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ABSTRACT. We characterize finite groups that possess a nontrivial irreducible character of
{p, ¢}/-degree with values in Q(e?>""/?) or Q(e?>7"/%), where p and g are primes. This extends
previous work of Navarro-Tiep and of Giannelli-Schaeffer Fry-Vallejo. Along the way we
completely describe the alternating groups possessing a nontrivial irreducible rational-valued
character of {p,q}-degree. A similar classification is obtained for solvable groups, when

p=2.

1. INTRODUCTION

In 2006, G. Navarro and P.H. Tiep [NT06] confirmed a conjecture of R. Gow predicting
that every group of even order has a nontrivial rational-valued irreducible character of odd
degree. Later, in [NTO0S], they generalized their result by proving that every finite group of
order divisible by a prime ¢ admits a nontrivial irreducible character of ¢’-degree with values
in Q(e*7/%), the cyclotomic field extending the rational numbers by a primitive ¢g-th root of
unity. In [GSV19], the first, third, and fourth-named authors have recently shown that for
any set m consisting of at most two primes, every nontrivial group has a nontrivial character
of m’-degree (that is, a character of p’-degree, for all primes p € 7). How to extend these
results, if possible, is the main topic under consideration in this article.

In Theorem [A] we show that every finite group possesses a nontrivial irreducible character
of {2, ¢}'-degree with values in Q(e?™9), an unexpected result that generalizes both [NTO6]
and [NTO8] in the fashion of [GSV19).

Theorem A. Let G be a finite group and q be a prime, and write m = {2,q}. Then G
possesses a nontrivial m'-degree irreducible character with values in Q(e*™%) if, and only if,

ged (|G, 2q) > 1.

A natural problem that arises in this context is to try to understand when the irreducible
character identified by Theorem A can be chosen to be rational-valued. In other words, for
a group G of even order and an odd prime ¢, we would like to characterize when G has a 7'-
degree rational character, where m = {2, ¢}. This is not always the case, in contrast to what
happens if we allow small cyclotomic field extensions of Q as fields of values as described
by Theorem A. For example, the only rational linear character of A4 is the principal one. A
complete answer to this problem appears difficult to achieve and at the time of this writing,
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we do not know what form such a classification would take. However, in the case where G is
a solvable group (or an alternating group, see Theorem D below), we can completely solve
this problem.

Theorem B. Let G be a solvable group, q be a prime and set m = {2,q}. Then G admits
a nontrivial rational irreducible character of ©'-degree if, and only if, H/H' has even order,
where H € Hall,(G).

Our proof of Theorem [A] relies on the Classification of the Finite Simple Groups. In fact,
for alternating groups and generic groups of Lie type, the arguments naturally extend from
a pair {2,q} of primes to any pair {p,q}. Hence we obtain Theorem [A| as a corollary of
the following statement, which classifies finite groups admitting a n’-degree character with
values in certain cyclotomic extensions of QQ, for any set 7 consisting of two primes.

Theorem C. Let G be a finite group and m = {p,q} be a set of primes such that either p or
q divides |G|. Assume that:

o 7 # {3,5} or G does not have a composition factor isomorphic to the Tits group
2Fy(2).

o T # {23,43},{29,43} or G does not have a composition factor isomorphic to the
Janko group Jy.

Then G possesses a nontrivial irreducible character x of 7'-degree such that Q(x) < Q(e?™/P)
or Q(x) < Q(e*™).

To prove Thoerem[C], we show that every finite nonabelian simple group admits a nontrivial
irreducible character  of {p, ¢}’-degree such that Q(x) < Q(e*™/?) or Q(x) < Q(e**/7), with

the only exceptions of the Tits group ?F4(2)’ in the case 7 = {3,5} and the Janko group J,
in the cases where m = {23,43} and m = {29,43}. (See Theorem [2.1| below.)

As previously mentioned, a complete classification of groups admitting a nontrivial {2, ¢}'-
degree rational irreducible characters seems out of reach at the present moment. Neverthe-
less, for alternating groups, we can solve this classification problem for any set 7 consisting
of exactly two primes.

Theorem D. Let n > 5 be a natural number and let p,q be distinct primes. Let m = {p, q}.
The alternating group A,, admits a nontrivial rational-valued irreducible character of 7' -degree
for all those n € N that do not satisfy any of the following conditions.

(i) n=p™ = 2¢* + 1, for some m, k € Nx; such that m is odd.

(i) n = 2p™ = ¢* + 1, for some m, k € Nx; such that k is odd.
Moreover, in case (i) Q(¢) < Q(e*™/P) for all ¢ € Irr(A,). On the other hand, in case (ii)
Q) < Q1) for all ¥ € Trry(A,).

This paper is structured as follows: In Section 2 we prove Theorems [A] and [C] assuming

Theorem [2.1} on finite simple groups. In Section 3 we prove Theorem |D| which in particular
yields the alternating group case of Theorem 2.1} In Section 4 we prove Theorem for

sporadic groups and simple groups of Lie type, thus completing the proof of Theorem by
the Classification of Finite Simple Groups. Finally, in Section 5 we prove Theorem [B]

2. PROOFS OF THEOREMS A AND C

To prove Theorems A and C, we assume the following result on finite simple groups. This
will be shown to hold Sections [3] and 4.
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Theorem 2.1. Let S be a nonabelian simple group and m = {p,q} be a set of primes.
Assume that (S,7) # (*F4(2),{3,5}), (Ju4,{23,43}), and (Jy,{29,43}). Then there exists
1g # x € Irr(S) of 7'-degree such that Q(x) < Q(e*™/?) or Q(x) < Q(e?™9).

We start with a lemma.

Lemma 2.2. Let M < G such that |G : M| = r an odd prime. Let 6 € Irr(M) with
Q(8) < Q(e*™/P) for some prime p # r. Then there exists x € Irr(G) lying over 0 with

Q(x) = Q(e*/p).

Proof. If Stabg () = M then by Clifford correspondence, we have 0¢ € Irr(G) with Q(6%) <
Q(0) < Q(e*™/?), as required. So we assume that @ is G-invariant.
Note that 6 is r-rational. It follows from [[sa06, Theorem 6.30] that #¢ has a unique
r-rational irreducible constituent x. Indeed 6 is extendible to x, and hence Q(0) < Q(x).
For each o € Gal(Q(x)/Q()), obviously x“ is also an r-rational character of G lying over
6. Therefore, by the uniqueness of x, we have x? = x. So x is Gal(Q(x)/Q(8))-fixed, which
implies that Q(x) < Q(6). We have shown that Q(x) = Q() < Q(e?*™/?), as desired. O

Theorem 2.3. Let G be a finite group and ™ = {p, q} be a set of primes. Then G possesses a
nontrivial irreducible character x of '-degree such that Q(x) < Q(e*™/?) or Q(x) < Q(e29)
if, and only if, ged(|G|, 2pq) > 1, provided that we are not in one of the following situations:

e G has a composition factor isomorphic to the Tits group >Fy(2) and © = {3,5}.
e G has a composition factor isomorphic to the Janko group Jy and m = {23,43} or
7w = {29,43}.

Proof. First assume that G is a finite group with ged(|G|,2pq) = 1. Let x € Irr(G) such that
Q(x) < Q(e*/P) or Q(x) < Q(e*™/7). Since Q(x) < Q(e2™/I1), we have  is rational-valued.
As G is of odd order, it follows from Burnside’s theorem that y is trivial.

Next we assume that ged (|G|, 2pg) > 1. We aim to show that G has a nontrivial irreducible
character y of 7’-degree such that Q(x) < Q(e*/?) or Q(x) < Q(e*™/9).

Let G = Gog> Gy > ---> G, =1 be a composition series of G and let 0 < k <n —1 be
the smallest such that Gy/Ggy1 is either nonabelian simple or cyclic of order 2,p or ¢. In
particular, G;/G;,1 is cyclic of order coprime to 2pq for every i < k.

When Gy /Gy is cylic of order 2, p or ¢ then obviously G /Gy 1 has a nontrivial irreducible
character @ of 7’-degree such that Q(x) < Q(e*™/?) or Q(x) < Q(e*/). On the other
hand, when G/Gyy1 = S is nonabelian simple then Theorem implies that there exists
1g # 6 € Irr(S) of 7'-degree such that Q(x) < Q(e?™P) or Q(x) < Q(e™/9),

Viewing the above 6 as a character of G, we now know that G possesses a nontrivial
irreducible character 6, of 7'-degree such that Q(0;) < Q(e*™P?) or Q(;) < Q(e*/9).
Using Lemma , we obtain 6;_; € Irr(Gy_1) lying over 6, with Q(6;_1) < Q(e*™/?) or
Q(0;_1) = Q(e*™/1). Moreover, following the proof of Lemma, we see that 0;_1(1) = 0;(1)
or Ox_1(1) = |Gy_1 : Gg|0k(1), which guarantees that 6;_; is of n'-degree. Repeating this
process k times, we can produce a nontrivial irreducible character y := 6, of 7’-degree such
that Q(x) < Q(e*™/?) or Q(x) < Q(e>"9). O

Theorems [A] and [C] follow immediately from Theorem [2.3]
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3. ALTERNATING GROUPS

The aim of this section is to prove Theorem for alternating groups. In order to do so,
we completely describe alternating groups possessing a rational valued n’-character. This is
done by proving Theorem D of the Introduction, which might be of independent interest.

We begin by recalling that irreducible characters of the symmetric group S,, are labelled
by partitions of n. We denote by x* the irreducible character of S, corresponding to the
partition A of n. We will sometimes use the notation A - n to mean that X is a partition
of n. Similarly we will write A -, n to say that x*(1) is coprime to p. Given a partition A
of n we denote by )\ its conjugate. If A # X then (x*)a, € Irr(A,). On the other hand, if
A = X then (x*)a, = ¢ + @9 for some ¢ € Irr(A,) and g € S,, \ A,..

Assuming that the reader is familiar with the basic combinatorial concepts involved in
the representation theory of symmetric groups (as explained for instance in [OI94, Chapter
1]), we recall some important facts that will play a crucial role in our proofs. Given A - n,
i,j € N we denote by h;;(A) the length of the hook of A corresponding to node (i, 7). For
e € N we let H(\) be the set consisting of all those nodes (i,7) of A such that e divides
hij(X). Moreover, we let C.(\) denote the e-core of .

The following lemma follows from [O194, Proposition 6.4].

Lemma 3.1. Let p be a prime and let n be a natural number with p-adic expansion n =
Z?:o a;p’. Let X be a partition of n. Then v,(x)(1)) = 0 if, and only if, [H"" (\)| = ax and

Cpk ()\) l—p/ n — Clkpk.

For a natural number m, in Lemma [3.1| we denoted by v,(m) the exponent of the maximal
power of p dividing m.
A consequence of Lemma [3.1] is highlighted by the following statement.

Lemma 3.2. Let p be a prime and let n = p* + ¢ for some ¢ € {0,1}. Let X\  n such that

xM1) > 1. Then x* is an irreducible character of p'-degree of S,, if and only if hi1(\) = p*.

A second useful consequence of [O194, Proposition 6.4] is stated in the following lemma.

Lemma 3.3. Let n = 2 + ¢ for some ¢ € {0,1}, and let A = n. Then v2(x*(1)) = 1 if and
only if H2"(\) = & and |12 (\)| = 2.

We conclude this brief background summary by recalling a well-known fact on cyclotomic
extensions of the rational numbers.

Lemma 3.4 (Gauss). If p is and odd prime number, then Q(\/p) < Q(e*™/P) if and only if
p=1mod 4, and Q(v/—p) < Q(e*>™P) if and only if p = 3 mod 4.

We are now ready to prove the main result of this section, which is Theorem D in the
introduction. We restate it here for the reader’s convenience.

Theorem D. Let n =5 be a natural number and let p,q be distinct primes. Let m = {p, q}.
The alternating group A,, admits a nontrivial rational-valued irreducible character of ' -degree
for all those n € N that do not satisfy any of the following conditions.

(i) n=p™ = 2¢* + 1, for some m, k € Nx; such that m is odd.

(ii) n = 2p™ = ¢* + 1, for some m, k € Nx; such that k is odd.

Moreover, in case (i) Q(¢) < Q(e*™/P) for all ¢ € Irrp(A,). On the other hand, in case (ii)
Q) < Q(e2™9) for all ¥ € Trru(A,,).
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Proof. Let n = Zle a;p™i = Z;zl b;q" be the p-adic and respectively g-adic expansions of
n. Here my > mo > -+ >my > 0 and ky > ky > --- k. = 0. Without loss of generality we
can assume that b;g™ < a;p™. We consider A € P(n) to be defined by:

A= (n — blqkl, n— G1pm1 + 1’ 1b1qk1—(n—a1pnl+1)>'

As done in the proof of [GSV19, Theorem 2.8] we observe that x* € Irr(S,) and that
xM1) # 1 unless n = a;p™ = big"™ + 1. We also claim that A # X. This follows by
observing that A = X" would imply that

big" — (n —a1p™) = n —big" — L and that n — a;p™ € {0, 1}.

Then we would have that b;g" = n — b1¢" — 1 if n — a;p™ = 0 or that by¢g" = n — big" if
n—a;p™ = 1. Both these situations can not occur. We conclude that y := (x*)a, € Irrp/(A,)

and that Q(yx) = Q.

Let us now consider the case where n = ap™ = bg* + 1, for some m,k € N, some 1 < a <
p—1landsomel <b<qg-—1.

If b > 3, then we consider pu = ((b—1)¢* +1,19%). Since hy1 (1) = ap™, hia(p) = (b—1)¢*
and ho1 (1) = ¢*, we deduce that x* € Irr(S,) by Lemma Since b > 3 we also have that
w # i’ and hence that x := (x*)a, € Irr/(A,) is nontrivial and such that Q(x) = Q.

If b e {1,2} and @ > 3 then we consider v = ((a — 1)p™,2,17"~2). Since hy;(v) = bq",
hia(v) = (a—1)p™ and ho (v) = p™, we deduce that x” € Irr,+(S,,) by Lemma 3.1} As above,
a > 3 implies that v # v/ and hence that x := (x”)a, € Irr(A,) is nontrivial and such that
Qx) = Q.

Let us now study the situation where a,b € {1,2}. Since ap™ = bg* + 1 we observe that
the only cases to consider are (a,b) € {(1,2),(2,1)}.

If a = 1 then n = p™ = 2¢* + 1 and hence p # 2. By Lemma we deduce that
x* € Irry (S,,) if and only if A = (d,1"7%) is a hook partition. Moreover, if ¢ is odd, again
from Lemma [3.1] we observe that the only hook partitions of n that label characters of S,
of degree coprime to ¢ are (n), (1) and ¢ = (1 + ¢*,19") = ¢’. We also observe that in this
situation m must be odd, as p™ = 2¢* + 1 = 3 mod 4. It follows that A, admits exactly two
distinct nontrivial irreducible characters of 7’-degree: the two irreducible constituents ¢1, ¢o
of (x*)a, . By [JK81, 2.5.13] we observe that their fields of values are equal to Q(y/—p™) and
strictly contain Q. Moreover, since m is odd then p = p™ = 2¢* + 1 = 3 mod 4. Hence
using Lemma (3.4 we observe that for all i € {1,2} we have

Q1) = QV-p") = QV=p) = Q7).

Similarly, if ¢ = 2 then Lemma shows that (n),(1") are the only hook partitions
labelling an odd-degree character of S,,. Moreover, using Lemma (3.3 we observe that the
hook (¢ defined above, is the only hook partition of n such that v,(x¢(1)) = 1. Again
we deduce that the two irreducible constituents ¢; and ¢y of (x¢)a, are the only nontrivial
irreducible characters of 7’-degree of A,,. By [JK8&1 2.5.13] we observe that Q(¢1) = Q(¢2) =
Q(v/p™). Hence Q(¢1) (and Q(¢2)) strictly contain Q if and only if m is odd. In this case,
p=pm=2""4+1=1mod 4. Therefore Lemma 3.4 implies that for all i € {1,2} we have
that

Q(¢:) = Q(vp™) = Q(y/p) < Q(*™7).

If b = 1 then n = 2p™ = ¢* + 1 and hence ¢ # 2. The situation is similar to the one
described above. Using Lemma [3.2] we notice that the non-linear irreducible characters of S,,
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of degree coprime to ¢ are labelled by all partitions A such that hi;(\) = ¢* and ha()\) = 1.
Among these, when p # 2, the only one that labels an irreducible character of S,, of degree
coprime to pisn = (1+p™,2,17"~2) = 5/. On the other hand, when p = 2 then we notice that
k is necessarily odd. Moreover, Lemma implies that the only {2, q}’-degree irreducible
characters of S,, are the linear ones. On the other hand, Lemma [3.3| shows that 7 is the only
partition labelling a ¢’-degree irreducible character of S,, such that v5(x"(1)) = 1. Exactly
as before we deduce that A, admits exactly two distinct nontrivial irreducible characters of
m’-degree: the two irreducible constituents ¢, and 1 of (x7)a,. By [JK81, 2.5.13] we observe
that for all i € {1,2} we have that

L JOW)  ifp 2,
Qi) = {@(\/—Tk) if p = 2.

It follows that for any i € {1,2}, Q(1);) strictly contains Q if and only if k is odd. In this
case, for all 7 € {1,2} we have that

Q(+/q it p # 2,
Q) - {2VD_
Qlv—q) ifp=2
Moreover, if p # 2 then ¢ = 1 mod 4. On the other hand ¢ = 3 mod 4, when p = 2.
Therefore Q(1;) € Q(e>™/9), by Lemma [3.4] O

A straightforward consequence of Theorem [D] is that Theorem holds for alternating
groups.

Corollary 3.5. Let m = {p,q} be a set of two primes. Then A, possesses a nontrivial
irreducible character x of 7'-degree such that Q(x) € Q(e*™/P) or Q(x) < Q(e?™¥/9).

Proof. 1f n does not satisfy conditions (i) and (ii) of Theorem 3| then A, has a nontrivial
rational character. If n satisfies condition (i), then there exists ¢ € Irr.(A,) such that
#(1) > 1 and such that Q(¢) < Q(e*>™/P). On the other hand, if n satisfies condition (ii),
then there exists ¢ € Irry/(A,,) such that (1) > 1 and such that Q(¢)) < Q(e>™9). O

4. SIMPLE GROUPS OF LIE TYPE

Here we prove Theorem for simple groups of Lie type and sporadic simple groups. The
following reduces us to the case of simple groups of Lie type with non-exceptional Schur
multipliers.

Proposition 4.1. Let S be a simple group of Lie type with an exceptional Schur multiplier,
or let S be a sporadic group. Assume that S is not the Janko group Jy or the Tits group
2Fy(2)'. Then S satisfies Theorem 2.4 Further, the Tits group >F,(2)" satisfies Theorem|[2.1]
for @ # {3,5}, and the Janko group Jy satisfies Theorem [2.1] for m ¢ {{23,43}, {29, 43}}.

Proof. This can be seen using GAP and the Atlas |[GAP. [Atl]. O

When S is a simple group of Lie type, in some cases the required character x € Irr(95)
of n’-degree we produce will be a semisimple character. Let us recall some background on
these characters.

Let G be a connected reductive algebraic group in characteristic p and F a Frobenius
endomorphism of G. For each rational maximal torus 7 of G and a character 6 € Irr(T%),
using Harish-Chandra induction RS, one can define the Deligne-Luszlig character R?—(Q).
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Let G* be an algebraic group with a Frobenius endomorphism F* such that (G, F') is dual
to (G*, F*). Set G := G and G* := (G*)".

Recall that if (7,6) is G-conjugate to (77,6'), then RI(6) = R,(¢'). Moreover, by
Proposition 13.13 of [DM91], the G-conjugacy classes of pairs (7, 6) are in one-to-one cor-
respondence with the G*-conjugacy classes of pairs (7%, s) where s is a semisimple element
of G* and T* is a rational maximal torus containing s. Due to this correspondence, we can
use the notation RY.(s) for RS(#). For each conjugacy class (s) of semisimple elements in
G* such that Cgx(s) is connected, one can define a so-called semisimple character of G as
follow:

Z €g€7-*R )
weW
where W(s) is the Weyl group of Cg*(s), 7;’]" is a torus of G* of type w, and eg = +1
depending on whether the relative rank of G is even or odd, see Definition 14.40 of [DMO91].
Moreover,

X(s) =

X(9)(1) = |G* : Cex(s)]p,
where we recall that p is the defining characteristic of G and n, denote the p'-part of a
positive integer n.

Lemma 4.2. With the notation as above, let s € G* be a semisimple element such that
Cgx(s) is connected. If s has order k, then Q(x(s)) S Q(e*™/¥).

Proof. Let T* be a rational maximal torus of G* containing s. Let 7 be a rational maximal
torus of G and 0 € Irr(T7) such that the G-conjugacy class of (T, 60) corresponds to the
G*-conjugacy class of (T*,s) under the correspondence described above. The multiplicative
order of # (in the group Irr(7%)) is the same as the order of s. Therefore, the values of ¢
are in Q(e2™/).

We recall the character formula for R%(G) which we simplify as Ry g:

_ 0. (t)
Ry () |CO Z 0(z ') ﬂ%,x L(u),
xegF

where t is semisimple, u is unipotent, and g = tu = wut is the Jordan decomposition of

0
g € G. Also, Cg(t) is the connected component of Cg(t) and Qfﬁﬁl are Green functions

of CZ(t), see [Ca85, Theorem 7.2.8]. As 6 is Q(e*™/¥)-valued and the Green functions are
rational-valued, we have Q(R7 4) < Q(e2™/*) for every rational maximal torus 7’ of G. The
conclusion now follows from the definition of y /). 0

More generally, for the conjugacy class corresponding to a semisimple element s € G*, we
will denote by x, the character corresponding to the pair (s, 1c,(s)) under a fixed Jordan
decomposition £(G, s) « E(Cgx(s), 1) of characters for G. Here £(G, s) denotes the rational
Lusztig series of G corresponding to s and £(Cgx(s),1) is the set of characters lying above
unipotent characters of Cg«(s) := (Cg«(s))”. In this case, we still have

Xs(l) = |G* . Cg*($)|p/.

However, we remark that since here Cgx (s) is no longer assumed to be connected, this indeed
depends on a choice of the Jordan decomposition. Hence y, is only unique up to the orbit
of characters corresponding to those lying over 102* (s)-
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Proposition 4.3. Let S # 2Fy(2)" be a simple group of Lie type. Then Thearem holds
for S.

Proof. We may assume S is not one of the groups listed in Proposition nor isomorphic
to an alternating group. Further, thanks to [NT06, INT0S8], we may assume that p # q.

Let S be of the form G/Z(G), where G = G¥ is the set of fixed points of a connected
reductive algebraic group of simply connected type defined in characteristic r, under a Frobe-
nius endomorphism F'. Note that the Steinberg character Sts of G has degree a power of 7,
is rational-valued, and is trivial on Z(G). Hence, we may assume that r = p is one of the
primes in 7.

Throughout, let 7 € {+1} be such that p =7 (mod 4), and note that Q(,/np) = Q(e*""/7),
using Lemma 3.4 In [GSVI9, Lemma 3.3 and Theorem 3.5], a character in Irr./(S) is
constructed from a character x; of G trivial on the center, using a semisimple element
s € G* of g-power order. In fact, we may choose s specifically to have order ¢. In most
cases, we will see that this s of order ¢ can further be chosen such that Cgx(s) is connected,
yielding that Q(x,) < Q(e?"9), as desired, by Lemma . Throughout, let @ € Syl (G*).

By [MT11, Exercise 20.16], we see that Cgx«(s) is connected whenever [s| is relatively
prime to |Z(G)|,. Then if ¢ 1|Z(G)|,, we may choose s € Z((Q) as in [GSV19, Lemma 3.3],
but so that |s| = ¢, and we are done. Hence we assume q | |Z(G)].

Let G be of type A,,_1. Then G = SL,, withn = a1q+---a;¢' with0 < a; < gforl <i <t
We will write G = GLE (p®) and G = SLS(p?), where € € {+1}, ¢ = 1 is the untwisted version
SL,(p*), and € = —1 is the twisted version SU,(p?). Further, note that Z(G) = G n Z(G),
G* =~ G, S = PSLE (p°) ~ [G*,G*], G = [G, (] =~ [G*,G*], and G* = G/Z(G) = PGLE (p).
Throughout we will make these identifications. Let C~2 € Squ(é). Then by [CF64, Web5],
we have Q = [T, Q¥, where the Q; € Syl,(GLg: (p?)) are embedded diagonally in G. Let
k = min{i|a; > 0}, so that n, = ¢".

First, assume that n is not a power of q¢. Let s’ € Z(Qy) have order ¢. If n # 2¢*,
define 3 € Z(Q) to be of the form diag(s’, I,,_g+). If ¢ | (p* — €), then s’ may further be
chosen to be of the form plyx € Z(GL(p?)), where i € Cpa_ < F 5, has order . Then

det(3) = det(s') = p?* = 1. Otherwise, ¢ 1 G/G, so Q < G. In either case, S€ G = [G*, G*],
so the corresponding semisimple character xz of G is trivial on Z(G), by [NT13, Lemma
4.4]. If ¢ is odd and n = 2¢*, we may instead let § € Z(Q) be of the form diag(pd e, =t x)
if ¢ | (p* — €) and diag(s’, [,») otherwise, and we again see that 5 € G. Further, since the
conjugacy classes of semisimple elements of G are determined by their eigenvalues, we see
§ is not G- conjugate to sz for any nontrivial z € Z(G*). But the characters of G/G are
in bijection with elements of Z(G*), and y; ® 2z = sz, for Z € Irr(G/G) corresponding to
2 € Z(G*) (see [DMO1] 13.30]). Hence s is also irreducible when restricted to G. By Lemma
, Xz has values in Q(e?/4), so this yields a character of S with degree prime to both p
and ¢ and with values in Q(e?™"9), as desired.
Now assume that n = ¢*. Then [GSVI9, Lemma 3.4] yields that any character of G with
degree prime to ¢ is trivial on the center, which has size ged(n, p® — €). Hence it suffices
to show there exists a character of G with degree prime to p and to ¢ whose values lie in

Q(627ri/p) or Q( 2m’/q)
Let s € Z(Q) have order ¢, where @ = QZ(CNT’)/Z( G) € Syl,(G*), and let § € QZ(G)
7).

be such that SZ(G) = s. Then notice 57 € Z(G). Let ¢ = ¢*™/1¥, 5o that the semisimple
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character Yz of G corresponding to § takes its values in Q(¢), by Lemma and lies over
the {p, q}/-degree character y, of G. Let o € Gal(Q(¢)/Q(e* %)), Then ¢ maps ¢ to (™
for some m with ged(m, [s]) = 1. Further, m =1 (mod ¢), since o fixes gth roots of unity.

~

In particular, s™ = 35z for some z € Z(G). Then using [SEFTI18, Lemma 3.4|, we have
X2 = Xsm = Xz, and hence Y¢ also lies over x;. In particular, Resg(%g)" = Resg(%‘g’) =
Resg(%gz) = Resg(yg@) Z) = Resg(yg). So, Resg(ig) is fixed by each such o, and therefore
has values in Q(e?7/4).

If ¢ is odd and x € Irr(G), then [SEV19, Theorem 6.1] yields that Q(x) = Q(Resgf() for
any ¥ € Irr(G) lying over x. Hence in this case, Q(x,) = Q(e2™/7) as well.

If ¢ = 2, then the above yields Q(Resg(f(g)) = Q, so [SEV19, Theorem 6.1] yields that

Q(xs) € Q(y/np), completing the proof in this case.

Hence we may assume G is not of type A,,_1, and therefore |Z(G)|,s is a power of ¢q. Here
if ¢ # 2, we have (G, q) = (Eg, 3).

In the latter case, G is the simply connected type group E§(p®)s., where € € {£1}, ¢ = 1
corresponds to the untwisted version, and ¢ = —1 corresponds to the twisted version. Let
Xs € E(G, s) be the character constructed in [GSV19] but so that s has order ¢ = 3. Using
[SFT18, Lemma 3.4], we have £(G, s) is stable under any Galois automorphism o that
fixes the field Q(e*™/3). Now, using [TZ04, Theorem 1.8 and Lemma 2.6], we see that any
character of GG takes integer values on unipotent elements, and hence any Gelfand-Graev
character of G is rational-valued, since they are unipotently supported. Hence by [SEFT18§|,
Proposition 3.8], y, is fixed by o as well, and hence has values in Q(e?"/3).

We may therefore take ¢ = 2, p odd, and G to be of type B,,,C,, D, or E7. Again recall
that by [GSV19], there exists a character of degree prime to {2, p}. So, we aim to show that
such a character can be found with the values as stated. The data available in CHEVIE and
[Lib07] yield that the odd-degree characters of 3Dy(p®) and E;(p®) are rational-valued, and
hence we assume S is B, (p®) with n = 2, C,,(p®) with n > 3, D,,(p®) with n > 4, or 2D,,(p")
with n > 4.

If Sis C,(p*), then we may take G = Sp,,(p*) and S = G/Z(G). By [MS16, Theorem
7.7], any odd-degree irreducible character y is either in the principal series corresponding to
a pair (T, \) where T is a maximally split torus of G and \ € Irr(T') satisfies A2 = 1, or ¢ = 3
(mod 4) and x is in a Harish-Chandra series corresponding to (L, \), where L =~ Sp,(p*) x T}
with T; a maximally split torus of Spy(,_1)(p®). In the latter case, we further have A = Y ®A,,
where \? = 1 and 1) is one of the two characters of degree qg—l of Spy(p®), which take values
in Q(y/7p). In either case, [SET20, Theorem B} combined with [SE19, Theorem 3.8} yield
that any character of odd degree of G has values in Q(,/7p), and hence in Q(e?™/?), so we
are done in this case.

Finally, if S is B,(p®), D,(p®), or 2D, (p*), we adjust the argument from the case of Fg
above. In particular, the character constructed in |[GSVI9] may be chosen to come from a
semisimple character x, € £(G, s), where s> = 1. Then £(G, s) is stable under any element
of Gal(Q(e*™I¢1) /Q) using [SFTI8, Lemma 3.4]. Further, using [TZ04, Corollary 8.3 and
Lemma 2.6] and arguing as in the case of Fg, we see that every Gelfand-Graev character of
G takes its values in Q(y/np). Then [SETIS8, Proposition 3.8] yields that x, takes its values
in Q(,/7p) as well, completing the proof. O
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5. RATIONAL CHARACTERS OF 7'-DEGREE IN SOLVABLE GROUPS

In this Section we prove Theorem B, namely we characterize when a solvable group G has
a m'-degree rational character, where m = {2 ¢} is a pair of primes. We first note that if
G has a normal Hall {2, ¢}-subgroup, then the solution to the characterization problem is
pretty simple. We thank G. Navarro for pointing out to us a simplified version of a previous
argument.

Lemma 5.1. Let G be a finite group and p < q be two primes. Set m = {p,q}. Suppose that
H < G where H € Hall,(G) and G/H has odd order. Then G has a nontrivial irreducible
character of 7'-degree with values in Q(e*™/?) if, and only if, H/H' has order divisible by p.

Proof. Notice that to prove both implications we may assume that H is abelian. If H has
order divisible by p, then let 15 # A € Irr(H) be linear with o(\) equal to p. By [Isa06l,
Corollary 6.27], let A € Irr(G,) be the only extension of A such that o(A) = o()\). In
particular, Q(\) = Q(e*™/7) and hence 1¢ # x = (A)¢ € Irr(G) has values in Q(e2™/7).
Since G/H is a n’-group, then x has n’-degree, as wanted.

Suppose now that 15 # x € Irr(G) has 7'-degree and Q(x) < Q(e*>™/P) and p does not
divide |H|. If p = 2, then x is a nontrivial rational characters of an odd order group. This
would contradict Burnside’s theorem. If p > 2, then |H| = ¢* and since G/H is a 7’-group,
then G is a p’-group. In particular Q(x) < Q(e*™/P) n Q(e*/I¢) = Q. Since G/H is an
odd order group by hypothesis, and ¢ > p > 2 also by hypothesis, then we get again a
contradiction with Burnside’s theorem. 0J

Remark 5.2. We note that if p = 2, then the condition on the order of G/H is trivially
satisfied. However, it is a necessary condition in general: if p is an odd prime then the group
G = C, x C,_1 where the action is faithful has a n’-degree rational irreducible character for
every m = {p, q} with ¢ a divisor of p — 1.

For an arbitrary group G and pair of primes © = {p, ¢} we will denote by X ,(G) the set
of m'-degree irreducible characters of G with values in Q(e?™?). If G is m-separable, then
it is shown in [NV12] that the set X ,(G) consists entirely of monomial characters given
that [Ng(H)/H| is odd for H € Hall(G). (In [NV12] this fact is proven in the case where 7
consists of a single prime, but it easily generalizes to any set of primes, see [Vall6, Remark

2.9].)

Theorem 5.3. Let G be a w-separable group, where m = {p,q} is a pair of primes. Let
H € Hall (G). Write N = Ng(H) and suppose that N/H has odd order. Define a map

Q: XW’,p(G) - Xﬂ’,p(N)

in the following way: If x € Xy ,(G), choose a pair (U, \) where H < U < G and X € IrrtU
linear such that Q(\) < Q(e*™/?) and \Y = ¥, then set Q(x) = Avan)Y. Then Q is a
bijection.

Proof. The existence of the pair (U, A) is guaranteed by Theorem A of [NV12] (see [Vall6,
Remark 2.9]). Then use [[sa90, Theorem C] to construct . If 2 is well-defined then [Isa90),
Theorem C] assures €2 is injective. It is not difficult to show that Q2 is well-defined. To prove
that Q is surjective use the m-version of [INO8, Theorem 3.3]; note that such theorem admits

a m-version for solvable groups as [INO8, Theorem 2.1 and Corollary 2.2] also do. (For more
details see the proof of [Vall6l, Theorem 2.13 |.) O
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As an immediate consequence of Lemma [5.1)and Theorem 5.3, we can derive the following

result.

Corollary 5.4. Let p < q be two primes and set m = {p, q}. Let G be a w-separable group and

H € Hall, (G). Assume that Ng(H)/H has odd order. Then G has a nontrivial irreducible
character of 7'-degree with values in Q(e*™/?) if, and only if, H/H' has order divisible by p.

If we let p = 2 in Corollary then we obtain precisely Theorem B of the Introduction
since the condition on the order of Ng(H)/H becomes superfluos and m-separability of G is
equivalent to solvability of G' by Burnside’s p®¢® and Feit-Thompson’s odd-order theorems.
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