 2.9, it suffices to show that χ is in the Harish-Chandra
series RGL (ψ) for some cuspidal ψ ∈ Irr(b). We may assume that L 6= G.

We know χ must be a constituent of some RGM (µ) for µ a cuspidal character of a split Levi
M := MF of G. Write bM (µ) for the block of M containing µ. By Proposition 2.1, all constituents
of RGM (µ) lie in the same block, bM (µ)G. Then it must be that bL(λ)G = B = bM (µ)G. Further,
applying [CE99, 4.1] and Proposition 2.1 to bM (µ), we see that bM (µ) = RMM1

(bM1(µ1)) for some
cuspidal pair (M1, µ1) of M such that µ1 ∈ E(M1, `

′). But then by transitivity of Harish-Chandra
induction, we have bG(L, λ) = bG(M1, µ1), and hence (L, λ) is G-conjugate to (M1, µ1), by Lemma
2.2, and we may assume L ≤M .

Now, note that the arguments in Lemmas 2.3(b) and 2.5 still hold in the case with N replaced
with K := NG(M)F and b replaced with bM (µ), but with the statement D(̃b) = D(B) replaced

with D(b̃M (µ)) ≤ D(B). (Here b̃M (µ) is the block of K above bM (µ).) Then we may argue as
in Lemma 2.9 to see that µ must have height zero if χ does. Indeed, letting KbM (µ) denote the
stabilizer of bM (µ) in K, we have in this case

[M : D(bM (µ))]` ≤ µ(1)` =
[G : D(B)]`
[G : Kµ]`

= [Kµ : D(B)]` ≤ [Kµ : D(b̃M (µ))]`

=
|Kµ|`|M |`

|D(bM (µ))|`|KbM (µ)|`
=

[M : D(bM (µ))]`
[KbM (µ) : Kµ]`

≤ [M : D(bM (µ))]`,

implying equality throughout. But this contradicts Proposition 2.10 applied to bM (µ), so M = L
and χ must be a constituent of RGL (ψ) for some cuspidal ψ ∈ Irr(b), as desired.

Lemmas 2.8 and 2.9 and Corollary 2.12 immediately yield the following.

Corollary 2.13. Let ` be a prime dividing q − 1 and not dividing [Z(G)F : Z◦(G)F ], such that
` ≥ 5 and ` ≥ 7 if G has a component of type E8. Then the map Ω (see Definition 2.7) restricts to
a bijection

Ω: Irr0(B)→ Irr0(̃b)

RGL (ψ)η 7→ IndNNψ(ψ̃η).

Remark 2.14. We remark that Nb = Nλ, since if x ∈ Nb then λx ∈ b and lies in E(L, `′), and hence
λx = λ by Lemma 2.2.

3 The Inductive Alperin-McKay Conditions

In this section we give a criterion implying the inductive Alperin-McKay conditions of [Spä13, 7.2]
and tailored to simple groups of Lie type. This generalizes the one given in [CS15, Sect. 4] which
doesn’t cover all cases. Instead, to prove Theorem 1.1, we will use the following easy adaptation of
[BS19, 2.4].

Theorem 3.1 (Brough-Späth). Let S be a finite non-abelian simple group and ` a prime dividing
|S|. Let G be the universal covering group of S and assume we have a semi-direct product G̃ o E
with [G̃, G̃] = GC G̃oE and B ⊆ Bl(G) a G̃-stable subset such that for every B ∈ B the inclusion

(G̃E)B ≤ (G̃E)B holds. Assume there exist groups M � G and M̃ ≤ G̃ such that M = M̃ ∩ G
and M̃ ≥ M N

G̃
(D), which further satisfy that for every `-block B ∈ B and some defect group D

of B, M is Aut(G)B,D-stable and NG(D) ≤ M � G. Let B′ ⊆ Bl(M) be the set of all Brauer
correspondents of the `-blocks in B. Additionally assume:
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(i) • C
G̃oE(G) = Z(G̃) and G̃E/Z(G̃) ∼= Inn(G)Aut(G)D by the natural map,

• any element of Irr0(B) extends to its stabilizer in G̃,

• any element of Irr0(B′) extends to its stabilizer in M̃ ,

• the group E is abelian.

(ii) For G := Irr(G̃ | Irr0(B)) and M := Irr(M̃ | Irr0(B′)) there exists an N
G̃E

(D)B-equivariant
bijection

Ω̃ : G −→M

with

• Ω̃
(
G ∩ Irr(G̃ | ν̃)

)
=M∩ Irr(M̃ | ν̃) for all ν̃ ∈ Irr(Z(G̃)),

• b
M̃

(
Ω̃(χ̃)

)G̃
= b

G̃
(χ̃) for all χ̃ ∈ G, and

• Ω̃(χ̃µ̃) = Ω̃(χ̃)µ̃
M̃

for every µ̃ ∈ Irr(G̃ | 1G) and every χ̃ ∈ G.

(iii) For every χ̃ ∈ G there exists some χ0 ∈ Irr(G | χ̃) such that

• (G̃o E)χ0 = G̃χ0 o Eχ0, and

• χ0 extends to Go Eχ0.

(iv) For every ψ̃ ∈M there exists some ψ0 ∈ Irr(M | ψ̃) such that

• O = (G̃ ∩O)o (E ∩O) for O := G(G̃× E)M,ψ0, and

• ψ0 extends to M(Go E)D,ψ0.

(v) For every B ∈ B and its G̃-orbit B̃ the group Out(G)
B̃

is abelian.

Then the inductive Alperin-McKay conditions (see [Spä13, 7.2]) hold for all `-blocks in B.

3.1 Criterion With Levi Subgroups

Here we adapt the conditions from Theorem 3.1 specifically to fit the bijection Ω from Corollary
2.13. Throughout this section, let G be a simple algebraic group of simply connected type over
an algebraic closure of the field with p elements. We assume chosen a Borel subgroup and a
maximal torus T ≤ B and we will denote by Φ ⊇ ∆ the root system and the basis corresponding
to B. One recalls the 1-parameter unipotent subgroups t 7→ xα(t) for α ∈ Φ and t ∈ Fp. We
let Xα := xα(Fq). One defines F0 on G by F0(xα(t)) = xα(tp). One calls graph automorphisms
(omitting to mention T and B) the automorphisms of G defined by xεδ(t) 7→ xεδ′(t) for ε ∈ {±1},
δ ∈ ∆ and ∆ 3 δ 7→ δ′ ∈ ∆ an automorphism of the associated Dynkin diagram.

We let G ↪→ G̃ be a regular embedding as in [CE04, 15.1]. In particular, G̃ is a central product
G̃ = Z(G̃)G and both F0 and the graph automorphisms of G extend to G̃ (see [MS16, Sect. 2.B]).
We let F := Fm0 γ where γ is a graph automorphism (possibly trivial) and m ≥ 1. We denote

q = pm so that G̃ and G are defined over Fq via F .

We also denote G := GF , G̃ := G̃F and let E be the subgroup of Aut(G̃) generated by the
restrictions of F0 and the graph automorphisms considered above.

Let ` denote a prime not dividing q. All blocks considered will be `-blocks.
Let L = T 〈Xα | α ∈ Φ′〉 be a standard Levi subgroup of G associated with Φ′ := Φ ∩ R∆′

for some ∆′ ⊆ ∆ which we assume γ-stable, so that L is F -stable. Now let L̃ := L Z(G̃) be
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the corresponding split Levi subgroup of G̃. Write L := LF and L̃ := L̃F for the resulting Levi
subgroups of G and G̃, respectively. Write T := TF and T̃ := T̃F . Let N := NG(L)F and
Ñ := N

G̃
(L̃)F , and note that

Ñ = L̃N = T̃N

by a standard application of Lang’s theorem.
In this section, we aim to prove the following:

Proposition 3.2. Let G = GF as above and assume that G is the universal covering group of the
non-abelian simple group G/Z(G). Let ` be a prime dividing q − 1 but not dividing 6|Z(G)|, and
further assume ` ≥ 7 if G is of type E8. Let B ∈ Bl(G) corresponding to a cuspidal pair of L, where
L is E-stable. Assume that E is cyclic and that for L̃, N, and Ñ as above, there is an NE-stable
L̃-transversal T ⊆ Irrcusp(L) such that the following hold:

(1) There is an NE-equivariant extension map (see Definition 1.2) with respect to LCN for T.

(2) R(tλ) ≤ ker(δλ,t) for all λ ∈ T and t ∈ T̃ with the notation from [MS16, Sect. 4].

(3) For every χ̃ ∈ Irr(G̃ | Irr0(B)), there exists some χ0 ∈ Irr(G | χ̃) such that (G̃ o E)χ0 =

G̃χ0 o Eχ0.

(4) Out(G)
B̃

is abelian for the G̃-orbit B̃ of B.

Then the inductive Alperin-McKay conditions hold for B.

Remark 3.3. The condition (3) above is equivalent to the existence of an E-stable G̃-transversal
in Irr0(B). Indeed, for each G̃ o E-orbit it suffices to select one χ0 as in the condition and take
the images under E-action. The stabilizer property will ensure that this is a G̃-transversal. The
converse is also easy.

We begin by recording the following straightforward observation:

Lemma 3.4. Suppose ` - |Z(G)|. Let B ∈ Bl(G) and C ∈ Bl(N), B̃ = Bl(G̃|B) and C̃ = Bl(Ñ |b).
Then Irr(G̃ | Irr0(B)) = Irr0(B̃) and Irr(Ñ | Irr0(C)) = Irr0(C̃).

Proof. Note that by [Lus88, Proposition 10], any χ ∈ Irr(G) extends to its inertia group G̃χ in G̃.

Since ` - [G̃ : Z(G̃)G] and Z(G̃)G ≤ G̃χ for any χ ∈ Irr(G), it suffices to prove the statement for

Z(G̃)G rather than G̃. Let χ̃ ∈ Irr(Z(G̃)G|χ) be an extension of χ ∈ Irr(G) and let D̃ and D be
the defect groups of B̃ and B in G̃ and G, respectively. Note that Z(G̃)` ≤ D̃ and Z(G)` ≤ D, and
hence D̃ can be chosen so that Z(G̃)`D ≤ D̃. Further, [Nav98, 9.17] yields that |D̃| ≤ |Z(G̃)`D|.
Then [Z(G̃)G : D̃]` = [Z(G̃)G : Z(G̃)D]` = [G : D]` and χ̃ has height zero if and only if χ does,
giving the statement in G̃.

Since Ñ/N = L̃N/N ∼= L̃/L ∼= G̃/G and the defect groups of C̃ and C are the same as
the corresponding defect groups for B̃ and B under the maps constructed in Section 2, the same
arguments show the statement in Ñ .

As in Sections 2.2 and 2.3, we assume that ` divides q − 1 but not 6 · [(Z(G) : Z◦(G))F ] and
` ≥ 7 if G is of type E8. Then by [CE99, 4.1] any `-block of G = GF is of the type bG(L, λ) studied
before, and the same is true for G̃F . Note that for D a defect group of G and D̃ a defect group of
G̃ such that D = D̃ ∩G, Corollary 2.13 applied independently to G and G̃ then yields bijections

Ω: Irr0(G | D)→ Irr0(N | D)
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and
Ω̃ : Irr0(G̃ | D̃)→ Irr0(Ñ | D̃)

simultaneously, each preserving Brauer correspondence. We wish to use information about Ω to
obtain the properties for Ω̃ required in Proposition 3.2.

Recall from Definition 2.7 that the construction of Ω depends on the choice of an extension map
ψ 7→ ψ̃ with respect to the normal inclusions LCN for Irrcusp(L).

Lemma 3.5. Assume that for any standard Levi subgroup L̃ in G̃, there is an ÑE-equivariant
extension map Λ̃ (see Definition 1.2) for Irrcusp(L̃) with respect to L̃C Ñ . Then:

(a) The map Ω̃ : Irr0(G̃ | D̃)→ Irr0(Ñ | D̃) described above is N
G̃E

(D)-equivariant.

(b) If the map Λ̃ satisfies

Λ̃
(
λ̃ · µ|

L̃

)
= Λ̃(λ̃) · µ|

Ñ
λ̃

for each λ̃ ∈ Irrcusp(L̃) and each µ ∈ Irr(G̃ | 1G), then Ω̃ satisfies

Ω̃(χ̃µ) = Ω̃(χ̃) · µ|
Ñ

for every χ̃ ∈ Irr0(G̃) and µ ∈ Irr(G̃ | 1G).

Proof. Both statements follow directly from our construction of Ω̃, taking into account [MS16, 4.6,
4.7] for part (a). Note that, thanks to the ÑE-equivariance of Λ̃, the linear character δλ,σ in [MS16,

4.6] is trivial in the case of an automorphism σ induced by an element of ÑE.

Lemma 3.6. Assume condition (1) of Proposition 3.2. Then there is an ÑE-equivariant extension
map Λ̃ for Irrcusp(L̃) with respect to L̃C Ñ satisfying

Λ̃
(
λ̃ · µ|

L̃

)
= Λ̃(λ̃) · µ|

Ñ
λ̃

for each λ̃ ∈ Irrcusp(L̃) and each µ ∈ Irr(G̃ | 1G).

Proof. Let λ̃ ∈ Irrcusp(L̃) and λ0 ∈ Irr(L|λ̃) ∩ T. Fix an extension λ̃0 of λ0 to L̃λ0 such that

λ̃ = IndL̃
L̃λ0

(λ̃0). Note that since T is N -stable, we have L̃N
λ̃0

= L̃N
λ̃
, using Clifford theory. Let Λ

be the assumed extension map with respect to LCN , so that Λ(λ0) is a character of Nλ0 extending
λ0. Then by [CS17a, 5.8 (a)] or [Spä10, 4.1], there exists a unique common extension, call it ϕ, of
λ̃0 and Λ(λ0)|N

λ̃0
to L̃λ0Nλ̃0

. Define

Λ̃(λ̃) := Ind
L̃N

λ̃0

L̃λ0
N
λ̃0

(ϕ).

Then Λ̃(λ̃) is an extension of λ̃ to Ñ
λ̃

= L̃N
λ̃

= L̃N
λ̃0

. This defines an extension map Λ̃, which by

construction is NE-equivariant. The map Λ̃ is L̃-equivariant, hence Ñ -equivariant since Ñ = L̃N .

The required equation Λ̃
(
λ̃ · µ|

L̃

)
= Λ̃(λ̃) · µ|

Ñ
λ̃

holds since Λ̃(λ̃ · µ|
L̃

) is constructed using λ0 ∈

T ∩ Irr(L|λ̃ · µ|
L̃

) and the common extension of λ̃0µ|L̃λ0
and Λ(λ0)|N

λ̃0
.

We are now ready to prove Proposition 3.2.

13



Proof of Proposition 3.2. We check that the assumptions of Theorem 3.1 are satisfied. We have
S = G/Z(G) of which G is a universal covering by assumption and on which G̃ o E induces the
whole automorphism group by [GLS98, 2.5.1]. We also have the stabilizer part of assumption 3.1(iii)
by 3.2(3). Note that the extendibility conditions of 3.1(iii) and 3.1(iv), along with the remainder
of condition 3.1(i) are ensured by the assumption that E and hence M(GE)D,ψ0/M are cyclic.

Note that a G̃-orbit B̃ containing B = bG(L, λ) ∈ Bl(G) is composed of blocks bG(L, λ′) for
other λ′ ∈ Irrcusp(L)∩E(L, `′), and hence N = NG(L)F contains NG(DB) for each B ∈ B̃, applying

Lemma 2.4. Taking M := N and M̃ := Ñ , we see using Lemmas 3.4, 3.5, and 3.6, together with
our assumptions, that assumption (ii) of Theorem 3.1 holds.

Our map Ω is built with the same method as for the bijection in [MS16, 5.2]. The arguments from
there can be applied thanks to assumptions 3.2(1) - (2) and show that Ω is N

G̃E
(D)-equivariant.

In order to now ensure condition (v) of Theorem 3.1 we apply the considerations from the

proof of [MS16, 5.3]: Let ψ̃ ∈ Irr0(M̃). As in the proof of [CS17b, 4.3], it suffices to show that

(M̃M̂)ψ0 = M̃ψ0M̂ψ0 , where M̂ := NE and ψ0 is a suitable member of Irr(M | ψ̃). But this follows

by taking ψ0 := Ω(χ0), where χ0 ∈ Irr(G | χ̃) satisfies assumption 3.2(3) and ψ̃ = Ω̃(χ̃).

4 Extending Cuspidal Characters in Type Cl

Our main task is now to verify in G = Sp2l(q) the existence of T satisfying assumption (1) of
Proposition 3.2, namely we construct an NE-stable L̃-transversal T ⊆ Irrcusp(L) and an extension
map with respect to LCN for T.

We will check this via an application of the following criterion, which is based on [BS19, 4.2].
It will be applied in a case where K = K0 but we show the slightly stronger statement for future
reference.

Proposition 4.1. Let K CM and K0 CM with K0 ≤ K be finite groups, and let E be a group
acting on M , stabilizing K and K0. In addition, let K ⊆ Irr(K) be ME-stable. Assume

(i) K = Z(K)K0;

(ii) there exists some E-stable group V ≤M such that

(ii.1) M = KV and H := V ∩K ≤ Z(K); and

(ii.2) there exists some V E-equivariant extension map Λ0 with respect to HCV for
⋃
λ∈K Irr(H |

λ);

(iii) denoting ε : V → V/H the canonical surjection, there exists an ε(V )E-equivariant extension
map Λε with respect to K0 CK0 o ε(V) for the set

⋃
λ∈K Irr(K0 | λ).

Then there exists an ME-equivariant extension map with respect to K CM for K.

Proof. By (ii.1) it is sufficient to construct a V E-equivariant extension map with respect to KCM
for K.

Let λ ∈ K. Proposition 4.2 in [BS19] defines an extension λ̃ of λ to Mλ in the following
way: the character ζ ∈ Irr(H | λ) has the extension ζ̃ := Λ0(ζ) and λ0 := ResKK0

λ extends to

Λε(λ0) ∈ Irr(K0 o ε(Vλ0). Those two extensions are used to define D̃ : Mλ → GLλ(1)(C) via the
equation

D̃(kv) = ζ̃(v)D′(ε(v))D(k) for every k ∈ K and v ∈ Vλ, (2)
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where D is a linear representation of K affording λ, and D′ is a linear representation of K0oε(V )λ0

extending ResKK0
D and affording Λε(λ0).

We obtain an extension map Λ with respect to K CKV for K given by λ 7→ Tr ◦D̃. Note that
this map is well-defined. Since the extension maps Λ0 and Λε are V E-equivariant, one checks easily
using the above formula that Λ is V E-equivariant.

4.1 The structure of L and N in type C

We now concentrate on finite quasi-simple groups of Lie type C. Though the structure of split Levi
subgroups in symplectic groups is a direct product easily dealt with, their normalizers don’t equal
the corresponding wreath products, so the problem of character extensions requires some special
care.

For a positive integer i let i := {1, . . . , i}.

Notation 4.2. Let G = Sp2l(Fq) be a simply connected simple group of type Cl over the field Fq.
Let T be the diagonal torus and B be the upper triangular Borel subgroup of G. Let Φ be the
T-roots of G given as {2ei,±ei± ej | i, j ∈ l} with basis ∆ := {2e1, ei+1− ei | 2 ≤ i ≤ l} as subsets
of ⊕⊥i∈lRei, see [GLS98, 1.8.8]. Recall the identification of the Weyl group WΦ with the group S±l
of permutations σ of l ∪−l satisfying σ(−x) = −σ(x) for any x ∈ l ∪−l, see [GLS98, 1.8.8]. For Ψ
a subset of Φ one denotes by WΨ the subgroup of WΦ generated by the corresponding reflections.

The Chevalley generators xα(t), nα(t′) and hα(t′) (α ∈ Φ, t, t′ ∈ Fq with t′ 6= 0) together
with the Steinberg relations describe the group structure of G, see [GLS98, Thm. 1.12.1]. Let
F : G → G be the Frobenius endomorphism with xα(t) 7→ xα(tq) and G := GF , T := TF . We
take for G̃ the usual conformal symplectic group CSp2l(Fq).

Let L = T 〈Xα | α ∈ Φ′〉 be a standard Levi subgroup of G associated with Φ′ := Φ ∩ R∆′ for
some ∆′ ⊆ ∆. Then Φ′ decomposes as a disjoint union of irreducible root systems, i.e.,

Φ′ = Φ−1 t Φ2 t . . . t Φl−1,

where Φ−1 denotes a root subsystem with a long root, hence of type A1 or Cm (m ≥ 2), and Φd is
the union of direct summands subsystems of Φ′ of type Ad−1 (d ≥ 2) with only short roots. Denote
L = LF .

Note that with the notation of Sect. 3.1, E = 〈F0〉. Note that every standard Levi subgroup L
is E-stable. All automorphisms of GF are induced by G̃F o E as soon as q ≥ 3. Recall that one
calls diagonal the ones induced by G̃F .

Write D := l ∪ {−1}. For each d ∈ D \ {1} let Jd ⊆ l be minimal with Φd ⊆ 〈ek | k ∈ Jd〉. In
addition let J1 := l \ (J−1 ∪ J2 ∪ . . . ∪ Jl). Then Φd = 〈ek | k ∈ Jd〉 ∩ Φ′ and we denote

Φd := 〈ek | k ∈ Jd〉 ∩ Φ

for every d ∈ D. For d ∈ D \{1} let Od be the set of WΦd-orbits in Jd, and let O1 := {{j} | j ∈ J1}.
Let

O :=
⋃
d∈D
Od.

The following lemmas gather facts that are easily checked by use of the Steinberg relations or
the realization of G as Sp2l(q) given in [GLS98, 2.7].

Lemma 4.3. For I ⊆ l let TI :=
〈

h2ei(t) | i ∈ I, t ∈ F
×
q

〉
. For each I ∈ Od with d 6= 1 let

ΦI := Φd ∩ 〈ei | i ∈ I〉,

GI := 〈Xα | α ∈ ΦI〉TI and GI = GF
I . (3)
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(a) Then GI ∼= GL|I|(q) if I 6= J−1 and GJ−1
∼= Sp2|J−1|(q).

(b) L is the direct product of the groups GI (I ∈ O).

(c) L̃ induces diagonal automorphisms on GJ−1 and only inner automorphisms on GI (I 6= J−1).

Lemma 4.4. Let hI(−1) :=
∏
j∈I h2ej (−1) for I ⊆ l,

H := 〈hI(−1) | I ∈ O〉 and Hd = 〈hI(−1) | I ∈ Od〉 (d ∈ D). (4)

Then H = H−1 ×H1 ×H2 × · · · ×Hl and H ≤ Z(L)

We keep the same notations as before. Recall that we identify WΦ with the group S±l defined
in [GLS98, 1.8.8].

Proposition 4.5. We have N/L ∼= WΦ1
×
∏
d≥2 StabWΦd

(Φd). Moreover

StabWΦd
(Φd) =

(
WΦd ×

〈∏
i∈I

(i,−i) | I ∈ Od

〉)
o SOd

for 2 ≤ d ≤ l.

Proof. This follows from N/L ∼= NN (T)/NL(T) ∼= NW (WΦ′)/WΦ′ , see [Car93, 9.2.2]. The compu-
tation of stabilizers in root systems of type C is standard.

Notation 4.6 (Introduction of Vd). We write ni := nαi(−1) whenever α1 = 2e1 and αi = ei− ei−1

(2 ≤ i ≤ l). Note that the elements {ni|1 ≤ i ≤ a} satisfy the braid relations of type Ca, see for
example [Spr09, 9.3.2].

For d ∈ l, let ad := |Od|, Id,j (1 ≤ j ≤ ad) the elements of Od and Id,j(k) ∈ Id,j (1 ≤ k ≤ d) the
elements of Id,j . For each k ∈ d we fix

πk : ad → Jd with j 7→ Id,j(k) and mk :=
∏
j∈ad

nej−eπk(j)
(1) ∈ G.

For j ∈ ad we define

n
(d)
j :=

∏
k∈d

nmkj .

Alternatively we write also nId,1 for n
(d)
1 and nId,j−1,Id,j for n

(d)
j .

Proposition 4.7. For d ∈ D let

Vd :=
〈
n

(d)
j | j ∈ ad

〉
and V := 〈Vd | d ∈ D〉 . (5)

(a) n
(d)
j =

{∏
k∈Id,1 nek(±1) if j = 1,∏
k∈d neId,j−1(k)−eId,j(k)

(±1) otherwise ,

for at least one choice of the signs above;

(b) [E, V ] = 1;

(c) N = LV ;

(d) the elements {n(d)
j | j ∈ ad} satisfy the braid relations of type Cad;
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(e) [Vd, Vd′ ] = 1 for every d, d′ ∈ D with d 6= d′.

Proof. The elements {nk | k ∈ ad} satisfy the braid relations as recalled in Notation 4.6. By the
definition together with the Steinberg relations it is straighforward computation to check that the

elements {n(d)
j | j ∈ ad} satisfy parts (a), (b) and (d).

Denote ρ : NG(T) → WΦ the canonical surjection. For d ∈ D we see that ρ(Vd)WΦd =
StabWΦd

(Φd) since

ρ(Vd) =

〈∏
i∈I

(i,−i) | I ∈ Od

〉
o SOd ,

whenever d ∈ D \ {−1}. This implies (c) by Proposition 4.5.
Note that ρ(Vd) ≤ WΦd

. Since Φd ⊥ Φd′ and no non-trivial linear combination of them is a
root, [Vd, Vd′ ] = 1 by the commutator formula.

For the later proof of assumption (iii) of Proposition 4.1 we need to analyze the action of V on
L.

Lemma 4.8 (The action of V on L). (a) Let I, I ′ ∈ O \ {J−1} such that nI,I′ is defined and
I ′′ ∈ O. Then n2

I,I′ ∈ Z(L) and

[nI,I′ , GI′′ ] =


GI if I ′′ = I ′,

GI′ if I ′′ = I,

GI′′ otherwise .

(b) Let I ∈ O \ {J−1} and I ′′ ∈ O with I ′′ 6= I. Then (GI′′)
nI = GI′′. The element nI induces

on GI the combination of a graph and an inner automorphism while acting trivially on GI′′

if I 6= I ′′.

Proof. The claims follow from Proposition 4.7(a) using the Steinberg relations.

4.2 Cuspidal characters of L and their extensions

In the following we verify the character theoretic assumptions necessary for applying Proposi-
tion 4.1.

Proposition 4.9. There exists an NE-stable L̃-transversal T in Irrcusp(L) such that (L̃NE)λ =

L̃λ(NE)λ for every λ ∈ T.

Proof. Note first that the cuspidal characters of L are the products of cuspidal characters of the
GI ’s (I ∈ O). We choose first a L̃-transversal in Irrcusp(G−1) that is E-stable. Such a transversal

T−1 exists by [CS17b, 3.1] and Remark 3.3. We also know by Lemma 4.3 that L̃ acts by inner
automorphisms on all other direct factors GI , so the set T = Irrcusp(L | T−1) is an E-stable

L̃-transversal as required.
Recall that for χ−1 ∈ T−1 we have Vχ−1 = V and (L̃E)χ−1 = L̃χ−1Eχ−1 , hence altogether we

see (L̃NE)χ−1 = L̃χ−1(NE)χ−1 .

Let λ ∈ T. Let L+ := 〈Gd | d ∈ D \ {−1}〉 and χ+ ∈ Irr(L+ | λ). We have seen that L̃ acts by
inner automorphisms on L+, hence stabilizes χ+ and therefore (L̃NE)χ+ = L̃(NE)χ+ . Since λ =
χ−1χ+ for some χ−1 ∈ T−1, the required equation holds for every λ ∈ Irr(L | T−1)∩ Irrcusp(L).
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In the next step we show the following for the groups HCV from Lemma 4.4 and Proposition 4.7.

Proposition 4.10. Every element of Irr(H) extends to its stabilizer in V . In particular there exists
a V E-equivariant extension map (see Definition 1.2) with respect to H C V for Irr(H).

This will imply that the groups H and V satisfy the assumption 4.1(ii.2) of Proposition 4.1.

Proof. The second statement is a consequence of the first since E acts trivially on V by Proposi-
tion 4.7(c). So we now show that every element of Irr(H) extends to its stabilizer in V .

By (e) of Proposition 4.7 it is sufficient to prove that for every d ∈ D any character of Hd

extends to its stabilizer in Vd. The group Hd is the ad-times central products of groups 〈hI(−1)〉
(I ∈ Od). Let c

(d)
1 := n

(d)
1 and

cId,j := c
(d)
j := (c

(d)
j−1)n

(d)
j . (6)

In addition n
(d)
j (2 ≤ j ≤ ad) stabilizes {cI | I ∈ Od}.

Let λd ∈ Irr(Hd). Then λd is Vd-conjugate to a character λ′d with

λ′d(hId,j (−1)) =

{
−1 if j ≤ a′,

1 otherwise,

for some 0 ≤ a′ ≤ ad. We assume that λd is of this form. Then

Vd,λd = CS , where C := 〈cI | I ∈ Od〉 and S :=
〈
n

(d)
j | j ∈ ad \ {a′ + 1}

〉
.

By the Steinberg relations we see that [cI , cI′ ] = 1 for I, I ′ ∈ Od. Hence one can choose an
extension λ̂d of λd to HdC such that

λ̂d(cI) = λ̂d(cI′) for I, I ′ ∈ Od.

This character is accordingly S-stable and hence Vd,λd-stable.

Since by (d) the elements {n(d)
j | 2 ≤ j ≤ ad} satisfy the braid relations and ρ(S) is the direct

product of two symmetric groups, we see that

S ∩Hd =
〈

(n
(d)
j )2 | j ∈ ad \ {a′ + 1}

〉
.

Those elements lie in the kernel of λd. Hence there exists an extension ψ of λd to HdS such that
S ≤ ker(ψ). According to [Spä10, 4.1] the characters ψ and λ̂d define an extension ψ̃ to V

d,λ̃d
that

is Vd,λd-invariant and extends to Vd,λd .

Proposition 4.11. Let ε : V → V/H be the canonical epimorphism. There exists an NE-
equivariant extension map with respect to LC Lo ε(V ).

In its proof we need the following observation.

Lemma 4.12. Let γ be an automorphism of GLn(q) commuting with the field automorphism F0 of
GLn(q). Then there exists a 〈γ, F0〉-equivariant extension map with respect to GLn(q)CGLn(q)o〈γ〉.

Proof. It clearly suffices to show that any χ ∈ Irr(GLn(q)) extends to its stabilizer in GLn(q) o
〈F0, γ〉. By [Bon99, 4.3.1], χ has an extension χ̃ to GLn(q) o 〈F0〉χ with 0 /∈ χ̃(〈F0〉χ). This
implies that the various extensions of χ to GLn(q)o 〈F0〉χ have distinct restrictions to 〈F0〉χ. Let
A := 〈F0, γ〉χ. Then A is abelian and fixes χ̃ by what we have said about restrictions to 〈F0〉χ.
On the other hand A/ 〈F0〉χ injects into 〈F0, γ〉 / 〈F0〉 hence is cyclic, so that χ̃ does extend to
GLn(q)oA. This completes our proof.
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Proof of Proposition 4.11. It is sufficient to prove that there exists an ε(Vd) 〈E〉-equivariant exten-
sion map with respect to GdCGdo ε(Vd) for every d ∈ D+. For d = 1 the group H1 is abelian and
[ε(Vd), E] = 1. Hence such a map exists.

Let d ∈ D≥2. Then Gd ∼= GadI for some (I ∈ Od) and Gd ε(Vd) ∼= (GI o 〈ε(cI)〉) o Sad for
I ∈ Od. For d ≥ 2 the automorphism of GI induced by ε(cI) commutes with E and there exists an
ε(cI) 〈E〉-equivariant extension map with respect to GI CGI 〈ε(cI)〉 by Lemma 4.12.

From the knowledge of the representations of wreath products we know there exists an ε(Vd) 〈E〉-
equivariant extension map with respect to Gd CGd o ε(Vd).

We can now prove the following.

Proposition 4.13. There exists an NE-equivariant extension map Λ with respect to L C N for
Irr(L), such that Λ(λt) = Λ(λ)t for every t ∈ T̃ and λ ∈ Irr(L) with λt 6= λ.

Proof. We check that all the assumptions of Proposition 4.1 are satisfied withK0 = K = L, M = N ,
V as defined in Proposition 4.7 and T from Proposition 4.9. The group theoretic assumptions are
clear. Proposition 4.10 implies that the assumption 4.1(ii.2) is satisfied while Proposition 4.11
gives 4.1(iii). We obtain an extension map Λ0 for T and then deduce an extension map for Irr(L)
by setting Λ(λt) := Λ(λ)t for every t ∈ T̃ and λ ∈ T with λt 6= λ since T is a T̃ -transversal in
Irr(L). To show that Λ is NE-equivariant, note first that [T̃ , NE] ≤ LZ(G̃). This is because
[T̃ , N ] ≤ [G̃, G̃] ∩ T̃ ≤ T and [T̃ , E] ≤ T Z(G̃) since F0 acts trivially on T̃ /T Z(G̃) ≤ G̃/GZ(G̃) the
latter being of order 2. Now let x ∈ NE, λ ∈ Irr(L) and let us check Λ(λx) = Λ(λ)x. We have it
when λ ∈ T, so let us assume λ ∈ Irr(L)\T. Since T is a T̃ -transversal in Irr(L) we have λ 6= tλ ∈ T
for some t ∈ T̃ . Denote µ = tλ ∈ T. We must prove Λ(µtx) = Λ(µt)x. The right hand side equals
Λ(µ)tx since µt 6= µ ∈ T. For the left hand side we have seen that [t, x] ∈ LZ(G̃) hence fixes µ, so
µtx = µxt 6= µx while µx ∈ T. So

Λ(µtx) = Λ(µxt) = Λ(µx)t = Λ(µ)xt = Λ(µ)tx

the last equality since [t, x] acts trivially on Irr(Nµ).

In our checking of the inductive Alperin-McKay conditions via Proposition 3.2, we now have
assumption 3.2(1) for the transversal whose existence is ensured by Proposition 4.9. In the following,
we turn to assumption 3.2(2) which deals with the so-called reflection subgroup R(λ) of W (λ) :=
Nλ)/L (see [Car93, 10.6.3]). The group R(λ) is seen as acting on RΦ/RΦ′ and generated by
reflections sα for α ranging over a certain root system Φλ of RΦ/RΦ′.

Lemma 4.14. Let λ ∈ Irrcusp(L) and λ̃ ∈ Irr(L̃λ | λ). Then R(λ) ≤W (λ̃).

Proof. The group GL̃λ = (GL̃λ)F has a split BN -pair obtained by intersection with the one of
G̃ and standard Levi subgroups correspond. Then (L̃λ, λ̃) is a cuspidal pair for reasons already
seen in (e) of the proof of Proposition 2.10. This gives the meaning of W (λ̃) as a subgroup of
N

GL̃λ
(LL̃λ)F /L̃λ = N/L.

Now to prove our claim, it suffices to check that sα ∈ W (λ̃) for every α ∈ Φλ. Recall that for
any α ∈ Φλ, one defines a Levi subgroup Lα of G as generated by L and the XF

β ’s for β ∈ Φ with

α ∈ Rβ + RΦ′/RΦ′ (see [Car93, p. 330]). By the definition of Φλ the character RLαL (λ) has two

constituents of different degrees (see [Car93, Sect. 10.6]). Now there exists an extension λ̃ of λ
to L̃λ since L̃/L ∼= G̃/G is cyclic. Again by the compatibility of Harish-Chandra induction with
regular embeddings and intermediate inclusions, one has

ResLαL̃λLα
◦RL̃λLα

L̃λ
(λ̃) = RLαL (λ).
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Because of Lα C L̃λLα, RL̃λLα
L̃λ

(λ) must also have two constituents of different degrees by Clifford

theory. This implies sα ∈W (λ̃).

We now turn to the condition of Proposition 3.2 on the linear character δλ,σ of Nσλ introduced
in [MS16, p. 887] and whose definition is recalled in the proof below.

Proposition 4.15. We have R(σλ) ≤ ker(δλ,σ) for any σ ∈ Aut(G) induced by an element of T̃ .

Proof. Thanks to Lemma 4.14, it suffices to check that W (λ̃) ≤ ker(δλ,σ) for some λ̃ ∈ Irr(L̃ | λ).
Let us recall the extension map Λ with respect to LCN for Irr(L) from Proposition 4.13 so that
δλ,σ is uniquely defined as the linear character of Nσλ satisfying

δλ,σ Λ(σλ) = σ(Λ(λ)). (7)

By Proposition 4.9 we know that there exists some NE-stable L̃-transversal T in Irrcusp(L) and

we may assume λ ∈ T. Accordingly (NL̃)λ = NλL̃λ and (NL̃)
λ̃

= N
λ̂
L̃λ where λ̂ ∈ Irr(L̃λ | λ)

with λ̂L̃ = λ̃. Note N
λ̃

= N
λ̂
. According to [Spä10, 4.1(a)] there exists a unique extension φ of λ̂

to N
λ̂
L̃λ with φ|N

λ̂
= Λ(λ)|N

λ̂
. The character φ̃ = φÑλ̃ is an extension of λ̃.

Assume now that σλ 6= λ. Then by Proposition 4.13 we have Λ(σλ) = σΛ(λ) and therefore
(7) implies δλ,σ = 1 which gives our claim. So we consider the case where σλ = λ. Then our
claim is equivalent to the fact that Λ(λ) and σΛ(λ) have same restriction to N

λ̃
thanks to Clifford

theory (see [Isa06, 6.17]). Since σ stabilizes λ it also stabilizes φ̃. We see that Λ(λ)|N
λ̃

is the

unique constituent of φ̃|N
λ̃

extending λ. The character Λ(λ)|N
λ̃

has to be σ-stable and this gives
our claim.

5 Proof of Theorem 1.1

We now finish the proof of Theorem 1.1 by an application of Proposition 3.2 in the case where
G = Sp2l(q) ≤ G̃ = CSp2l(q) with l ≥ 2 (ensuring that G is the universal covering of the simple
group PSp2l(q)), q a power of an odd prime p and ` a prime ≥ 5, dividing q−1. Let B be an `-block
of G, which by what has been recalled before of [CE99, 4.1] contains the irreducible components
of RGL (λ) for L a Levi subgroup of G as described in Section 4 and some λ ∈ Irrcusp(L) ∩ E(L, `′).

Then E is the group generated by the automorphism of G̃ consisting in raising the matrix entries
to the p-th power.

The existence of the NE-stable L̃-transversal T ⊆ Irrcusp(L) is implied by Proposition 4.9.
Then assumption (1) of Proposition 3.2 for T is ensured by Proposition 4.13. Now Proposition 4.15
gives assumption (2) of Proposition 3.2.

On the other hand, assumption (3) in Proposition 3.2 follows from [Tay18] or [CS17b, 3.1] thanks
to Remark 3.3. Finally, assumption (4) in Proposition 3.2 also holds for G since Out(G) ∼= C2 ×E
is abelian in this case.

6 Acknowledgements

Part of this work was completed while the authors were in residence at the MSRI in Berkeley,
California during the Spring 2018 program on Group Representation Theory and Applications,
supported by the NSF Grant DMS-1440140. Part was also completed at the Isaac Newton In-
stitute for Mathematical Sciences during the Spring 2020 program Groups, Representations, and

20



Applications: New Perspectives, supported by EPSRC grant EP/R014604/1. The authors thank
both institutes and the organizers of the programs for making their stays possible and providing a
collaborative and productive work environment.

The second-named author was also supported in part by grants from the Simons Foundation
(Award #351233) and the NSF (Award # DMS-1801156). She would also like to thank the Grad-
uate School at Universität Wuppertal for its hospitality during her visits in August 2018 and April
2019 in the framework of the research training group GRK 2240: Algebro-Geometric Methods in
Algebra, Arithmetic and Topology, which is funded by the DFG.

We thank Gunter Malle for his remarks on an early version of our manuscript.

References
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