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Abstract

Let G be a a finite group, p a prime, and P a Sylow p-subgroup of G. A recent refinement,
due to G. Navarro, of the McKay conjecture suggests that there should exist a bijection between
irreducible characters of p′-degree of G and NG(P ) which commutes with certain Galois auto-
morphisms. In this paper, we explore one of the consequences of this refinement, namely a way
to read off from the character table of G whether a Sylow 2-subgroup of G is self-normalizing.
We provide a reduction to finite simple groups and begin an investigation of the problem for
simple groups.
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1 Introduction

For many years, much of the representation theory of finite groups has been devoted to proving
various “local-global” conjectures, which relate certain invariants of a finite group with those of
particular subgroups. One of the oldest and simplest (yet no less elusive) of these conjectures is
often attributed to McKay [20], and asserts that for G a finite group, `||G| a prime, and P ∈ Syl`(G),
the number |Irr`′(G)| of irreducible complex characters of G with degree prime to ` is equal to the
number |Irr`′(NG(P ))| of such characters of NG(P ).

Many refinements to the McKay conjecture have been proposed, and a reduction theorem has
been proved in [16], with the hope of providing not only a method by which to prove it, but also a
better understanding of the deeper underlying reason behind it. One such refinement is due to G.
Navarro [22], and says that for the proper choices of Galois automorphisms σ in Gal(Q|G|/Q), the
number of members of Irr`′(G) fixed by σ should be the same as that for Irr`′(NG(P )). Here for n
a positive integer, we write Qn for the extension field Q(e2πi/n) of Q. That is, Qn denotes the field
obtained by adjoining a primitive nth root of unity.

In [22], Navarro shows (among other interesting consequences) that the validity of his conjecture
would lead to a necessary and sufficient condition for a Sylow `-subgroup to be self-normalizing.
For odd primes, Navarro-Tiep-Turull [25] showed that this particular consequence is true without
assuming the conjecture. Namely, they show that for ` an odd prime, P ∈ Syl`(G) is self-normalizing
if and only if there is no nontrivial irreducible `-rational character of G of degree prime to `.

For ` = 2, this statement does not hold, and proving the correct corresponding statement re-
quires a different approach than used in [25], which is made evident by the fact that the consequence
in [22] of Navarro’s conjecture takes a much different form when ` = 2. Moreover, in the case of
odd `, it has been shown (see [13]) that a nonsolvable group can only have a self-normalizing Sylow

`-subgroup if ` = 3 and it contains a composition factor isomorphic to PSL2(3
3f ) for some f ≥ 1,
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whereas there are many examples of simple groups with self-normalizing Sylow 2-subgroups. (See,
for example, the treatment of Sylow 2-subgroups of simple groups in [17], [4], and [29]).

The problem of interest in this paper is the following, which is the corresponding consequence
to Navarro’s conjecture for ` = 2:

Problem 1. Let G be a finite group and let σ ∈ Gal(Q|G|/Q) fixing 2-roots of unity and squaring
2′-roots of unity. Then G has a self-normalizing Sylow 2-subgroup if and only if every irreducible
complex character of G with odd degree is fixed by σ.

Aside from providing yet more evidence for the validity of Navarro’s conjecture, and therefore
the McKay conjecture, a direct consequence of Problem 1 would be that that one can read off from
the character table of an arbitrary group whether or not a Sylow-2 subgroup is self-normalizing
(which can already be done for odd primes by [25]).

The current paper provides a first look at this problem. The main result is a reduction to
(quasi-)simple groups (see Theorem 3.7 below). In Section 2, we present the required statements
for simple groups and define a group to be “SN2S-Good” if it satisfies these statements, and in
Section 3, we show that, indeed, it suffices to prove that every nonabelian simple group is SN2S-
Good. In Section 4, we begin an investigation into the validity of the required statements for these
groups. We show that the statements hold for alternating and sporadic groups, as well as many
finite groups of Lie type. Though we do not complete the proof of the statements in the case of
groups of Lie type here, we discuss the progress and the various issues that arise, and hope to treat
the remaining cases in a forthcoming paper. In particular, we nearly complete the case of groups of
Lie type in characteristic 2, including type A, for which we have used results regarding generalized
Gelfand-Graev characters.

1.1 Notation

Throughout, σ will always denote the Galois automorphism σ ∈ Gal(Q|G|/Q) as in Problem 1.
That is, σ fixes 2-roots of unity and squares 2′-roots of unity. We will write Syl2(X) for the set of
Sylow 2-subgroups of the finite group X.

As usual, Irr(X) will denote the set of irreducible ordinary characters of the group X. Given
a finite group X and a subgroup Y ≤ X, the restriction of χ ∈ Irr(X) to Y will be denoted χ|Y
and for θ ∈ Irr(Y ), θX will denote the induced character of θ to X. If χ|Y = θ ∈ Irr(Y ), we say θ
extends (or is extendible) to X. Irr2′(X) will denote the subset of Irr(X) comprised of irreducible
characters of odd degree. Moreover, we will denote by Irr(X|θ), (resp. Irr2′(X|θ)), the subset of
Irr(X) (resp. Irr2′(X)) of characters containing θ as a constituent when restricted to X. That is,
by Frobenius reciprocity, Irr(X|θ) is the set of irreducible constituents of θX . If the group X acts
on a set Ω, we write stabX(α) for the stabilizer in X of α ∈ Ω.

2 Statements for Simple Groups

We present here the conjectures for simple and quasisimple groups that will suffice for proving
Problem 1. The two conditions that we require for simple groups are as follows:

Condition 2.1. Let G be a finite quasisimple group with center Z := Z(G) and Q a finite 2-group
acting on G as automorphisms. Assume P/Z ∈ Syl2(G/Z) is Q-invariant and CNG(P )/P (Q) = 1.
Then for any Q-invariant, σ-fixed λ ∈ Irr(Z), we have χσ = χ for any Q-invariant χ ∈ Irr2′(G|λ).

We note that the condition CNG(P )/P (Q) = 1 is equivalent to GQ/Z having a self-normalizing
Sylow 2-subgroup (see, for example, [25, Lemma 2.1 (ii)]).
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Condition 2.2. Let G be a finite nonabelian simple group, Q a finite 2-group acting on G as
automorphisms, and P ∈ Syl2(G) be Q-invariant. If every Q-invariant χ ∈ Irr2′(G) is fixed by σ,
then CNG(P )/P (Q) = 1.

Note that Condition 2.1 provides a converse to Condition 2.2, taking Z = 1, λ = 1Z . We
combine the conditions in the following definition:

Definition 1. Let S be a finite nonabelian simple group. We will say S is “SN2S-Good” if the
following hold:

• S satisfies Condition 2.2 and

• if G is a quasisimple group with G/Z(G) ∼= S, then G satisfies Condition 2.1.

3 Reductions

In this section, we reduce Problem 1 to the case of simple groups. Namely, we show that it suffices
to prove that every simple group is SN2S-Good, as defined in Section 2. We begin with a lemma
following directly as a consequence of SN2S-Goodness.

Lemma 3.1. Let G be a direct product of nonabelian simple groups which are SN2S-Good. Let Q
be a finite 2-group acting on G as automorphisms, and P a Q-invariant Sylow 2-subgroup of G.
Then CNG(P )/P (Q) = 1 if and only if every Q-invariant χ ∈ Irr2′(G) is fixed by σ.

Proof. We largely follow [25, Theorem 4.2]. We induct on |G|. As in [25, Theorem 4.2], we write
G as the direct product G = X1 × ... ×Xn, where each Xi is the direct product of simple groups
in the Q-orbit of some Tj in the set U = {T1, ..., Ta} of simple normal subgroups of G which are
SN2S-Good. Then each Xi is Q-invariant, so we may inductively assume that Q is transitive on
the elements of U . Then by [25, Theorem 4.1(ii)], we have ψ ∈ Irr(T1) is Q1-invariant if and only
if ψu1 · ... · ψua is Q-invariant, where Q1 := stabQ(T1) and u1, ..., ua is a transversal for the right
cosets of Q1 in Q with Ti = T ui1 .

Now, assume every Q-invariant χ ∈ Irr2′(G) is fixed by σ and let ψ ∈ Irr2′(T1) be Q1-invariant.
Then in particular, ψu1 · ... · ψua is σ-fixed, and hence so is ψ. So every Q1-invariant ψ ∈ Irr2′(T1)
is σ-fixed, and we know by Condition 2.2 that CNT1 (P1)/P1

(Q1) = 1, where P1 := P ∩T1, and hence
CNG(P )/P (Q) = 1 by [25, Theorem 4.1(i)].

Conversely, suppose that CNG(P )/P (Q) = 1, so that CNT1 (P1)/P1
(Q1) = 1 by [25, Theorem 4.1(i)].

Then by Condition 2.1, we know that every Q1-invariant odd character of T1 is fixed by σ. Now
let χ ∈ Irr2′(G) be Q-invariant. Then we can write χ = ψ1 · ... · ψa for ψi ∈ Irr2′(Ti). Let q1 ∈
Q1 = stabQ(T1). Then zψq11 = (χ|T1)q1 = χq1 |T1 = χ|T1 = zψ1, where z = ψ2(1) · ... · ψa(1) ∈ Z≥0.
Then we see that ψ1 is Q1-invariant, and hence ψσ1 = ψ1. Now, by reordering the Ti’s, we see by
repeating the argument that each ψσi = ψi, and hence χσ = χ, as desired.

The following theorem is crucial in one direction of our reduction, namely the proof of Theorem
3.5 below. It follows directly from a result of Benard and Schacher [1], whose proof requires
significant machinery.

Theorem 3.2. Let χ ∈ Irr2′(G) be fixed by σ, and let K be the field Q|G| ⊇ K ⊇ Q(χ) ⊇ Q of fixed
points of Q|G| under σ. Then χ can be afforded by an absolutely irreducible K-representation.
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Proof. Write m := mQ(χ) for the Schur index of χ over Q, so that by [15, Theorem (10.2) (d) and
(f)] mχ is afforded by an irreducible Q(χ)-representation and for any field C ⊇ F ⊇ Q, mF (χ)|m.
(For a discussion of Schur indices, see for example [15, Chapter 10].) Note that since χ(1) is odd,
it must be that m is also odd (see, for example, [15, (10.2)(h)]). Moreover, by [1, Theorem 1’],
Q(χ) contains a primitive m’th root of unity, ζm. Then since m is odd, we have ζσm = ζ2m by the
definition of σ. We therefore see that m = 1, as Q(χ) is comprised of fixed points under σ. Hence
χ is afforded by an absolutely irreducible Q(χ) representation, which completes the proof.

As is often the case, it will be useful in our reduction (see Theorem 3.5 below) to replace a
character triple (G,N, θ) (i.e. N C G with θ ∈ Irr(N) invariant under G) with a more convenient
“isomorphic” triple which does not change the isomorphism class of G/N or certain aspects of the
character theory for G over θ, but for which N is central. (See [15, Chapter 11] for details on
character triples and isomorphisms of character triples.) In our reduction, we hope that this can
be done in such a way that σ-invariance is not affected. The following theorem will allow us to do
this.

Theorem 3.3. Let (Γ, N, θ) be a character triple such that θ ∈ Irr2′(N) is σ-fixed. Suppose
N < GCΓ with G/N perfect. Then there is a character triple (G∗, N∗, θ∗) isomorphic to (G,N, θ)
satisfying

(i) Γ acts as automorphisms on G∗ and centralizes N∗, with ((gN)∗)γ = (gγN)∗ for every g ∈
G, γ ∈ Γ;

(ii) G∗ is perfect and N∗ ≤ Z(G∗);

(iii) θ∗ is σ-fixed;

(iv) (χ∗)γ = (χγ)∗ for every γ ∈ Γ and χ ∈ Irr(G|θ);

(v) If χ ∈ Irr(G|θ), then χ is σ-fixed if and only if χ∗ is σ-fixed.

Here we use ∗ to denote both the isomorphism ∗ : G/N → G∗/N∗ and the bijection ∗ : Irr(G|θ) →
Irr(G∗|θ∗).

Proof. Let K be as in Theorem 3.2 with respect to θ. Then θ can be afforded by an absolutely irre-
ducible representation Y for N over K. An argument nearly identical to the proof of [25, Theorem
5.1] with F replaced by K now yields the result, but we include the argument for completeness.

By the argument in [15, Theorem (11.2)], there is a projective KΓ-representation X such that
X(n) = Y(n), X(ng) = X(n)X(g), and X(gn) = X(g)X(n) for all n ∈ N, g ∈ Γ. Denote by α
the factor set for X, so that α(g, n) = α(n, g) = 1 and α(gn, hm) = α(g, h) for all g, h ∈ Γ and
n,m ∈ N . Writing Γ̃ := Γ×K× with multiplication (g1, k1)(g2, k2) = (g1g2, α(g1, g2)k1k2) yields a
group with subgroups H̃ = H ×K× for each H ≤ Γ.

The natural surjection π : Γ̃ → Γ given by (g, k) 7→ g is a homomorphism with kernel kerπ =
1̃ := 1 × K×, so Γ̃/1̃ ∼= Γ. Then by the isomorphism theorems, it follows that 1̃, G̃, Ñ , and N × 1
(which we call N , with an abuse of notation) are all normal in Γ̃. Also, note that Ñ = N × 1̃,
1̃ ≤ Z(Γ̃), and Ñ/N ≤ Z(Γ̃/N), where here we identify N ≤ Γ̃ with N × 1.

Now, let G1 ≤ G̃ such that G1/N = (G̃/N)′, so that G1Ñ = G̃ and G1/N is perfect, since
G̃/Ñ ∼= G/N is perfect.

Now, G1/N is finite by Schur’s lemma, so G1 is finite. (Indeed, we have that X ′ is finite if
X/Z(X) is finite. But (G̃/N)/(Ñ/N) ∼= G̃/Ñ ∼= G/N is finite, and Ñ/N is central.) Notice that
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G1 is normal in Γ̃, so Γ̃ acts on G1 by conjugation. Moreover, 1̃ is in the kernel of this action, so
Γ ∼= Γ̃/1̃ acts on G1.

For g ∈ Γ, k ∈ K, define X̃(g, k) := kX(g), so that X̃ is a K-representation for Γ̃ satisfying
X̃(n) = Y(n) for n ∈ N . Let τ be the character of G1 afforded by X̃|G1 . Then τ is certainly
Γ̃-invariant. Moreover, τ takes values in K, so is fixed by σ.

Write N1 := G1 ∩ Ñ , K1 := N1 ∩ 1̃, so that N1 = N ×K1, and define λ ∈ Irr(N1) by λ(n, k) = k
for k ∈ K1, n ∈ N and θ1 := θ × 1 ∈ Irr(N1). Note that both λ and θ1 are fixed by σ (since θ is
fixed by σ and λ takes values in K) and that τ |N1 = λθ1 and τ |N = θ. Since θ ∈ Irr(N), it follows
that τ ∈ Irr(G1).

Now, note that the map G1 → G given by g 7→ π(g) is a surjective homomorphism with kernel
K1. Note that K1 ≤ ker θ1, so (G1, N1, θ1) ∼= (G,N, θ) are isomorphic character triples, by [15,
Theorem (11.26)]. Moreover, the construction of this isomorphism of character triples preserves
the field of values of characters (and hence σ-invariance) and commutes with conjugation by Γ.

Moreover, by the remark after [15, Theorem (11.27)], (G1, N1, λ) ∼= (G1, N1, θ1) is an isomor-
phism of character triples, since λθ1 is extendible to τ ∈ Irr(G1). Combining these, we have an
isomorphism ? : (G,N, θ) → (G1, N1, λ), where for χ ∈ Irr(G|θ), the corresponding character in
Irr(G1|λ) is χ? = χτ . Since τσ = τ , it is clear that χ? is fixed by σ if and only if χ is. Moreover,
the bijection χ 7→ χ? commutes with the action of Γ, since τ is Γ-invariant.

Since λ is trivial onN , applying [15, Theorem (11.26)] again yields an isomorphism (G1, N1, λ) ∼=
(G1/N,N1/N, λ), which preserves the field of values and commutes with the action of Γ. Hence
writing G∗ := G1/N,N

∗ := N1/N and θ∗ := λ, we have an isomorphic character triple (G∗, N∗, θ∗)
with the desired properties.

Lemma 3.4. Let G be a finite group and N C G such that G/N is an abelian 2-group. Suppose
θ ∈ Irr2′(N) is G-invariant and fixed by σ. Then every χ ∈ Irr2′(G|θ) is also fixed by σ.

Proof. Let G, N , and θ be as in the statement, and let χ ∈ Irr2′(G|θ). Recall that by Clifford
theory, χ|N = eθ for some positive integer e which divides [G : N ]. Since χ(1) and θ(1) are both
odd and [G : N ] is a power of 2, it follows that χ|N = θ. Note that λ := det θ is then also fixed by
σ and extendible to G. That is, λσ = λ and there is some µ ∈ Irr(G) with µ|N = λ. (Here det θ
is as in [15, Problem (2.3)].) Then by Gallagher’s theorem, Irr(G|θ) = {βχ|β ∈ Irr(G/N)} and
Irr(G|λ) = {βµ|β ∈ Irr(G/N)}.

Let g ∈ G. As G can be written G = P1N for P1 ∈ Syl2(G), we may write g = hn for
h ∈ P1, n ∈ N . Then

µ(g) = µ(hn) = µ(h)µ(n) = µ(h)λ(n)

and therefore
µσ(g) = µ(h)σλ(n)σ = µ(h)λ(n) = µ(g),

where the second-to-last equality follows from the observation that λ is fixed by σ and the fact that
h ∈ P1 is a 2-element (and hence µ(h) is a 2-power root of unity, so is fixed by σ by definition). It
follows that µσ = µ, so βµ is σ-fixed for each β ∈ Irr(G/N), since the linear character β again takes
values which are 2-power roots of unity. Hence we see that every member of Irr(G|λ) is σ-fixed. In
particular, detχ lies above det θ = λ, so is σ-fixed.

Since χσ ∈ Irr(G|θσ) = Irr(G|θ), we see χσ = βχ for some β ∈ Irr(G/N). Then as β is linear,

detχ = (detχ)σ = det(χσ) = det(βχ) = (detβ)χ(1)(detχ)β(1) = βχ(1) detχ.

Hence since χ(1) is odd and the values of β are all 2-power roots of unity, we see that β = 1G. This
shows χσ = χ, completing the proof.
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We are now ready to prove the first direction of our reduction. We note that the basic structure
of the proof will be analogous to [25, Theorem 6.1], though many of the details are quite different,
requiring the above lemmas. Recall that a group X is said to be involved in a group G if X is
isomorphic to H/K for some subgroups H and K of G such that K is a normal subgroup of H.

Theorem 3.5. Let G be a finite group and Q a finite 2-group acting on G as automorphisms. Let
N C G be a normal Q-invariant subgroup and assume Condition 2.1 for every finite quasisimple
group X such that X/Z(X) is involved in G/N . Let P/N ∈ Syl2(G/N) be Q-invariant and assume
that CNG(P )/P (Q) = 1. Let θ ∈ Irr2′(N) be σ-fixed and PQ-invariant. Then every Q-invariant
χ ∈ Irr2′(G|θ) is also σ-fixed.

Proof. We proceed by induction on [G : N ].
1)Claim: It suffices to assume θ is G-invariant
Let T := stabG(θ) denote the stabilizer in G of θ. Note that P ≤ T , T is Q-invariant, and as

NT (P ) ≤ NG(P ), we have CNT (P )/P (Q) = 1. Suppose that T < G. Then by induction, every Q-
invariant ϕ ∈ Irr2′(T |θ) is σ-fixed. Let χ ∈ Irr2′(G|θ) be Q-invariant. By Clifford correspondence
(see, for example, [15, Theorem (6.11)]), we can write χ = ψG for some ψ ∈ Irr(T |θ). Since
χ(1) = ψG(1) = ψ(1)[G : T ] is odd, we see that in fact ψ ∈ Irr2′(T |θ). Moreover, ψ is Q-
invariant, so is σ-fixed. (Indeed, since χ is Q-invariant, we can write χ = (ψα)G for any α ∈ Q. But
ψα ∈ Irr2′(T |θα) = Irr2′(T |θ) since θ is Q-invariant, so by the uniqueness of Clifford correspondence,
ψα = ψ for each α ∈ Q, and ψ is Q-invariant as well.) Therefore, it follows that χ = ψG is σ-fixed.
Hence, we may assume that T = G, so θ is G-invariant.

2)Claim: It suffices to assume G/N is a chief factor of GQ
Suppose N < M C G with M 6= G stabilized under Q. Notice that PM/M ∈ Syl2(G/M)

and (P ∩M)/N ∈ Syl2(M/N) are also stabilized by Q. Further, CNM (P∩M)/(P∩M)(PQ) = 1 and
CNG(PM)/PM (Q) = 1 by [25, Lemma 2.1]. We may therefore apply the induction hypothesis and see
that every PQ-invariant ψ ∈ Irr2′(M |θ) is σ-fixed and every Q-invariant τ ∈ Irr2′(G|ψ) is σ-fixed
for such ψ.

Let χ ∈ Irr2′(G|θ) be Q-invariant. Then χ|N = eθ for some positive integer e. By [25, Lemma
2.2], χ|M has a unique PQ-invariant irreducible constituent, say φ. But since θ is the unique
irreducible constituent of χ|N , we see that φ ∈ Irr(M |θ). Moreover, φ(1) is odd, as φ(1)|χ(1).
Hence we see φ ∈ Irr2′(M |θ) is PQ-invariant and χ ∈ Irr2′(G|φ), so by the previous paragraph it
follows that χ is σ-fixed.

Therefore, we may assume that G/N is a chief factor of GQ. In particular, G/N is the direct
product of isomorphic simple groups transitively permuted by Q. If G/N is a 2-group or a 2′-group,
then by applying the odd-order theorem, we see G/N must be an elementary abelian p-group for
some prime p. Otherwise, G/N is a product of nonabelian simple groups transitively permuted by
Q.

3)Claim: It suffices to assume G/N is a product of nonabelian simple groups
First, note that if G/N is a 2-group, then in particular it is an elementary abelian 2-group, so

by Lemma 3.4, we have χσ = χ for any χ ∈ Irr2′(G|θ). So suppose G/N is a 2′-group, so that
G/N is an elementary abelian p-group for some prime p 6= 2. As |P/N | = |G/N |2 = 1, we see that
P = N , and hence NG(P )/P = NG(N)/N = G/N since N is normal. Then the assumption that
CNG(P )/P (Q) = 1 yields that CG/N (Q) = 1.

Let Γ := GQ and note that N C Γ since N is Q-invariant. Since Q is a 2-group and G/N is
a p-group, note that both Γ/G and G/N are solvable and that ([Γ : G], [G : N ]) = 1. Moreover,
NQ/N is a complement for G/N in Γ/N , so by [15, Problem (13.10)], there is a unique Γ-invariant
χ ∈ Irr(G|θ). That is, there is a unique Q-invariant χ ∈ Irr(G|θ). Note that this χ is actually a
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member of Irr2′(G|θ), since by Clifford theory χ(1) = eθ(1), where e|[G : N ], so both e and θ(1)
are odd.

But notice that χσ is also Q-invariant and χσ ∈ Irr(G|θ) as well, since θσ = θ. Then by
uniqueness, we see χσ = χ, and hence every Q-invariant χ ∈ Irr2′(G|θ) is σ-fixed. Thus we may
assume that G/N is not a 2′-group, and hence G/N is a product of nonabelian simple groups
transitively permuted by Q.

4)Claim: It suffices to assume N = Z(G) and is centralized by Q
Let Γ := GQ, so (Γ, N, θ) is a character triple. Since G/N is a product of nonabelian simple

groups, and is therefore perfect, Theorem 3.3 implies that we may replace the character triple
(G,N, θ) with an isomorphic triple (G∗, N∗, θ∗) such that N∗ ≤ Z(G∗), Q acts on G∗, centralizing
N∗, such that the actions on G/N and G∗/N∗ are isomorphic, θ∗ is also σ-fixed, and the bijection
Irr(G|θ)→ Irr(G∗|θ∗) preserves σ-invariance and commutes with the action of Q. Hence it suffices
to assume N = Z(G) and Q centralizes N .

5) Now, write N := Z = Z(G) and write G/Z as a direct product G/Z =
∏a
i=1 Ti/Z where the

Ti/Z are simple and transitively permuted by Q. Then [Ti, Tj ] = 1 for i 6= j, Si := (Ti)
′ is perfect,

and Ti = SiZ. (Indeed, SiZ/Z = (Ti)
′Z/Z = (Ti/Z)′ = Ti/Z. Similarly, S′iZ/Z = (SiZ/Z)′ =

Ti/Z = SiZ/Z so S′iZ = SiZ. So Ti/S
′
i = SiZ/S

′
i = S′iZ/S

′
i
∼= Z/(Z ∩ S′i) is abelian, so Si ≤ S′i.)

In particular, Si is quasisimple.
Write Pi := Ti ∩ P , Ri := Si ∩ P = Si ∩ Pi, and Zi := Z ∩ Si, so Si/Zi ∼= Ti/Z and Ri/Zi ∈

Syl2(Si/Zi).
Let Qi := stabQ(Ti) for each 1 ≤ i ≤ a. Then by [25, Lemma 4.1(i)], CNTi (Pi)/Pi

(Qi) = 1, since

we have assumed CNG(P )/P (Q) = 1. Then we also have CNSi (Ri)/Ri
(Qi) = 1, since NTi(Pi)/Pi and

NSi(Ri)/Ri are Qi-isomorphic.
It follows by Condition 2.1 that every Qi-invariant η ∈ Irr2′(Si|θi) is σ-fixed, where θi := θ|Zi .

Given such an η, define ψ := ηθ ∈ Irr(SiZ), so that ψ ∈ Irr2′(Ti|θ). (Here we mean the character
as in [15, Problem (4.4)(b)].) Note that ψ is Qi-invariant and fixed by σ, since both η and θ are.

We claim that any Qi-invariant ϕ ∈ Irr2′(Ti|θ) can be written in this way, and is hence σ-fixed.
Indeed, as Ti = SiZ is a central product, ϕ must be of the form ϕ = ρθ for ρ ∈ Irr2′(Si|θi). Since
both ϕ, θ are Qi-invariant and θ is linear, it follows that ρ is also Qi-invariant, which proves the
claim.

Now, the map Irr2′(T1|θ)× . . .× Irr2′(Ta|θ)→ Irr2′(G|θ) given by (ψ1, . . . , ψa) 7→ ψ1 · . . . · ψa is
a bijection (by, for example, [25, Proposition 4.1(ii)]). Let χ ∈ Irr2′(G|θ) be Q-invariant. Writing
χ = ψ1 · . . . · ψa as above, note that χ|Ti = riψi for some positive integer ri. Then since χ is
Q-invariant, ψi is certainly Q-invariant. Hence we see that each ψi is Qi-invariant, and is therefore
σ-fixed by the preceding paragraph. Then χσ = χ, which proves the theorem.

Before proving the appropriate converse, we require another lemma:

Lemma 3.6. Let G be a finite group with P ∈ Syl2(G), and let N C G. Suppose that every
χ ∈ Irr2′(G) is fixed by σ and that NG(PN) = PN . Suppose further that ψ ∈ Irr2′(N) is extendible
to PN . Then ψσ = ψ.

Proof. Let ϕ ∈ Irr2′(PN) with ϕ|N = ψ. Then ϕG has odd degree, so at least one irreducible
constituent of ϕG, say φ, has odd degree. But by [25, Lemma 2.2] (with Q := 1), ψ is the unique
P -invariant constituent of φN , so since ψσ is also P -invariant and φσ = φ by assumption, this yields
ψσ = ψ, as desired.

We are now prepared to prove our main theorem.

7



Theorem 3.7. Let G be a finite group and P ∈ Syl2(G). Assume that every finite nonabelian
simple group involved in G is SN2S-Good (see Definition 1). Then P = NG(P ) if and only if every
χ ∈ Irr2′(G) is fixed by σ.

Proof. First, note that if P = NG(P ), then every χ ∈ Irr2′(G) is σ-fixed by Theorem 3.5 with
N := 1 =: Q.

Conversely, suppose every χ ∈ Irr2′(G) is fixed by σ, and take G to be a minimal counterexample
to the statement. Let N CG be a minimal normal subgroup, so that N is characteristically simple.
In particular, N is the direct product of isomorphic simple groups. Hence by the Feit-Thompson
odd-order theorem, N is either an elementary abelian 2-group, an elementary abelian p-group for
p an odd prime, or the direct product of nonabelian simple groups transitively permuted by G.

Note that every member of Irr2′(G/N) is σ-fixed, as we can view such characters as charac-
ters of G. Hence by the minimality of G, PN/N is self-normalizing in G/N . This yields that
CNG(PN)/PN (1) = 1, so that CNG(PN)/PN (P ) = 1 and NG(PN) = PN , by [25, Lemma 2.1
(ii)](taking Q := 1 and P := PN). Write R := P ∩N .

First, suppose that N is a 2-group. Then PN = P , and the above discussion yields NG(P ) = P ,
completing the proof in this case.

Now, suppose N is an odd subgroup, so that we may write N = (Z/p)r for some odd prime
p and positive integer r. Let ϕ ∈ Irr2′(PN). By Clifford theory, ϕ(1) = etψ(1) where ψ is a
constituent of ϕ|N and both e, t divide [PN : N ]. Hence e = t = 1 since PN/N is a 2-group and
ϕ(1) is odd. Then ϕ|N = ψ ∈ Irr2′(N). Moreover, ϕ is linear since N is abelian.

Now, g ∈ PN can be written g = xy with x ∈ P , y ∈ N , so ϕ(g) = ϕ(xy) = ϕ(x)ϕ(y) =
ϕ(x)ψ(y). Then ϕσ(g) = ϕ(g)σ = ϕ(x)σψ(y)σ = ϕ(x)ψσ(y) since ϕ(x) must be some 2-root of
unity, and hence is fixed by σ. Moreover, by Lemma 3.6, ψ is σ-fixed, and hence ϕ is also σ-fixed.

We therefore see that any ϕ ∈ Irr2′(PN) is fixed by σ, so by the minimality of G, either
NNP (P ) = P or PN = G. In the latter case, G is solvable, so Navarro’s conjecture [22, Conjecture
A] holds, and hence NG(P ) = P by [22, Theorem 5.2]. (Note that the proof of [22, Theorem 5.2] for
a given group G requires only that [22, Conjecture A] holds for G.) Then we may assume NNP (P ) =
P . Since R = N ∩ P = 1, we therefore have NN (P ) = P , and hence 1 = CN (P ) = CNN (R)/R(P ).
Therefore, by [25, Lemma 2.1(i)] (with M := N,N := 1 =: Q), we have CNG(P )/P (1) = 1, i.e.
NG(P ) = P .

We may therefore assume N is a direct product of nonabelian simple groups. First, we claim
that any P -invariant ψ ∈ Irr2′(N) is fixed by σ.

Indeed, let ψ ∈ Irr2′(N) be P -invariant. Note that PN/N is a 2-group (and hence solvable), ψ
is PN -invariant, and (ψ(1), [PN : N ]) = 1. Let λ := det(ψ) (where det(ψ) is as in [15, Problem
(2.3)]). Then by [15, Theorem 6.25], ψ extends to PN if and only if λ extends to PN . However,
as λ is a linear character for the product N of nonabelian simple groups, we see that λ = 1N , so is
certainly extendible to PN . Hence ψ extends to PN and by Lemma 3.6, ψσ = ψ.

Then by Lemma 3.1 (with Q := P,G := N,P := R = P ∩ N), we see that CNN (R)/R(P ) = 1.
Moreover, since NG(PN) = PN , [25, Lemma 2.1(i)] (with M := N,N := 1 =: Q), we see that
CNG(P )/P (1) = 1, i.e. NG(P ) = P , completing the proof.

4 Some Simple Groups That are SN2S-Good

Theorem 4.1. The alternating groups An for n ≥ 3 are SN2S-Good.

Proof. For 3 ≤ n ≤ 7, the statements can be verified readily using the GAP Character Table
Library [2], [11]. We may therefore assume that n ≥ 8, so that the Schur covering group of An is

8



a double cover. For the second statement of the definition of SN2S-Goodness, it suffices to assume
that G = Ân is the double cover of An.

Characters of Ân which are nontrivial on the center are known as spin characters. Each of these
characters have even degree (see, for example, [30]), and hence Irr2′(Ân) = Irr2′(An).

Moreover, note that An and Sn = Aut(An) have self-normalizing Sylow 2-subgroups. To prove
the theorem, we are therefore left to see that every χ ∈ Irr2′(An) is σ-fixed, which follows according
to the remarks after [22, Theorem (5.2)].

Theorem 4.2. The sporadic simple groups are SN2S-Good.

Proof. Let S be sporadic simple group. By [17], it follows that S has a self-normalizing Sylow
2-subgroup except in the case S = J1, where NG(S) ∼= 23.7.3 or S = J2, J3, Suz, or HN , in which
cases [NG(S) : S] = 3.

Note J1 has a trivial Schur multiplier and outer automorphism group, and hence it suffices in
this case to note that the characters X.7 and X.8 of degree 77 (in the notation of GAP [2]) are
interchanged by the action of σ. If S = J2, J3, Suz, or HN , then |Out(S)| = 2. In each of these
cases, Aut(S) has a self-normalizing Sylow 2-subgroup (see [29]). It is clear from inspection of
the character tables in GAP [2] that in each case, S has odd-degree irreducible characters which
are not fixed by σ. However, we also see that these come in pairs which are interchanged by the
nontrivial outer automorphism. That is, χ ∈ Irr2′(S) is invariant under the outer automorphism
exactly when χ is fixed by σ. This proves the claim for the groups HN and J3, since in the case
HN , the Schur multiplier is trivial, and in the case J3, the Schur multiplier is size 3, and hence no
nontrivial character of the multiplier can be fixed by σ. Further, for J2, the multiplier is size 2, and
for Suz it is size 6. Since no nontrivial character of a cyclic group of odd order can be fixed by σ,
it suffices in either case to show that odd characters of 2.S which are invariant under the nontrivial
outer automorphism are fixed by σ. Here χ ∈ Irr2′(2.S) is invariant under the outer automorphism
exactly when χ extends to an irreducible character of 2.S.2. Observing the character tables of these
two groups in GAP, we see that every member of Irr2′(2.S.2) is fixed by σ, which completes the
proof in these cases.

Hence we may assume S is one of the 21 sporadic simple groups which has a self-normalizing
Sylow 2-subgroup. In the cases that S has a Schur multiplier of 2-power order, let G be the covering
group for S. If S = M22, let G = 4.M22, in the cases S = McL, O′N , or Fi′24, let G = S, and in
the case S = Fi22, let G = 2.F i22. Then it suffices to show that every χ ∈ Irr2′(G) is fixed by σ.
The character tables for each of these is again available in GAP, and (tedious) inspection of the
values on odd characters verifies the statement.

Theorem 4.3. The simple groups G2(3), B3(3), 2G2(3)′, 2G2(3
2n+1) for n ≥ 1, G2(q) for q > 3

odd, and 3D4(q) for q odd are each SN2S-Good.

Proof. With the help of GAP and the GAP Character Table Library [2], [11] we see that both G2(3)
and B3(3) = O7(3) have self-normalizing Sylow 2-subgroups and that the members of Irr2′(G2(3))
and Irr2′(2.O7(3)) are integer-valued, proving the statement in these cases.

Now, note that 2G2(3)′ and 2G2(3
2n+1) have trivial Schur multipliers and odd outer automor-

phism groups. Hence it suffices to prove the statement of Problem 1 for these groups, and since
each of these has a self-normalizing Sylow 2-subgroup, it therefore suffices to show that there are
odd irreducible characters which are not fixed by σ. The character table for 2G2(3)′ ∼= PSL2(8) is
available in GAP [2], and we see that (among other examples) the characters X.7, X.8, and X.9 of
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degree 9 are interchanged by σ. The character table for 2G2(3
2n+1) is available in CHEVIE [12],

and in this case the characters χ4 and χ5 are not fixed by σ, since
√

3 = −i(2ζ3 + 1) is not fixed
by σ.

Now consider S := G2(q) for q > 3 odd or 3D4(q) with q odd, so that S has a self-normalizing
Sylow 2-subgroup by [17]. Again, the Schur multiplier is trivial, so it suffices to show that every
χ ∈ Irr2′(S) is fixed by σ. Inspection of the character tables available in CHEVIE for G2(q) and
for 3D4(q) yields that the odd characters are integer valued, so this is indeed the case.

Theorem 4.4. Let S be the group S := PSL2(q) with q ≥ 5 odd. Then S is SN2S-Good.

Proof. Note that PSL2(5) ∼= A5, and PSL2(9) ∼= A6, so the statement is true for q = 5, 9 by
Theorem 4.1.

So assume q > 5 and write q = pa for an odd prime p. Then Aut(S) = 〈S, δ, ϕ〉, where δ
has order 2 and satisfies 〈S, δ〉 = PGL2(q), and ϕ is a field automorphism induced from the map
x 7→ xp on Fq. (See, for example, [31].)

Let P ∈ Syl2(S). Then P < NS(P ) if and only if q ≡ ±3 mod 8, and in these cases, NS(P ) ∼=
A4, so that |NS(P )/P | = 3, by [17]. Let S ≤ A ≤ Aut(S) be obtained from S by adjoining a
2-group of automorphisms Q. Then A has a self-normalizing Sylow 2-subgroup if q ≡ ±1 mod 8.
Moreover, if q ≡ ±3 mod 8, then A has a self-normalizing Sylow 2-subgroup if and only if PGL2(q)
is contained in A. (See [29].)

Now, in the notation of the generic character table available in CHEVIE [12], Irr2′(S) is the set
{χ1, χ2, χ3, χ4}. (Note that χ3 and χ4 are actually families of characters.) We see that χ1, χ2 are

σ-fixed, since they are rational-valued. However, χ3 and χ4 take values of the form
±1±√q

2 , which
are fixed by σ if and only if q ≡ ±1 mod 8, which can be seen using Gauss sums. Hence if q ≡ ±1
mod 8, every odd character is σ-fixed, as desired. If q ≡ ±3 mod 8, we need to show that χ3 and
χ4 are not A-invariant when A has a self-normalizing Sylow 2-subgroup.

By [31], χ1 and χ2 are fixed by Aut(S), while the families χ3 and χ4 are fixed by ϕ but
interchanged by δ. Hence we see that if δ ∈ A, then every A-invariant odd character is fixed by
σ, and if δ 6∈ A, then there exist A-invariant odd characters not fixed by σ. Hence S satisfies
Condition 2.2.

Finally, applying similar arguments to SL2(q) shows that as long as S does not have an excep-
tional Schur multiplier (i.e. q 6= 9), if G/Z(G) ∼= S, then G satisfies Condition 2.1, completing the
proof.

Theorem 4.5. The simple groups F4(q) and E7(q) with q odd are SN2S-Good.

Proof. From [17], we see that these groups have self normalizing Sylow 2-subgroups. Moreover,
F4(q) is its own covering group and E7(q)sc is the cover for E7(q). Hence it suffices to show that
every odd-degree irreducible character of F4(q) and E7(q)sc are fixed by σ. However, from [18], we
see that the only characters of these groups of odd degree have multiplicity one, completing the
proof.

We remark that the above argument just barely fails for E8(q), as in this case there are 4 odd
character degrees which have multiplicity 2.
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4.1 Groups of Lie Type in Characteristic 2

In this section, let G be a group of Lie type defined over Fq, where q = 2a. That is, G = GF is
the group of fixed points of a connected reductive algebraic group G over Fq under a Frobenius

morphism F . Let (G∗, F ∗) be dual to (G, F ) and set G∗ := (G∗)F
∗
.

Note that in this case, the unipotent radical U is a Sylow 2-subgroup, and the Borel subgroup
B is its normalizer NG(U). Here G has a self-normalizing Sylow 2-subgroup if and only if q = 2 and
G is untwisted (with the exception of the Tits group 2F4(2)′, which has a self-normalizing Sylow
2-subgroup). (See, for example, [6, Proposition 3.6.7]).

For s ∈ G∗ semisimple, we denote by [s] and (s) the G∗ and G∗ conjugacy class of s, respectively.
Further, we denote by E(G, [s]) the rational Lusztig series indexed by the G∗-semisimple conjugacy
class [s] and by E(G, (s)) the geometric Lusztig series indexed by the G∗-semisimple conjugacy class
(s) (see [7, the discussion after 14.40 and Definition 13.16]). When CG∗(s) is connected, the two
series are the same, and we simply write E(G, s). In this case, there is a character χs ∈ E(G, s)
of degree [G∗ : CG∗(s)]2′ , called the semisimple character. (See [7, Chapter 14] for an explicit
description of χs.)

We continue to denote by σ the Galois automorphism in Problem 1. The following lemma will
be useful:

Lemma 4.6. Let G be a group of Lie type defined in characteristic 2, and keep the notation above.
Let s ∈ G∗ with CG∗(s) connected. Then E(G, s)σ = E(G, s2). In particular, χσs = χs2. Hence
χs = χσs if and only if s is conjugate in G∗ to s2.

Proof. Note that n := |s| is odd. Let γ ∈ Qn be an n’th root of unity. Then σ(γ) = γ2, by
definition. Then the proof of [23, Lemma 9.1] shows that χσs = χs2 and E(G, s)σ = E(G, s2).
Certainly, then, if (s) = (s2), then χs = χσs . Conversely, if χs = χσs , then E(G, s) = E(G, s2), so
(s) = (s2).

If α is an automorphism of G which is the restriction of a bijective morphism α1 : G → G of
algebraic groups which commutes with F (in particular this is the case when G is a simple simply
connected algebraic group and α is an automorphism of G), then α induces an automorphism
α∗ : G∗ → G∗, and by [26, Corollaries 2.4, 2.5], we have

E(G, (s))α = E(G, (sα
∗
)), E(G, [s])α = E(G, [sα

∗
])),

and if CG∗(s) is connected,
χαs = χsα∗ . (1)

Let q = 2a and let ϕ : G→ G denote the field automorphism of G induced from the map x 7→ x2

in Fq.
Keeping our notation from above, let χ ∈ Irr2′(G). Then χ ∈ E(G, [s]) for some semisimple

s ∈ G∗. By Lusztig correspondence, there is some unipotent character ψ of CG∗(s) of odd degree
with

χ(1) = [G∗ : CG∗(s)]2′ψ(1). (2)

Hence it is useful to note that by [19, Theorem 6.8], if CG∗(s) is connected, then CG∗(s) has exactly
one unipotent character of odd degree (namely, 1CG∗ (s)), unless CG∗(s) contains a component of
type Cn(2), G2(2), or F4(2). We deal with these situations separately:

Theorem 4.7. Let S = G2(2)′ or F4(2). Then S is SN2S-Good.
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Proof. Let S = G2(2)′ or F4(2). From computation in GAP and the GAP Character Table Library
([11], [2]), we see that S has a self-normalizing Sylow 2-subgroup and that every odd character of
S (and in the case of F4(2), every odd character of the covering group 2.F4(2)) is fixed by σ. Hence
the statement is true in either case.

Theorem 4.8. Let S = Sp2n(2) with n ≥ 3 or S = Ω+
2n(2) with n ≥ 4. Then S is SN2S-Good.

Proof. First, let S = Sp6(2), so that the covering group of S is 2.Sp6(2) or let S = Ω+
8 (2), so that

the covering group is 22.Ω8(2). Either choice of S and their covering groups have self-normalizing
Sylow 2-subgroups. By a direct check in GAP [11], [2], we see every odd character of either covering
group is fixed by σ, and hence the statement is true in these cases.

We may therefore assume that n > 3 in the case S = Sp2n(2) or n > 4 in the case S = Ω+
2n(2),

so G := S is its own covering group. Note that G ∼= G∗, Z(G∗) = 1 is connected, and that G has a
self-normalizing Sylow 2-subgroup. Therefore, it suffices to show that every member of Irr2′(G) is
fixed by σ.

Let χ ∈ Irr2′(G) and let s and ψ be as in (2). If G = Sp2n(2), we have

CG∗(s) ∼= Sp2m0(2)×X

where X is a direct product of groups of the form GLk(2
d) and GUk(2

d) and 2m0 = dimF2 ker(s−1).
Note that every nontrivial unipotent character of GLk(2

d) and GUk(2
d) has even degree. Hence

ψ = ψ1 × 1X , where ψ1 is a unipotent character of Sp2m0(2) of odd degree. If G = Ω+
2n(2), then

G ∼= G∗ is the commutator subgroup of O+
2n(2), and CG∗(s) is index at most 2 in CO+

2n(2)
(s).

Moreover,
CO+

2n(2)
(s) ∼= O+

2m0
(2)×X,

where X is of the same form as above. Then since every nontrivial unipotent character of O+
2m0

(2)
also has even degree, it follows that ψ is the trivial character for CG∗(s).

Hence, if we are in the case Ω+
2n(2) or s has no fixed points on F2n

2 , then χ = χs and χσ = χ
since [s2] = [s]. (See, for example, [13, Lemma 2.4].)

Then assume G = Sp2n(2) and let 2m0 ≥ 4. Then Y := Sp2m0(2) has 5 unipotent characters of
odd degree, namely 1Y , ρ1m0

, ρ2m0
, αm0 , and βm0 , in the notation of [14]. If m0 > 2, then no two of

these characters have the same degree. Hence if m0 > 2, then since E(G, s)σ = E(G, s) by Lemma
4.6, we see that χσ = χ.

Now assume that m0 = 1 or 2. Note that CG∗(s) is some rational Levi subgroup L∗ of G∗,
and hence by [7, Theorem 13.25], the bijection E(CG∗(s), 1)→ E(G, s) is given by Deligne-Lusztig
induction RGL . Now, from a direct check using GAP [2], we see that ψσ1 = ψ1, and hence ψ is σ-fixed.
Moreover, since the Green functions are rational-valued, by [7, Proposition 12.2], χ = RGLψ is also
σ-fixed, which completes the proof.

We remark that Sp4(2)′ ∼= A6 is covered by Theorem 4.1.

Theorem 4.9. Let S be one of the simple groups 2E6(2), E6(2), E7(2) or E8(2). Then S is SN2S-
Good.

Proof. Let S be one of E6(2), E7(2) or E8(2). Then S is its own covering group and has a self-
normalizing Sylow 2-subgroup, so it suffices to show that every χ ∈ Irr2′(S) is fixed by σ. Note
S ∼= S∗ is self-dual, we are in the situation of Lemma 4.6, and that the odd characters of S are
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exactly χs for s ∈ S∗ semisimple. Every semisimple element s ∈ S∗ is conjugate to s2 (see [13,
Lemma 2.4]), so χσs = χs2 = χs for every odd character χs of S.

Now let S be 2E6(2). The following observations can be verified using GAP and the GAP
Character Table Library [2], [11], along with the calculations of [32]. If S ≤ A ≤ Aut(S) is obtained
by adjoining a 2-group of automorphisms, then A has a self-normalizing Sylow 2-subgroup exactly
when A contains a field automorphism of order 2 (i.e. A = S.2). Hence χ ∈ Irr2′(S) is invariant
under A if and only if χ extends to an irreducible character of A. Moreover, every irreducible
character of 22.2E6(2).2 with odd degree is fixed by σ. Hence we see Condition 2.1 is satisfied.
Moreover, there exist odd-degree irreducible characters of S which are not fixed by σ, so we see
that Condition 2.2 is satisfied.

Theorem 4.10. Let S be simple of type E7(2
a), E8(2

a), F4(2
a), or G2(2

a) with a > 1, or let S be
E6(2

a) with 2a ≡ 2 mod 3 and a > 1. Then if G is quasisimple with G/Z(G) = S, then G satisfies
Condition 2.1.

Proof. (1) First, if S = G2(4), this is readily verified using GAP and observations as in the preceding
theorem. So we further assume that a > 2 for type G2.

(2) We see that the Schur multiplier of S is trivial, so that it suffices to prove the converse of
Condition 2.2 for G = S. Since G is of untwisted type with nontrivial torus, we see that G does not
have a self-normalizing Sylow 2-subgroup. Moreover, by [29], we see that A with G ≤ A ≤ Aut(G)
has a self-normalizing Sylow 2-subgroup exactly when A contains a field automorphism ϕ with
|〈G,ϕ〉/G| = a. Hence such an A can only be obtained by adjoining a 2-group of automorphisms
Q in the case that a = 2t is a 2-power.

Suppose A has a self-normalizing Sylow 2-subgroup, so that A contains ϕ and a = 2t for some
t ≥ 1, or t ≥ 2 in the case of G2(2

a). Then it suffices to show that every χ ∈ Irr2′(G) which is fixed
by ϕ is also fixed by σ. Note that we are in the situation of Lemma 4.6 and (1), since Z(G) = 1,
and that the odd characters of G are exactly χs for s ∈ G∗ semisimple. We note also that G is
self-dual. That is, G ∼= G∗.

(3) Let s ∈ G∗ be a semisimple element. Note that we may view G∗ as a Chevalley group,
as in [5]. By [5, Section 7.1] and the fact that CG∗(s) is connected, we see that s is conjugate in
G∗ to a product h = hp1(λ1)hp2(λ2) · · ·hpn(λn), where n is the rank of G∗ as a group of Lie type,
{p1, ..., pn} are a set of fundamental roots for the root system corresponding to G∗, λi ∈ F×q , and

hpi(λi), as defined in [5, Proposition 6.4.1], is the image of diag(λi, λ
−1
i ) under the homomorphism

SL2(Fq)→ 〈Xpi , X−pi〉 given in [5, Theorem 6.3.1]. (Here Xpi is the root subgroup corresponding
to the root pi.)

In particular, from [5, Section 12.2], we see that hpi(λi)
ϕ = hpi(λ

2
i ), so that hϕ =

∏n
i=1 hpi(λ

2
i ).

Then by [5, Proposition 6.4.1] hϕ acts on the Chevalley basis (see [5, Theorem 4.2.1] for the
definition of the Chevalley basis) as follows:

hϕ · ex =

(
n∏
i=1

λ
2Apix
i

)
ex and hϕ · hr = hr

for x a root and r a fundamental root. Here Apix is the Cartan integer 2(pi,x)
pi,pi

. (See [5, Section 3.3].)

Since h2 acts on the Chevalley basis the same way, we see that sϕ is conjugate in G∗ to s2, and
hence χσs = χs2 = χϕs by Lemma 4.6 and (1). Thus χ is fixed under σ whenever it is ϕ-invariant.

(4) Now suppose that A does not have a self-normalizing Sylow 2-subgroup. In particular,
ϕ 6∈ A. In this case, we need only show that there is some χ ∈ Irr2′(G) which is A-invariant but
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for which χσ 6= χ. Write q = 2a with a = 2tm > 1, where t ≥ 0 and m ≥ 1 is odd. Consider the
field automorphism ψ, where ψ is defined to be ϕm if m 6= 1 and ψ := ϕ2 if m = 1. Then ψ has
the largest order among field automorphisms which may be contained in A. (Note that if t = 0
or t = 1 = m, then ψ = 1.) Our goal is to illustrate a semisimple character χs such that χs is
fixed by ψ, as well as any graph automorphisms (recall that G has no diagonal automorphisms),
but such that χσs 6= χs. We therefore wish to exhibit a semisimple element s such that (sψ) = (s)
but (s2) 6= (s).

If m 6= 1, note that F×q contains an element with multiplicative order dividing 2m− 1 = 2t
√
q− 1

but larger than 3, since q ≥ 8. When m = 1 and q > 4, note that F×q contains an element of

order 5, since q = 22
t

for t ≥ 2, and hence q − 1 is divisible by 5. For G2(q), we see that the
element s = hγ(i,−i, 0) in the notation of [8] satisfies our conditions when γi has multiplicative
order dividing 2m−1 but larger than 3 if m 6= 1 and multiplicative order 5 if m = 1. For F4(q), the
element s = h4 = (1, z, z, z) in the notation of [28] works when q ≥ 4, where z is chosen the same
way as γi, and the element h25 = (z1, 1, z, z

4) with z5 = 1, z31 = 1 works with q = 4. Finally, in
the case of E6(q), E7(q), and E8(q), we may choose elements s similarly, where s is of type D5, D6,
and D7, respectively. (See [21], [9], and [10] for a discussion of the semisimple conjugacy classes of
these groups.)

Theorem 4.11. Let a ≥ 1 and let S be one of the simple groups Sp2n(2a) with n ≥ 3 or Ωε
2n(2a)

with n ≥ 4 and ε ∈ {±}. Then S is SN2S-Good.

Proof. If S = Sp2n(2) or Ω+
2n(2), this is Theorem 4.8, so we further assume that a ≥ 2 in the case

of Sp2n(q) or Ω+
2n(q).

Let q := 2a. First, note that since q is even, G := S is its own covering group and we may
identify G with its dual group. Moreover, note that when G = Ωε

2n(2a), we have Oε2n(q) = G : 2.
Let g ∈ Oε2n(q) be a representative for the nontrivial coset of Oε2n(q)/G and let ϕ : G → G denote
the field automorphism of G induced from the map x 7→ x2 in Fq. Let ϕ := ϕ in the case of Sp2n(q)
or ε = +. In the case of ε = −, let ϕ be the field automorphism induced by x 7→ x2 in Fq2 , viewing
Ω−2n(q) naturally inside Ω+

2n(q2). (See, for example, [5, Theorem 14.5.2] for one such embedding.)
Further, write q := q2 in the case ε = − and q := q otherwise.

First assume n > 4 in the case of Ω+
2n(q), so that the outer automorphism group of G has size

2a when G = Ωε
2n(q), and size a in the case G = Sp2n(q). Moreover, in these cases, the outer

automorphism group is generated by ϕ and the action of g in the case ε = + and by ϕ in the
case ε = − or G = Sp2n(q). In the case G = Ω+

8 (2a), notice that Out(G) = a.S3. However, if
A ≤ Aut(G) is a group obtained by adjoining a 2-group of automorphisms on G, then it must be
that again |A/G| ≤ 2a.

Now, in any case, it follows from [29] that if A ≤ Aut(G) is a group obtained by adjoining a
2-group of automorphisms on G, then A has a self-normalizing Sylow 2-subgroup exactly when A
contains a generating field automorphism, and without loss of generality, we consider this automor-
phism to be ϕ. When this is the case, the same argument as in part (3) of the proof of Theorem
4.10 shows that every A-invariant odd-degree irreducible character of G is fixed by σ. (Note that in
the case Ω−2n(q) = 2Dn(q), we are considering the element h as an element of Dn(q2) which is fixed
by an appropriate automorphism induced by the nontrivial symmetry on the Dynkin diagram, as
in [5, Section 13.4].)

Suppose A does not have a self-normalizing Sylow 2-subgroup, so that ϕ 6∈ A. Then we must
exhibit a character χ ∈ Irr2′(G) which is invariant under A but so that χσ 6= χ. Write q = 2a with
a = 2tm > 1, where t ≥ 0 and m ≥ 1 is odd. Consider the field automorphism ψ = ϕm if m 6= 1
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and ψ = ϕ2 if m = 1, so that ψ again has the largest order among field automorphisms which
may be contained in A. Again note that if t = 0 (which cannot happen for ε = −) or t = 1 = m,
then ψ = 1. As before, we will illustrate a semisimple character χs such that χs is fixed by ψ, as
well as any graph automorphisms, but such that χσs 6= χs. We view G∗ ∼= G as a matrix group,
corresponding to a form with Gram matrix:

In−1
In−1

0 1
1 0


in the case G = Sp2n(q). When G = Ω+

2n(q), we can view G∗ as a subgroup of Sp2n(q) defined with
this Gram matrix, and when G = Ω−2n(q), we instead view G∗ as the subgroup of Ω+

2n(q2) (defined
as a subgroup of Sp2n(q2) with this Gram matrix) comprised of elements y such that S−1yS has
entries in Fq, where S is an appropriate change of basis matrix diag (I2n−1, S0), as described in [5,
Theorem 14.5.2]. We view Oε2n(q) similarly. Write G := G if G = Sp2n(q) and G := Oε2n(q) if
G = Ωε

2n(q). Then we still have G∗ ∼= G.
First, assume m 6= 1. Let λ ∈ Fq× with λ3 6= 1 and the multiplicative order of λ dividing

2m − 1 = 2t
√
q − 1. (Note that such a λ exists in F×q since q > 4 in this case.) Now let s be the

semisimple element diag(λ · In−1, λ−1 · In−1, 1, 1) in G∗ ∼= G. Note that s2 is not conjugate to s,
since λ2 6= λ or λ−1. Further, sψ = diag(λ2

m · In−1, λ−2
m · In−1, 1, 1) = s. Hence χs ∈ Irr2′(G) is

ψ-invariant but not fixed by σ.
Now suppose that m = 1, so q = 22

t
for t ≥ 1. Let s ∈ G∗ have order 5. Then certainly,

by looking at the eigenvalues of s and s2 on the action of the natural module (possibly in some
extension field), we see that again s cannot be conjugate to s2. However, we claim that s can be
chosen so that s is conjugate to sψ. Indeed, note that the action of ψ on the eigenvalues of the
action of s on the natural module will be λ 7→ λ4 = λ−1. Moreover, the derived subgroup G ∼= G∗

is of simply connected type, so since s can be chosen so that s and sψ are conjugate to the same
diagonal matrix over the algebraic group G∗ corresponding to G∗, we see that s is conjugate to sψ

over G∗ as well. Hence we see again that χs is invariant under ψ but not under σ.
Now, since [G : G] ≤ 2, we see by Clifford theory that χs must be irreducible when restricted

to G, since χs has odd degree. Let χ := χs|G ∈ Irr2′(G). Then χ is also fixed by ψ, and by Lemma
3.4, it follows that χσ 6= χ, which completes the proof.

Theorem 4.12. Let S be one of the simple groups 3D4(q) with q even, 2B2(2
2n+1) or 2F4(2

2n+1)
with n ≥ 1, or 2F4(2)′. Then S is SN2S-Good.

Proof. First, we use GAP [11] and the GAP character table library for 2B2(8) = Sz(8) and 2F4(2)′.
Let S = Sz(8), so that G = 22.S is the covering group for S. Note that neither S nor G have

a self-normalizing Sylow 2-subgroup and that the outer automorphism group is odd. Hence it will
be sufficient to show that there is χ ∈ Irr2′(S) satisfying χσ 6= χ. Now, inspecting the values of the
characters χ4, χ5, and χ6 of degree 35 in the notation of GAP, we see that they are permuted by
σ, completing the proof for Sz(8).

Now let S = 2F4(2)′, so that S is its own covering group, the automorphism group is A = 2F4(2),
and |A/S| = 2. Since S has a self-normalizing Sylow 2-subgroup, we need to show that every
χ ∈ Irr2′(S) is fixed by σ. Indeed, by observing the character table in GAP, we see that this is the
case, and therefore the statement is true for 2F4(2)′.
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So we may assume that n ≥ 2 in the case S = 2B2(2
2n+1) and n ≥ 1 in the case S = 2F4(2

2n+1),
so that in all remaining cases, S is its own covering group and it suffices to show Condition 2.2 and
its converse for G := S.

Moreover, note that |Out(G)| = 2n + 1 is odd in the case of 2B2(2
2n+1) and 2F4(2

2n+1), so it
suffices in either case to show that G satisfies Problem 1. Since G does not have a self-normalizing
Sylow 2-subgroup, we need to illustrate some χ ∈ Irr2′(G) which is not fixed by σ. The generic
character tables for each group is available in CHEVIE [12]. If G = 2F4(q

2), with q2 = 22n+1,
then inspection of the character table shows that χ22(k)σ = χ22(2k), where χ22(k) is the family of
characters in CHEVIE notation with degree (q4 − q2 + 1)(q4 + 1)(q8 − q4 + 1)(q2 + 1)2, indexed by
1 ≤ k ≤ q2 − 2 with χ22(k) = χ22(−k). If G = 2B2(q

2), where q2 = 22n+1, then inspection of the
character table shows that χ6(k)σ = χ6(2k), where χ6(k) is the family of characters in CHEVIE
notation with degree (q2 −

√
2q + 1)(q2 − 1) indexed by 1 ≤ k ≤ q2 +

√
2q with χ6(k) = χ6(−k) =

χ6(q
2k). Hence in either case, we see that there is an odd character which is moved by σ.

If G = 3D4(q), note that the outer automorphism group is generated by a field automorphism
ϕ of order divisible by 3. Write q = 2a with a = 2tm, where t ≥ 0 and m ≥ 1 is odd, so that ϕ has
order 3a. Let ψ be the field automorphism ψ := ϕ3m. According to [29], an almost simple group
obtained by adjoining outer automorphisms Q to 3D4(q) cannot have a self-normalizing nilpotent
subgroup unless it contains a generating field automorphism, which means no such Q of 2-power
order exists. Hence it suffices to show that there is some χ ∈ Irr2′(G) which is invariant under
ψ (which generates the largest 2-group of field automorphisms) but for which χσ 6= χ. First, let
q = 2. Then the characters X.7, X.9, and X.10 in the notation of the GAP Character Table Library
are permuted by σ, so we are done in this case.

Now let q ≥ 4. Again the generic character table is available in CHEVIE, and we see that
χ11(k)σ = χ11(2k), where χ11(k) is the family of characters in CHEVIE notion with degree (q +
1)(q2 − q + 1)2(q4 − q2 + 1) indexed by 1 ≤ k ≤ q2 + q with χ11(k) = χ11(−k). Observing the
character values on the classes C11(a), we see that χ11(k)ψ = χ11(2

3mk), so it is possible to choose
k so that this character is fixed by ψ but not by σ, completing the proof.

4.1.1 Type A in Characteristic 2

We now turn our attention to groups of type A in characteristic 2. That is, we are interested in
the simple groups PSL±n (2a), where we define PSL+

n (q) := PSLn(q) and PSL−n (q) := PSUn(q).
We will sometimes use the notation PSLεn(q), where ε ∈ {+,−}.

Write G := SL±n (q), and note that in most cases, G is the covering group of S = PSL±n (q),
where q = 2a, and Z := Z(G). Further, write G̃ := GL±n (q). Let G and G̃ be the corresponding
algebraic groups for G and G̃, and let F be the Steinberg endomorphism so that GF = G, G̃F = G̃.
Note that G̃ has connected center and G̃ is self-dual, so that members of Irr2′(G̃) are χs where s
is a semisimple element, viewed in G̃. Moreover, G̃/G is cyclic of order q ∓ 1, which is odd, so
Irr2′(G) is exactly the set of irreducible constituents of members of Irr2′(G̃) when restricted to G.

In this case, some results of Cabanes and Späth regarding generalized Gelfand-Graev Repre-
sentations will be useful. We refer the reader to the notation developed in [3, Section 4.2], which
we will adapt.

Lemma 4.13. Let q = 2a for a ≥ 1 and G, G̃,G, G̃, F be as above. Let Γ̃C ∈ Z≥0Irr(G̃) be as in

[3, Section 4.2] and Γu ∈ Z≥0Irr(G) be as in [3, Theorem 4.6]. Then Γ̃C and Γu are fixed by σ.

Proof. Let U be the unipotent radical of G and write U := UF . By [3, Section 4.2], there are

subgroups U2,C ≤ U1,C ≤ U so that Γ̃C and Γu are defined by inducing the character ψ′u (in the
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notation of [3, Section 4.2]) from U1,C to G̃ and G, respectively and the character ψ′u is an integer
multiple of (ψu)U1,C , where ψu ∈ U2,C is as in the notation of [3, Section 4.2]. Hence it suffices to
show that ψu is fixed by σ.

Now, the values of ψu are given by products of values of a certain linear character

θ0 : (Fq2 ,+)→ (C×, ·).

But since (Fq2 ,+) is an elementary abelian 2-group, we see that θ0(ζ) is a 2-root of unity for every
ζ ∈ Fq2 . Hence θ0(ζ)σ = θ0(ζ) for every ζ ∈ Fq2 , so ψu is fixed by σ, as desired.

The following lemma will also be useful, the proof of which can be found, for example, in [27,
Lemma 3.2.7]:

Lemma 4.14. Let X be a finite group with normal subgroup Y such that X/Y is cyclic and let χ ∈
Irr(X). Then the number of irreducible constituents of χ|Y is exactly the number of λ ∈ Irr(X/Y )
so that λχ = χ.

Theorem 4.15. Let S = PSL2(2
a) with a ≥ 2, PSL3(2), PSL±3 (2a) with a ≥ 2, or PSL±n (2a)

with n ≥ 4 and a ≥ 1. Then S is SN2S-Good.

Proof. (1) First, note that PSL3(2) has a self-normalizing Sylow 2-subgroup. Inspection of the
character table in GAP verifies that every odd irreducible character for this group is fixed by
σ, completing the proof in this case. Further, Theorem 4.1 completes the proof for PSL2(4) ∼=
PSL2(5) ∼= A5 and PSL4(2) ∼= A8.

Let S be PSL3(4), so that the covering group G has size 48. Note that to lie above a character
λ ∈ Irr(Z(G)) fixed by σ, χ must be a character of 42.S. Also, from the GAP Character Table
Library [2], we see that the two characters of 42.S of degree 63 are switched by σ, and that the
remaining odd characters are fixed by σ. Moreover, calculation in GAP [11] using results of [32]
yields that CNG(P )/P (Q) = 1 if and only if SQ contains the normal subgroup of Aut(S) of size
40320. Observing the character table of this group, we see that Q switches the two degree-63
characters, which completes the proof in this case.

Now let S be PSU6(2), so that the Schur multiplier is 22 × 3. Then for the same reasoning
as above, we are only interested in characters of 22.S. The pairs (in the notation of the GAP
Character Table Library) X.29, X.30 (degree 10395) and X.42, X.43 (degree 25515) are switched by
σ, but all other odd characters are fixed by σ. Moreover, observing the character table of 22.S : 2,
we see that these pairs are fused in 22.S : 2, and since S : 2 has a self-normalizing Sylow 2-subgroup
and S does not, which can again be verified using GAP and the results of [32], the proof is finished
in this case as well.

Finally, let S = PSU4(2), so that 2.S is the covering group. In this case, X.2 and X.3 (degree
5) are interchanged by σ, as are X.16, X.17 (degree 45), but all other odd characters of 2.S are
fixed by σ. Moreover, we again see that S : 2 has a self-normalizing Sylow 2-subgroup and S does
not, and that these pairs of characters fuse in 2.S : 2.

(2) Hence we may assume that S does not have an exceptional Schur multiplier, and we keep
the notation of S,G, G̃,G, G̃ from before.

From [29], it follows that CNG(P )/P (Q) = 1 exactly when Q contains a field automorphism of
order a in the case ε = + (resp 2a in the case ε = −). It suffices to consider the field automorphism
ϕ induced by the map F2 : x 7→ x2 on Fq. (Note that in the case S = PSLn(2), S has a self-
normalizing Sylow 2-subgroup. In this case, ϕ is the identity automorphism.)

(3) First, we show that G = SL±n (q) satisfies Condition 2.1. Assume that Q contains ϕ. Let
χ ∈ Irr2′(G) be Q-invariant. In particular, this means χϕ = χ. We will show that χσ = χ.
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Let χ̃ ∈ Irr2′(G̃|χ). In particular, we may choose χ̃ to be fixed by ϕ. (Indeed, this follows
from [15, Theorem 13.28], since Q is a 2-group and G̃/G is solvable, of odd order.) We may write
χ̃ =: χs, where s ∈ G̃ is semisimple. Then by (1) and Lemma 4.6, χs = χϕs = χs2 = χσs , so χ̃ is
fixed by σ.

Let C be a unipotent class of G̃ so that χ̃ is a constituent of Γ̃C with multiplicity one, as in

[3, Theorem 4.4]. Letting Γu ∈ Z≥0Irr(G) be as in [3, Theorem 4.6] and noting that Γ̃C = (Γu)G̃,
we see there is a unique irreducible component χ0 of χ̃|G (for example, by [3, Proposition 4.5 (a)])
which is multiplicity one as a constituent of Γu. Then χσ0 has multiplicity one as a constituent of
Γσu, and hence of Γu by Lemma 4.13. Moreover, since χ̃σ = χ̃, we also see that χσ0 is a constituent
of χ̃|G. Hence by uniqueness, χσ0 = χ0.

Now by Clifford theory, we may write χ = χg0 for some g ∈ G̃, and hence for any x ∈ G,

χσ(x) = χ(x)σ = (χg0(x))
σ

=
(
χ0(g

−1xg)
)σ

= χ0(g
−1xg) = χg0(x) = χ(x)

and hence χσ = χ, as claimed, and we see that G satisfies Condition 2.1.
(4) Now, we show that S satisfies Condition 2.2. We show the contrapositive, namely, that

if S ≤ A ≤ Aut(S) is obtained by adjoining a 2-group Q of automorphisms of S, then whenever
A does not have a self-normalizing Sylow 2-subgroup (i.e. A does not contain ϕ), there exists a
character χ ∈ Irr2′(S) which is A-invariant but not fixed by σ.

Let A be such a group. Note that a is necessarily at least 2 in the case ε = +. We will exhibit
χ ∈ Irr2′(G̃) which is A-invariant such that χ|G is irreducible and χ|Z is trivial, so that we may
view χ ∈ Irr2′(S).

Recall that Irr2′(G̃) is comprised of the characters χs for s ∈ G̃∗ ∼= G̃ semisimple. Moreover,
Irr(G̃/G) is given by characters χt for t ∈ Z(G̃), and E(G̃, s) · χt = E(G̃, (st)) for such t. (See, for
example [7, Proposition 13.30].) Hence by Lemma 4.14, we see that χs|G ∈ Irr(G) if and only if s
is not G̃-conjugate to st for any nontrivial t ∈ Z(G̃). Further, if s ∈ [G̃, G̃] = G, then χs is trivial
on Z(G̃), and hence Z(G) (see [24, Lemma 4.4(ii)]).

Recall that by Lemma 4.6 and (1), χσs = χs2 and χωs = χsω for any ω ∈ A. Hence it suffices to
find a semisimple element s ∈ G so that s is not conjugate in G̃ to s2 or st for any t ∈ Z(G̃) but the
class (s) is invariant under the graph automorphism (in the case ε = +) and the smallest power of ϕ
(other than ϕ itself) which has 2-power order. As in the proof of Theorem 4.10 above, write q = 2a

with a = 2tm > 1, where t ≥ 0 and m ≥ 1 is odd, and let ψ be the field automorphism ψ := ϕm

if m 6= 1 and ψ := ϕ2 if m = 1. Then again ψ has the largest order among field automorphisms
which may be contained in A. (Note that if ε = + and t = 1 = m or t = 0, then ψ = 1.)

Recall that the conjugacy class of s in G̃ is determined by its eigenvalues. Let q denote q in the
case ε = + and q2 in the case of ε = −.

First, assume q ≥ 8. Consider an element s ∈ G with eigenvalues {λ, λ−1, 1, ..., 1} for λ ∈ F×q .
If τ denotes the graph automorphism (given by inverse-transpose) in the case of ε = +, then sτ

has eigenvalues {λ−1, λ, 1, ..., 1}. Then sτ is G̃-conjugate to s. Also, for 1 6= t ∈ Z(G̃), we may
write t = µ · In for 1 6= µ ∈ F×q , so that st has eigenvalues {µλ, µλ−1, µ, ..., µ}. Then by comparing

multiplicities of eigenvalues, we see that st cannot be conjugate to s in G̃, except possibly when
λ3 = 1 and n ≤ 3. Moreover, s2 has eigenvalues {λ2, λ−2, 1, ..., 1}.

If m 6= 1, take λ such that λ2
m−1 = 1 but λ3 6= 1. (Note that such a λ exists because 2m ≥ 8.)

If m = 1, we have a = 2t with t ≥ 2, so take λ with multiplicative order 5 in F×q so that ψ maps λ

to λ4 = λ−1. Then in either case (s2) 6= (s), but (sψ) = (s). Hence χ := χs ∈ Irr(G̃) is irreducible
on G, χ|G can be viewed as an irreducible character of S, and χ is fixed by A but not by σ.

We claim that χ|G is also moved by σ, which will complete the proof for q ≥ 8. Suppose
otherwise, so that χs|G = χs2 |G. By Gallagher’s theorem, this means χs2 = χsχt = χst for some
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1 6= t ∈ Z(G̃). That is, s2 is conjugate to st. But by again comparing eigenvalues, we see that this
cannot occur for our choice of s.

Next, assume q = 4. Take s to have eigenvalues {λ, λ4, 1, ..., 1} for λ ∈ F×
42

satisfying λ5 = 1.
Then the same argument as for a = 2t with t ≥ 2 works.

Finally, let q = 2, so ε = − and q = 4. Note that the two classes of SU4(2) containing elements
of order 9 are fixed by ψ and interchanged by squaring. (The eigenvalues are {λ4, λ1464, λ3564, λ5664}
and {λ24, λ764, λ2864, λ4964}, where λr denotes a generator of F×r . ) Moreover, observing the eigenvalues
shows that these classes are not fixed by multiplication by any t ∈ Z(GU4(2)). Hence taking s
to be an element embedded into G = SUn(2) from either of these classes in SU4(2), we see that
χ := χs satisfies our conditions.

5 Some Additional Remarks

We remark that to prove Problem 1, it remains to prove that most simple groups of Lie type in
odd characteristic, as well as the groups E±6 (2a) with nontrivial center, are SN2S-Good. One of the
main difficulties that arises here is that for most of these groups, Z(G) is disconnected. Hence when
σ fixes a series E(G, s), the characters corresponding to a specific unipotent character of CG∗(s)

◦

may be permuted, so the strategy for much of Section 4.1 fails. However, we hope that an argument
similar to the case of type A can be found.
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