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ABSTRACT

In this thesis, we investigate various problems in the representation theory of finite
groups of Lie type. In Chapter [2, we hope to make sense of the last statement - we
will introduce some background and notation that will be useful for the remainder
of the thesis. In Chapter [3| we find bounds for the largest irreducible representation
degree of a finite unitary group, along the lines of [42]. In Chapter 4] we describe the
block distribution and Brauer characters in cross characteristic for Spg(2%) in terms
of the irreducible ordinary characters. This will be useful in Chapter [5| and Chapter
[1, which focus primarily on the group Spg(2*) and contain the main results of this
thesis, which we now summarize.

Given a subgroup H < G and a representation V' for GG, we obtain the restriction
V]g of V to H by viewing V' as an FH-module. However, even if V' is an irreducible
representation of G, the restriction V|gy may (and usually does) fail to remain irre-
ducible as a representation of H. In Chapter , we classify all pairs (V, H), where H
is a proper subgroup of G = Spg(q) or Sps(q) with ¢ even, and V' is an ¢-modular
representation of G for ¢ # 2 which is absolutely irreducible as a representation of H.
This problem is motivated by the Aschbacher-Scott program on classifying maximal
subgroups of finite classical groups.

The local-global philosophy plays an important role in many areas of mathematics.
In the representation theory of finite groups, the so-called “local-global” conjectures
would relate the representation theory of G to that of certain proper subgroups, such
as the normalizer N¢(P) of a Sylow subgroup. One might hope that these conjectures
could be proven by showing that they are true for all simple groups. Though this
turns out not quite to be the case, some of these conjectures have been reduced to
showing that a finite set of stronger conditions hold for all finite simple groups. In

Chapter (7] we show that Spg(q) and Sps(q), g even, are “good” for these reductions.
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CHAPTER 1

INTRODUCTION

The study of group theory was motivated by the desire to understand the symmetry
of an object, whether it be in nature, art, communication networks, or any other
place that symmetry might play a role. Representation theory is a tool used to
better understand the structure of a group and the symmetries it represents. Roughly
speaking, representations provide a way to view, in some sense, an abstract group as
a group of matrices whose structure is often easier to understand. In particular, we
are interested in irreducible representations, which are in a sense the building blocks
of all representations.

It is well-known that any finite group G has a composition series, i.e. a subnormal
series 1 < N; <INy <..<I Ny, <G in which each factor N;/N;_; is simple. The factors of
this series are called the composition factors, and the Jordan-Holder Theorem states
that any finite group has a unique set of composition factors (up to isomorphism and
reordering). This suggests that many questions about finite groups can be reduced to
questions about finite simple groups or groups closely related to simple groups, such
as almost simple groups (groups satisfying Gop<1G < Aut(Gy) for a finite simple group
Gy) and quasisimple groups (perfect groups for which G/Z(G) is simple). Hence, for
several decades, the main goal of many group theorists was to completely classify all
finite simple groups.

In 2004, the Classification of Finite Simple Groups was completed, and is seen
by many as the most important result in finite group theory. The completion of the
(Classification has opened the door to many interesting questions in group theory by
giving us a hope of reducing to the case of simple groups and using the Classification

to finish the proof. This is precisely the idea behind recent reductions to various
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local-global conjectures in representation theory, which will be of interest in Chapter
[7. The Classification states that every nonabelian finite simple group falls into one

of the following three categories:
e the alternating groups A,,, n > 5
e the finite groups of Lie type
e one of 26 sporadic groups

The finite groups of Lie type are sometimes called finite reductive groups, and are
analogues of Lie groups over finite fields. The Classification of Finite Simple Groups
tells us that “most” finite non-abelian simple groups are groups of Lie type, which is
why they are of such interest, and the focus of this thesis. This class of groups can be
further divided into the finite classical groups and the so-called exceptional groups.
In the remainder of this thesis, we look at various problems concerning the cross-
characteristic representations of finite classical groups, with a particular emphasis
on the symplectic group Spg(2*) and the unitary groups GU,(q). In Chapter [2 we
introduce some background and notation that will be useful for the remainder of the
thesis.

One problem of interest in the representation theory of finite groups is to find the
largest dimension of an irreducible representation of a given group. Though an explicit
formula is often very difficult to achieve, it is sometimes possible to find bounds for
this number, and the question often turns into finding the “correct” asymptotic. In
Chapter [3| we find bounds for the largest dimension of an irreducible representation
for a finite unitary group defined over a field F, of characteristic p. Our bounds show
that this number divided by the p-part of the group order grows like a polynomial in
log, of the rank, as we vary the rank of the group.

In Chapter [d] we describe the block distribution and Brauer characters in cross

characteristic for Spg(2%) in terms of the irreducible ordinary characters. In particular,
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we classify the low-dimensional irreducible /-modular representations of this group.
This information will be crucial in Chapter [§] and Chapter [7, which focus primarily
on the group Spg(2?) and contain the main results of this thesis.

The first of the main problems dealt with in this thesis is concerned with the
restrictions of representations to proper subgroups. Given a subgroup H < G and
an FG-module V', we obtain the restriction V|g of V to H by viewing V' as an FH-
module. However, even if V' is an irreducible representation of G, the restriction V|y
may (and usually does) fail to remain irreducible as a representation of H. In Chapter
[l we classify all pairs (V, H), where H is a proper subgroup of G = Spg(q) or Sp4(q)
with ¢ even, and V' is an f-modular representation of G for ¢ # 2 which is absolutely
irreducible as a representation of H. We note that these results can also be found
in a more concise form in [62], which is available on the ArXiv (arXiv:1204.5514v1).
In Chapter [6] we also discuss this problem for complex representations of the uni-
tary groups GU,(q) with n < 10. This “restriction problem” is motivated by the
Aschbacher-Scott program on classifying maximal subgroups of finite classical groups.
In Section [1.1] we describe in more detail the motivation behind this problem and
state our main results regarding the problem.

The other main problem we are concerned with in this thesis involves local-global
conjectures in representation theory. The local-global philosophy plays an important
role in many areas of mathematics, and in the representation theory of finite groups,
the so-called “local-global” conjectures relate the representation theory of G to that
of certain proper subgroups, such as the normalizer Ng(P) of a Sylow p-subgroup.
One might hope that these conjectures could be proven by showing that they are true
for all simple groups. Though this turns out not quite to be the case, some of these
conjectures have been reduced to showing that a finite set of stronger conditions hold
for all finite simple groups. In Chapter [7, we show that G = Sps(q) and Spa(q), ¢
even, are “good” for these reductions. That is, we show that these groups satisfy

each condition in these lists. A more concise version of these results was submitted
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for publication in 2012 and is available on ArXiv (arXiv:1212.5622v1). In Section [1.2]
we discuss the specific conjectures that we will be concerned with and state our main

result.

1.1 The Aschbacher-Scott Program and the Irreducible Re-
striction Problem

In this section, we provide a brief overview and motivation for the Aschbacher-Scott
program and the restriction problem discussed in Chapters [5| and [0}

The main motivation for the Aschbacher-Scott program and the classification of
maximal subgroups is to understand the finite primitive permutation groups, which
have been a topic of interest going back to the time of Galois and have applications
to many areas of mathematics, including number theory, algebraic geometry, graph
theory, and combinatorics. Since a transitive permutation group X < Sym(f2) is
primitive if and only if any point stabilizer H = stabx(«), for o € €, is a maximal
subgroup, we can view the study of primitive permutation groups as equivalent to
studying maximal subgroups. Thanks to the Aschbacher-O’Nan-Scott Theorem [7],
the problem can be reduced to the case of almost quasi-simple groups (that is, central
extensions of almost simple groups), and the results of Liebeck-Praeger-Saxl [44] and
Liebeck-Seitz [45] allow us to further reduce to the case that X is a classical group.

In this case, Aschbacher has described all possible choices for the maximal sub-
group H (see [§]). Namely, he has described 8 collections Cy,...,Cg of subgroups
obtained in natural ways (for example, stabilizers of certain subspaces of the natural
module for X), and has shown that if H is not contained in one of these subgroups,
then H lies in a collection S of almost quasi-simple groups which act absolutely ir-
reducibly on the natural module, V', for X. The question of whether a subgroup H
in | JS_, C; is in fact maximal has been answered by Kleidman and Liebeck (see [37])

in the case that dimV > 13. The case that V' has smaller dimension is considered
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in [10], as well as in the early work on the problem in [I9] and [51] for the cases of
SLy(q) and SL3(q). When H € S, we want to decide whether there is some maximal
subgroup G such that H < G' < X, that is, if H is not maximal. The most challeng-
ing case is when G also lies in the collection S§. This suggests the following problem,

which is the motivation for Chapters [5] and [6]

Problem 1. Let F be an algebraically closed field of characteristic £ > 0. Classify
all triples (G,V, H) where G is a finite group with G/Z(G) almost simple, V' is an
FG—module of dimension greater than 1, and H is a proper subgroup of G such that

the restriction Vg is irreducible.

Although the motivation may suggest that we fix the group H and try to find all
pairs (G, V) which create a triple as in Problem , in practice it is more practical to
fix G and find all pairs (V, H). In [13], [38], and [39], Brundan, Kleshchev, Sheth, and
Tiep have solved Problem [1] for ¢ > 3 when G/Z(G) is an alternating or symmetric
group. Liebeck, Seitz, and Testerman have obtained results for groups of Lie type in
defining characteristic in [43], [63], and [65].

Assume now that G is a finite group of Lie type defined in characteristic p # ¢,
with ¢ a power of p. In [57], Nguyen and Tiep show that when G = 3D4(q), the
restrictions of irreducible representations are reducible over every proper subgroup,
and in [28], Himstedt, Nguyen, and Tiep prove that this is the case for G = ?F(q) as
well. Nguyen shows in [55] that when G = Ga(q), "Ga(q), or ?Ba(q), there are examples
of triples as in Problem (1| and finds all such examples.

Gary Seitz [64] has made a huge breakthrough in the Aschbacher-Scott program
by providing a list of possibilities for (H,G) as in Problem [1] in the case that H is
a finite group of Lie type and G is a finite classical group, both defined in the same
characteristic. In Seitz’s main theorem restated below, the notation H = H (p®) means
a group of Lie type defined over the field F,., with corresponding simple algebraic

group H over an algebraically closed field of characteristic p.
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Theorem (Seitz: Main Theorem of [64]). Let X be a classical group with natural
module V = Wy where € # p. Assume (i) H = H(p®) with p* > 3, G = G(p®), and
G is of classical type; (i) H < G < X; and (i11) H is not a subgroup of a group
in C(X). Then there is a quasisimple group A with H < A < G such that the pair
(A/Z(A),G/Z(G)) is one of the following:

(i) (PSpan(q), PSLi, (q));

(ii) (PQn-1(q), P (q));

(iii) (PSpan(q®), PSpans(q));

(iv) (G2(q), PQ(q)) or (Ga(q), PSpe(q)) (if p=2);

(v) (PSU,_1(q), PSU,(q)), with (¢ + 1)|n.

Another important breakthrough to this problem in the case that G is a finite
group of Lie type was achieved in [40], where Kleshchev and Tiep solve Problem [1]in
the case that SL,(q) < G < GL,(q), which resolves the pair (PSpa,(q), PSLan(q))
of (i) in Seitz’ list.

For the remaining pairs in Seitz’ list, the question of whether (H, G) indeed gives
rise to triples as in Problem [I| remains open, and for some of these pairs, the reso-
lution of the question would require major advancements in the cross-characteristic
representation theory of finite groups of Lie type. Our goal here is more modest -
we solve Problem (1] in the case that G = Spa,(q) for n = 2,3 with ¢ even, and H is
a proper subgroup. This will resolve one of the cases in Seitz’ list, namely the pair
(G2(2), Spe(27)).

Note that in order to restrict irreducibly to a proper subgroup, a representation
must have sufficiently small degree. Hence, in considering this problem, it will be
useful to understand the low-dimensional ¢-modular representations of Sps(q). In
Section of Chapter {4| below, we prove the following theorem, which describes

these representations. In the theorem, let

S le, U@ +a+1), o [ 1g, lg+1),
5y = by 1=

0, otherwise, 0, otherwise,
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and

5 ._{ lo, {(¢*+1),
3 -

0, otherwise.
Moreover, let as, 83, pi, p3, 74, and ¢! denote the complex Weil characters of Spg(q),

as in [27] (see Table[4.2), and let x;, 1 < j < 35 be as in the notation of [76].

Theorem 1.1.1. Let G = Spg(q), with ¢ > 4 even, and let { # 2 be a prime dividing
|G|. Suppose x € 1Bry(G). Then:
A) If x lies in a unipotent £-block, then either

1. X € {1(;7&37@% - 617/83 - 52770\?’) - 53}7

2. x 18 as in the following table:

Condition on £ X Degree x(1)
(¢ —1) or
3#4(¢°* —q+1) X6 ?(¢* +a>+1)
4> +1) X6 — lc e+ +1) —1 [
X28
(g +1) =X —Xs—Xe+lg | (F+q+1)(g—D*(*+1)

3. x s as in the following table:

Condition on £ X Degree x(1)
0 —1) or
3# (4> —q+1) X7 Pg* +q*+1)
(" +1) X7 — X4 P+ +1D) —qlg+ D +1)/2 '
X35 — X5
l(g+1) =X7—Xe+Xs—X1 | (a=D(@P+D(¢*+¢*+1) —qlg—1)(¢* —1)/2

or

4. x(1) > D, where D is as in the table:

Condition on £ D
0@ —D(*+1) ' (e —D*(*+q+1)
(g +1),
(g+1)e #3 3a(@® —2)(® +1)(¢® —g+ 1) —Jala—D(¢* -1 +1
(g +1),
(g+1),=3 2a(@® =2+ 1) —qg+ D +1
30 —q+ 1) | 3¢"(@—D*(*+g+1) —3ae—D*(*+q¢+1) =24 —1)*(¢—1)

B) If x does not lie in a unipotent block, then either

1. x € {75 G h<ic((a-1)p—1)/21<<((g+ 1) —1)/25
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2.x(1) = (@ +D(g—1)*¢* +q+1) or (¢*+ 1)(q+1)*(¢* —q+1) (here x is
the restriction to (-reqular elements of the semisimple character indexed by a

semisimple ' - class in the family cg o or c5 o respectively, in the notation of [47]

- see Table ,

3. x(1) = (¢ = D(¢* + D(g" + ¢* + 1) or (¢ + 1)(¢* + 1)(¢" + ¢* + 1) (here x is
the restriction to {-reqular elements of the semisimple character indexed by a
semisimple £ - class in the family ci00 or cso respectively, in the notation of

[47] - see Table , or
4. x(1) = qlg" +¢* +1)(q — 1)*/2.

Note that in the case n = 3, Theorem [1.1.1] generalizes [27, Theorem 6.1], which
gives the corresponding bounds for ordinary representations of Sps,(q) with g even.
Our main result in Chapter [5| is the following complete classification of triples

(G,V, H) as in Problem [1] in the case G = Sps(q) with ¢ > 4 even.

Theorem 1.1.2. Let g be a power of 2 larger than 2, and let (G,V, H) be a triple as
in Problem |1}, with { # 2, G = Spgs(q), and H < G a proper subgroup. Then:

1. P} < H < Pj, the stabilizer of a totally singular 3-dimensional subspace of the
natural module Fg, and the Brauer character afforded by V is the Weil character

Qs; or

2. H = G5(q), and the Brauer character afforded by V' is one of the Weil characters

3_
g°—1 1

° pi— { L q-1" degree q(q + 1)(¢ + 1)/2—{ 0

0, otherwise,

o T, 1<i<((¢g—1)e—1)/2, degree (¢"~1)/(q—1)
o a3, degree q(q —1)(¢° — 1)/2

o G, 1<i<((qg+1)p—1)/2, degree (¢°—1)/(g+1).
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as in the notation of [27] (see Table[4.).

Moreover, each of the above situations indeed gives rise to such a triple (G,V, H).

Note that Theorem tells us that pair (ii) in the main theorem of [64] does
not occur for the case n =7, g even, and that pair (iv) does occur.
We also prove the following complete classifications of triples as in Problem 1| when

H is a maximal subgroup of G = Spy(q), ¢ > 4 even, G = Spg(2), and G = Sp4(2).

Theorem 1.1.3. Let q be a power of 2 larger than 2, { # 2, G = Spy(q), and H < G
a mazimal subgroup. Then (G,V, H) is a triple as in Problem if and only if H = P,
the stabilizer of a totally singular 2-dimensional subspace of the natural module F;l,

and the Brauver character afforded by V is the Weil character .

Theorem 1.1.4. Let (G,V, H) be a triple as in Problem with 0 # 2, G = Spy(2) =

Se, and H < G a maximal subgroup. Then one of the following situations holds:
1. H = Ag,
2. H=A5.2=2355,
3. H=0,(2) =2 S5 = A.21M3 in the notation of [11)].

Moreover, each of the above situations indeed gives rise to such a triple (G,V, H).

Theorem 1.1.5. Let (G,V, H) be a triple as in Problem[1, with { # 2, G = Spe(2),

and H < G a maximal subgroup. Then one of the following situations holds:

1. H= G2(2) = U3(3)2, and

1, (=1
0, otherwise,
or Xo, where Xo is the unique irreducible complex character of Spg(2) of

e (=0,5,7andV affords the Brauer character s, Z?}, p3—

degree 56.

o (=3 andV affords the Brauer character as or p3'.
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2. H = Og(2) = U4(2).2, and the Brauer character afforded by V is the Weil

character Bs.

3. H = Of(2) & L4(2).2 & Ag.2, and the Brauer character afforded by V is
either the Weil character as, the character X7 where x7 is the unique irreducible
character of degree 35 which is not equal to p3, or the character X where x4 18

the unique irreducible character of degree 21 which is not equal to (3.

4. H=2%:L3(2), and the Brauer character afforded by V is Q3 or X5 where x4 is

the unique irreducible character of G of degree 21 which is not equal to (3.
5. H = Ly(8).3, and V affords one of the Brauer characters:

® ag,

« G, (#3,

o pi, (#T7, or

e 1 where x4 is the unique irreducible complex character of Spe(2) of degree

21 which is not equal to (3, £ # 3.
Moreover, each of the above situations indeed gives rise to such a triple (G,V, H).

We note that unlike the case ¢ > 4, we do not discuss the descent to non-maximal
proper subgroups of Spg(2) in Theorem as there are many examples of such
triples in this case.

In Chapter |§|, we also begin a discussion of pair (v) of Seitz’ list as stated above.
There, we show that this pair yields no triples for n < 8 in the case that V is defined

in characteristic 0.

1.2 Local-Global Conjectures

Much of the representation theory of finite groups is dedicated to showing the validity

of various conjectures which relate certain invariants of a finite group with those of
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certain subgroups. Often, these have to do with the number of characters of the group
of a given type. One of the first of these “local-global” or “counting” conjectures was
proposed by McKay [50] in 1972. Though the original conjecture was more restricted,

the following is the McKay conjecture as it is known today.

McKay Conjecture. Let G be a finite group, ¢||G| a prime, and P € Syl,(G). Then
|II'I'Z/(G)‘ = |II'I'E/(Nc;(P))’.

Here, Irry (G) represents the set of irreducible characters of G with degree prime
to £. Though there is much evidence for the validity of the McKay conjecture, it
is still open, and the question of why it should be true remains unclear. Many
refinements to the conjecture have been proposed, and a reduction theorem has been
proved, with the hope of providing not only a method by which to prove it, but
also a better understanding of the deeper underlying reason behind it. For example,
Alperin [2] later extended the McKay conjecture to include the role of blocks. The
new conjecture, known as the Alperin-McKay conjecture, uses Brauer’s First Main
Theorem, which says that block induction b — b“ gives a bijection between blocks B
of G with defect group D and blocks b of Ng(D) with defect group D. Recall that a
character x in the block B has height zero if its degree satisfies x(1), = |G|¢/|D]s.

Alperin-McKay Conjecture. Let G be a finite group, B an ¢-block of G with
defect group D, and b the block of Ng(D) with b% = B. Then the number of height

zero characters of B and b coincide.

In [34], Isaacs, Malle, and Navarro prove a reduction theorem for the McKay
conjecture. They describe a list of conditions that a simple group must satisfy in
order to be “good” for the McKay conjecture for a prime ¢. The reduction says that
if every finite simple group is “good” for the McKay conjecture for ¢, then every
finite group satisfies the McKay conjecture for the prime ¢. In [69], Spéth provides

a reduction for the Alperin-McKay conjecture along the same lines, providing a list
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of conditions for a group to be “good”, and proving that if every finite simple group
is good for a prime ¢, then all finite groups satisfy the Alperin-McKay conjecture for
that prime.

The other conjectures that we will be concerned with in this thesis involve £-
weights of a finite group. An f-weight of G is a pair (@, p), where @ is an (-radical
subgroup (i.e. an ¢-subgroup with @ = O,(Ng(Q))) and p is a defect-zero character
of N¢(Q)/Q, that is, an irreducible character with (1), = |Ng(Q)/Qle. In 1986,

Alperin [3] made the following conjecture:

Alperin Weight Conjecture (AWC). Let G be a finite group and ¢ a prime. Then
the number of irreducible Brauer characters of GG equals the number of G-conjugacy

classes of /-weights of G.

The AWC aims to provide an analogue for finite groups to the situation of /(-
modular representations of algebraic groups, where the representations are in bijection
with the dominant weights of the algebraic group. This is the motivation for referring
to the collection of such pairs (@, i) as weights for the finite group G.

More generally, a weight for a block B of G is a weight (Q, i) as before, where
p lies in a block b of Ng(Q) for which the induced block b% is B. Again, we have
an extension of this conjecture to one which involves the role of blocks of the group,

giving the conjecture more structure:

Blockwise Alperin Weight Conjecture (BAWC). Let G be a finite group, ¢ a
prime, and B an ¢-block of G. Then the number of irreducible Brauer characters

belonging to B equals the number of G-conjugacy classes of /-weights of B.

In [53], Navarro and Tiep prove a reduction for the Alperin weight conjecture
in the same spirit as those for the McKay and Alperin-McKay conjectures, and in
[70], Spath extends this reduction to the blockwise version of the Alperin weight

conjecture.
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The reductions for these conjectures give us hope of proving them by appealing
to the classification of finite simple groups. It has been shown that under certain
conditions, a simple group of Lie type is “good” for the various conjectures, but it
still needs to be shown in general. For example, it is known (see [53], [70]) that a
simple group of Lie type defined in characteristic p is “good” for the Alperin weight
and blockwise Alperin weight conjectures for the prime ¢ = p, but the question is still
open when ¢ # p. Similarly, for £ = p > 5, Spath has shown in [69, Proposition 8.4]
that a simple group of Lie type defined in characteristic p is “good” for the Alperin-
McKay conjecture (and therefore also the McKay conjecture) for the prime ¢ = p. It
is worth noting that for ¢ > 4 a power of 2, the same argument shows that indeed,
Spe(q) and Spy(q) are good for the Alperin-McKay conjecture for the prime 2, as the
Schur multiplier is non-exceptional in these cases.

In [14], Cabanes shows that Sps(2%) is “good” for the McKay conjecture for all
primes ¢ # 2. According to the discussion preceding [70), Theorem A], G. Malle
has shown that alternating groups, and therefore Sp,(2)" = Ag, are “good” for the
blockwise Alperin weight conjecture. The main theorem of Chapter [7|is the following
statement, which therefore implies that Spg(2*) and Sp,s(2*) are “good” for each of

these conjectures for every prime:

Theorem 1.2.1. The simple groups Sps(q) with q even and Spy(q) with ¢ > 4 even
are “good” for the McKay, Alperin-McKay, Alperin weight, and blockwise Alperin

!/

weight conjectures for all primes £ # 2. Moreover, the simple group Sp4(2)" is “good”
for the Alperin-McKay conjecture for all primes £ (including { = 2) and Spe(2) is

“good” for the Alperin-McKay conjecture for the prime { = 2.

Though our proof is rather specialized, we hope that it will lead us to find a more
general underlying pattern which will give us an idea of how to extend these results

to higher rank symplectic groups.
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CHAPTER 2

PRELIMINARIES

In this chapter, we introduce some notation and background that will be useful in the
subsequent chapters, in an effort to make this thesis somewhat self-contained, though
some of the notation will be reiterated in later chapters. As our focus will be on the
finite classical groups, we describe a number of ways to construct them in Section
2.2 In Section [2.3] we discuss some basic information on representations before
specializing to the representations of finite classical groups. In later chapters, we will
be paying particular attention to the groups GU,(¢) and Sps,(2), so in Section [2.4]

we discuss the structure of centralizers of semisimple elements in these groups.

2.1 Groups of Lie Type

A group of Lie type G can be identified with the fixed points of a connected reductive
algebraic group G under a Frobenius map F. (For this reason, groups of Lie type
are sometimes referred to as finite reductive groups.) If G is a finite group of Lie
type over F,, let k = IF_q and let G be regarded as a subgroup of some GL, (k). A
map [I': (ai;) — (af;) which maps G — G is called a standard Frobenius map. More
generally, a Frobenius map from G to G is a morphism such that some power is a
standard Frobenius map. Given a Frobenius map F, the group G = G = {g €
G|F(g) = g} is the set of fixed points under F'. The untwisted groups are obtained
from standard Frobenius maps, whereas the twisted groups arise from other Frobenius
maps.

Simple groups of Lie type can also be thought of as the Chevalley groups £(q)
for simple Lie algebras £ over the field I, and their twisted counterparts resulting

from symmetries of the Dynkin diagram, as in the notation of [I5]. £(q) is the group
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of automorphisms of £ generated by the elements z,.(t) := exp(tade, ), following the
notation of Carter [15], where t € Fy, 7 is a root, and e, is a root vector in a Chevalley

basis for £.

2.1.1 Exceptional Groups of Lie Type

By an exceptional group of Lie type, we mean the fixed points under a Frobenius
morphism of a simple algebraic group or the finite analogue of the Lie group (and
their twisted counterparts) corresponding to one of the exceptional simple Lie algebras

£ = Gy, Fy, Fg, E7, or Eg, whose root systems are shown below.

GQiO:O

Eg - O ;r .

These can come in one of two forms. First, G could be the Chevalley group £(q)
corresponding to the simple Lie algebras £ over a finite field F,, omitting the case
q =2 when £ = By, Gy. (See [15].)

Second, G can be a twisted group obtained by a nontrivial graph automorphism
(an automorphism induced from a nontrivial symmetry of the Dynkin diagram) of
the Chevalley group £(g) in the cases where £ is Fg (for ¢ a square), By (for ¢ =

22m+l > 2) Dy (an order-3 symmetry, for g a cube), Fy (for ¢ = 22! > 2), or G, (for
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g = 3*™*1 > 3). These twisted exceptional groups are denoted *Eg(g?), By (2*™*1) :=
Sz2(q), 2Da(q?), G2(3*™), and 2F,(2*™*1). The latter two are sometimes called
the Ree groups, Sz(q) is called a Suzuki group, and 3D,(¢®) are sometimes called
Steinberg triality groups. While the groups ?By(2), 2F4(2), and G4 (3) are not simple,

the commutator subgroups F;(2) and *G5(3)" are simple.

2.2 The Finite Classical Groups

There are various ways to construct the groups of Lie type, but unlike the exceptional
groups, the classical groups can be realized nicely as certain groups of matrices over
finite fields. They essentially fall into the classes of finite linear, unitary, symplectic,
and orthogonal groups. There are many ways in which to view these groups. For
example, we can view them as matrix groups or groups of transformations. We can
also view them as certain groups of Lie type, or as a set of fixed points of a simple

algebraic group with respect to a Frobenius endomorphism.

2.2.1 The Classical Groups as Matrix Groups

Let V = F} be an n-dimensional vector space over the finite field F,. The general
linear group GL(V) of V is the set of non-singular F,-linear transformations of V.
Choosing a basis, we get GL(V) = GL,(q), the set of n x n matrices over F, with
nonzero determinant. Taking the subgroup of GL,(q) of elements with determinant
1, we obtain the special linear group SL,(¢q) = SL(V). Since SL,(q) is the kernel
of the determinant map onto F, it is clear that SL,(q) < GL,(q) with index ¢ —
1. The set {\-I|A € FX} forms the center Z(GL,(q)) of GL,(q), and taking the
intersection Z(GL,(q))NSLy,(q) gives the center of SL,(q). We obtain the projective
general linear group and projective special linear group as the quotients PG L, (q) :=
GL,(q)/Z(GLy(q)) and PSL,(q) := SL,(q)/Z(SL,(q)), respectively. The groups
PSL,(q) are simple as long as (n,q) & {(2,2),(2,3)}. Hence, when referring to the
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finite simple groups, PSL,(q) is the one we mean. Note also that PG L, (q) is almost
simple, and SL,(q) is quasi-simple, aside from the above exceptions.

The other classical groups are subgroups of the linear groups, and can be defined
as certain isometry groups for particular forms. A bilinear form f: V xV — F, is
symmetric if f(v,w) = f(w,v) for all w,v € V and is skew-symmetric if f(v,w) =
—f(w,v) for all v,w € V. A non-degenerate skew-symmetric bilinear form satisfying
f(v,v) =0 for all v € V is called a symplectic form. If F, has a field automorphism
A — X of order two, then a non-degenerate left-linear form satisfying f (v, w) = f(w,v)
is called a Hermitian or unitary form. Notice that in this case, ¢ must be a square.

The symplectic groups Sp(V, f) and general unitary groups GU(V, f) are the
subgroups of GL(V) preserving a symplectic form or unitary form, f, respectively.
That is, elements g of these subgroups are those satisfying f(gv, gv) = f(v,v) for all
v € V. We note that n-dimensional symplectic forms (resp. unitary forms) over F,
(resp. F2) are unique up to similarity, and hence the corresponding groups Sp(V, f)
(resp. GU(V, f)) are unique up to isomorphism. With a proper choice of basis, we

can identify these groups with the matrix groups

Spn(q) = {9 € GL,(q)|"gJg = J}

GU,(q) = {9 € GLu(¢*)|"g9 = I}

(0 Ly
J'_(—fnm 0 )

and g is the matrix obtained from ¢ by taking the gth power of each entry. Note that

where J is the n X n matrix

for the symplectic groups, n must be even and it turns out that Sp,(q) < SL,(q).
We obtain the special unitary group SU,(q) as the subgroup of GU,(q) of matrices

with determinant 1.
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From these groups, we obtain the projective symplectic, projective general unitary,
and projective special unitary groups by taking the quotient of the corresponding

group by its center:

PSpu(q) == Spu(q)/Z(Spu(q)), PGU.(q) == GU,(q)/Z(GU,(q)),

PSU,(q) = SUn(q)/Z(5Un(q))-

For most (n, q), the groups PSp,(¢q) and PSU,(q) are simple.

The last type of finite classical group consists of the orthogonal groups. These are
the transformations preserving a non-degenerate quadratic form. A quadratic form
is a map Q: V — V such that Q(M\) = \?Q(v) for A € F,, v € V and the map
fo: V xV =V given by fo(v,w) = Qv+ w) — Q(v) — Q(w) is a bilinear form. @
is called non-degenerate if fq is non-degenerate. If n = 2m + 1 is odd, there is one
non-degenerate quadratic form in dimension n over F,, up to similarity. When ¢ is
odd, the group O(V, Q) of isometries of the form () is unique up to isomorphism and

can be identified, after choosing a suitable basis, with the matrix group

O2ms1(q) = {g € GLam11(q)|" gMg = M},

where
0 I, O
M=1\1, 0 0
0 0 1

When q is even, Og,11(q) = Spam(q), so we usually assume that if ¢ is even, then so
is n.

If n = 2m is even, there are two isometry classes of non-degenerate quadratic
forms. Choosing a standard basis, we see that the isometry groups O(V, Q) of these

two forms are isomorphic to a subgroup of one of the following matrix groups:
O3n(@) < {g € GLan(q)|" 9K g = K}

O (q) < {9 € GLon(q)["gLg = L}
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with
0 I,
K._( y 0)
and
0 I, 0
L1 0 0

0 0 ( Y )
where 22 + x + ( is irreducible over F,. When ¢ is odd, the quadratic form @ is
determined by its associated bilinear form fg, and hence the above are actually
equalities. When ¢ is even, the bilinear form is symplectic, so O;tm(q) < Spam(q) is
the subgroup of g € Span,(q) such that Q(gv) = Q(v) for all v in the chosen basis.

As before, we obtain the special orthogonal groups SO%(q) (for € = £, or null)
as the subgroup of Of(q) of matrices with determinant 1. Taking the quotient by
the center, we obtain the projective special orthogonal groups PSO¢(q) as before.
However, in the case of orthogonal groups, this group is not in general simple. Except
for the case SOJ (2), SO (q) contains a unique subgroup of index 2, which is denoted
by Q¢(q). The projective group P (g), which is the quotient of €2 (q) by scalar
matrices, is the group which is usually simple in the orthogonal group case.

We will sometimes denote by I(V, f) or 1(V, Q) the group of isometries of a bilinear
or Hermitian form f or quadratic form ), making the convention that f is the zero

map in the case of linear groups.

Example 1. Consider the group G = PSpy,(q) when ¢ is even. (This group, par-
ticularly when n = 3, will be the group we are primarily interested in in Chapter
and Chapter [7]) In general, we have Z(Spa,(q)) = {£I}, so since the characteristic
of our field is 2, we have Z(Spa,(q)) = I. Hence PSpa,(q) = Span(q) when ¢ is even,
and this group is simple for (n, q) # (2,2), (1,2). We note that although Sp4(2) is not
simple, the commutator Spy(2)" is simple and is isomorphic to the alternating group

Ag.
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If f is the skew-symmetric bilinear form defining G (that is, G = I(V, f)), we
have f(v,w) = —f(w,v) = f(w,v) since the characteristic is 2. Thus f is actually a
symmetric bilinear form, and G contains O3, (¢) as a subgroup.

We can find a standard symplectic basis {ey,...,en, f1,..., fu} for V = Fg” such
that f(e;,e;) = 0 = f(fi, f;) for all i,5 and f(e;, fj) = 6;;. Therefore, the Gram

0 I,
r=x=(} %)

matrix of f is the matrix

defined above.

(Note that in the case ¢ is odd, the standard symplectic basis is defined the same

way, but then the Gram matrix has —I,, in the lower left.)

2.2.2 The Classical Groups as Groups of Lie Type

We can also identify the finite classical group G with the fixed points of a connected
reductive algebraic group G under a Frobenius map F'. For example, for G = GL,(q),

we can take G = GL,(k) and F' to be the standard Frobenius map

F: (aij) = (a;)

)

mapping each matrix entry to its gth power. Similarly,

O2n+1(k)F - 02n+1(q)7 SOQn+1(k)F - SOQn—i—l(Q)a
Oz (k)" = 05,(q), and SOz, (k)" = SO3,(q),
with the Gram matrices of the forms as above.
If instead we take F’ to be the inverse-transpose map composed with F, i.e.
F': (aij) — (Y(al))™', then

]

GL,(k)!" = GU,(q) and SL, (k)" = SU,(q).
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Table 2.1: Identifications of Finite Chevalley Groups with Finite Classical Groups

Chevalley Group £(q) | Simple Classical Group Dynkin diagram for £

Ag(q) PSL(q)

Au(¢?) PSUp4(q) o—0—0——0—=0
Bi(q) P11(q), g odd ~ O
Ci(q) PSpae(q) O O
Dy(q) Py,(q)

*Dy(q?) PQy,(q) i

Note here that (F”)?: (a;;) — (ag;) is the standard Frobenius with respect to F .

To obtain SO, (¢) in this way, we let " be the composition of I’ with conjugation

by the matrix
Io, 510 O
t:= 0 (0 1
0 10
Since t € Oy, (k) normalizes SOy, (k), the map F”: (a;;) — t~"(af;)t sends SO, (k)
to itself. Then

5024 (k)" = 503, (q).

Note that the map F also squares to the standard Frobenius with respect to [F .
The finite simple classical groups can also be thought of as the Chevalley groups
£(q) for the simple Lie algebras £ = Ay, By, Cy, Dy over the field F, and their twisted
counterparts resulting from symmetries of the Dynkin diagram, as in the notation of
[15]. The Dynkin diagrams for the root systems and the identifications of the groups
£(q) as finite classical groups for each of these Lie algebras are shown in Table [2.1]
For the diagrams of B, and C,,, we have made the convention that the long root is

on the right.
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2.3 Representations

Given a finite group GG and a field [F, an F-representation of G is a homomorphism
X: G — GL(V) for some F-vectorspace V. Equivalently, if dimV = n, we can
fix a basis for V to obtain X: G — GL,(F). Given any FG-module V' which has
dimension n as a vector space, we obtain a representation defined by X(g)v := g -v
for g € G,v € V. Conversely, given a representation X: G — GL,(F), we obtain
an FG-module by taking V' to be the column space F" and defining the action of
g € G by g-v := X(g9)v. Hence F-representations of G can be identified with
the FG-modules which afford them, and we call a representation irreducible if it is
afforded by an irreducible FG-module V', and reducible otherwise. If a representation
X remains irreducible when viewed over any extension field E of F, we say that X is
absolutely irreducible. In particular, if F is algebraically closed, then any irreducible
F-representation is also absolutely irreducible.

Any FG-module V' has a composition series
0=VN<V<.<Va<V=V

with each factor V;/V;_; irreducible. In this sense, the irreducible representations of
G form the building blocks of all representations.

Now, when F is an algebraically closed field of characteristic ¢ relatively prime
to |G|, we say that X (or V) is an ordinary representation, and the representation
theory is the same as in the case F = C. In this case, Maschke’s theorem tells us that
in fact V' is a direct sum of its irreducible composition factors. When ¢ divides |G/,
the situation is more complicated, and we call V' an ¢-modular representation.

We will denote by 0,(G) the smallest degree of an absolutely irreducible represen-
tation of G of degree larger than 1 in characteristic ¢. Similarly, m,(G) denotes the
largest such degree. When ¢ = 0, we write b(G) = my(G) =: m¢(G), or sometimes

simply m(G). In particular, we have my(G) < m(G) = b(G) for all £ > 0.



32

2.3.1 Characters and Blocks of Finite Groups

Given a representation X: G — G L, (IF), we obtain the character y := TroX: G — F
afforded by X by taking the traces of the images X(g) for ¢ € G. The character
x is called irreducible if the representation X is irreducible. We denote the set of
irreducible ordinary characters of G by Irr(G). Given an arbitrary ordinary character
¥ of G, we can write 1) uniquely as a linear combination

¢ = Z aXX7

x€lrr(G)

where 0 < a, € Z.

If X is an f-modular representation over an algebraically closed field F, we gen-
eralize the notion of characters as follows. Let G° := {g € G: (¢ /|g|} denote the
set of (-reqular elements of G (that is, - elements). If g € G°, then the eigenval-
ues Ay, ..., A\, € F* of X(g) are |g|th roots of unity in F*. Fixing an isomorphism
* between |G|pth roots of unity in F* and |G|sth roots of unity in C, we obtain
the (-Brauer character ¢: G° — C by taking ¢(g) := > ., Af. (Here we use ny to
denote the ¢'-part of the integer n. We will also use n, to denote the ¢-part of n.)
We again call ¢ irreducible if X is afforded by an irreducible FG-module, and the set
of irreducible ¢- Brauer characters of G is denoted IBr,(G). As in the case of the
ordinary characters, we can write an arbitrary ¢-Brauer character # as a unique sum

0= by

p€IBr¢(G)

where 0 < b, € Z.
In particular, taking the restriction of xy € Irr(G) to G° yields a (possibly re-
ducible) Brauer character, which we will denote X, and we can write

X = Z dy.o

p€IBre(G)

for nonnegative integers d, . The numbers d, , are called the decomposition numbers,

and the matrix (d, ;) is called the decomposition matriz for G.
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The set IBry(G) U Irr(G) is partitioned into sets called ¢-blocks of G. The blocks
satisfy that x,x’ € Irr(G) are in the same block if and only if there exist y =
X1: X2, - Xm = X € Irt(G) and o1, ..., om—1 € IBr¢(G) such that d, ,, and d,,,, o,
are both nonzero for each i. Moreover, d, , # 0 if and only if x, ¢ are in the same
block. Hence, by reordering Irr(G) and IBry(G), the decomposition matrix can be put
into block-diagonal form, with the blocks of the matrix corresponding to the ¢-blocks
of G. (It is worthwhile to note that the decomposition matrix is dependent on the
choice of isomorphism * fixed above.) When the prime ¢ is fixed, we will denote by
BI(G) the set of £ - blocks of G. Further, if x € Irr(G) UIBr,(G), BI(G|x) will denote
the block of the group G containing y. We will use IBr,(B) := BNIBry(G) to denote
the irreducible Brauer characters in the block B and Irr(B) := B N Irr(G) for the
irreducible ordinary characters in B.

Usually, blocks are defined using central characters. (For a more complete discus-
sion, we refer the reader to [33, Chapter 15].) Given x € Irr(G), we will denote the
central character associated to x by w,: Z(CG) — C. This function is defined by
wy (KT) = %, where IC is the conjugacy class of G containing ¢g and given a set G,
we define &* to be the sum ) o x. Weset Ap 1= w}: Z(FG) — F for B = BI(G|),
as in [33, Chapter 15]. If Y < G is a subgroup, and b € BI(Y'), then the induced
block b¢ is the unique block B so that AY(K*) = Ag(K*) for all conjugacy classes
K of G, if such a B exists. (In this situation, b is said to be defined.) Recall that
A (KT) is given by Ay (KNY)*).

To each ¢ - block B of GG, there is associated an ¢-radical subgroup D called the
defect group of the block, which is unique up to G-conjugacy. If P € Syl,(G), then
the defect of the block (or of any character in the block) is d(B), where |D| = (4(B).
If |[P| = (7, then £"~%P) is the largest power of £ which divides x(1) for all x € Irr(B),
and the height of xy € Irr(B) is the integer h such that y (1), = ¢"~4B)*+"_In particular,
if x(1)¢ = |G|e, then x is said to have defect zero (in this case BI(G|y) is comprised
exactly of x and X) and if D € Syl,(G), then B is said to have maximal defect. We
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will denote by Irrg(G|D) the set of height-zero characters of G which lie in any block
with defect group D and by dz(G) the set of defect-zero characters of G.

2.3.2 Representations of Finite Classical Groups

Suppose now that G is a finite classical group in characteristic p. Then the p-modular
representation theory differs significantly from the /-modular representation theory
for ¢ # p. For this reason, we distinguish between the two cases, and say that X is
a natural- (or defining-) characteristic representation when ¢ = p and a cross- (or
non-defining-) characteristic representation when ¢ # p.

The representations of the finite classical groups in natural characteristic are
closely related to the representations of the corresponding simple algebraic group.
In particular, if G is a finite classical group and G = G¥ where G is a simply con-
nected, simple algebraic group over the algebraic closure F = E and F' is the corre-
sponding Frobenius endomorphism, then the irreducible FG-modules are exactly the
restrictions of a particular set of irreducible FG-modules. To be more precise, these
irreducible FG-modules are of the form M (\), the unique irreducible FG-module with
highest weight A (under the ordering p < A if and only if A — p is a sum of positive
roots), where A = Y. ¢\, 0 < ¢ < g—1, {\;} is the basis of R ®; X (T') dual to
{af} = {20/ (v, )} where IT = {o;} is the set of fundamental roots. Here X (T') is
the set of characters of a maximal torus T" of G. The set of roots ® is obtained as the
set of weights of the Lie algebra of G under the natural action. (Weights are those
pu € X (T) such that there is some nonzero v in the module (here the Lie algebra)
such that tv = u(t)v for all t € T.)

However, these representations can still be quite difficult to find. In [48], Liibeck
finds low-dimensional irreducible representations in natural characteristic for Cheval-
ley groups of small rank. However, for each type, he designates a degree bound and

is only able to find all such representations up to this degree. (Liibeck’s results im-
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prove upon the results of Liebeck (see [37, Theorem 5.4.11]) which do this for classical
groups, up to a smaller bound on the degree.)
For the purposes of this thesis, we will focus primarily on cross-characteristic

representations.

Example 2. Consider the group Spg(q) with ¢ even. Although this group is of
small rank, it is still actually quite difficult to find the character tables. In [76],
Donald White makes significant progress in the cross characteristic case by finding the
decomposition numbers of the unipotent blocks of the cross characteristic /-modular
characters, but even here there were, until recently, a few unknowns in the case
l|(¢g +1). These unknowns have been found in recent work by Olivier Dudas using

the f-adic cohomology of Deligne-Lusztig varieties.

2.3.3 Some Deligne-Lusztig Theory

We now present a short overview of some Deligne-Lusztig theory. Deligne-Lusztig
theory can be thought of as a way to define a “Jordan decomposition” for irreducible
characters into a “unipotent part” and a “semisimple part”, in analogue to the Jordan
decompositions of Lie groups and Lie algebras.

Let G = G for a connected reductive algebraic group G, defined in characteristic
p # ¢, and Frobenius map F', and write G* = (G*)f", where (G*, F*) is dual to (G, F).
We can write Irr(G) as a disjoint union | |E(G, (s)) of Lusztig series corresponding to
G*— conjugacy classes of semisimple (i.e. p’-) elements s € G*. In the case that the
centralizer Cg=(s) is connected (in particular, this is the case if Z(G) is connected),
apart from a few exceptional cases, the Lusztig series £(G, (s)) contains a unique
character with p’-degree, and this character is called a semisimple character. Charac-
ters in the series £(G, (1)) are called the unipotent characters, and there is a bijection
E(G,(s)) «» E(Cg+(s), (1)) such that if x — 9, then x(1) = [G* : Cg+(5)]py1(1). Note
that the semisimple character in £(G, (s)) has degree [G* : Cg+ ()],
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Let x € Irr(G) and assume x belongs to the Lusztig series £(G, (s)) and that ¢ is
the ¢'-part of the semisimple element s € G*. Then x € &(G, (t)) = JE(G, (ut)),
where the union is taken over all {-elements u in Cg-(t). By a fundamental result of
Broué and Michel [12], &(G, (t)) is actually a union of ¢-blocks. Hence, we may view
E(G, (t)) as a collection of ¢-Brauer characters as well as a set of ordinary characters.

Moreover, it follows (see, for example [31, Proposition 1]) that the degree of any
irreducible Brauer character 0 € &(G, (t)) is divisible by [G* : Cg«(t)],». Hence, if
x € &(G, (1)) NIrr(G) and x(1) = [G* : Cg=(t)],, then X is irreducible. Furthermore,
if H is a subgroup of G such that the restriction 0|y to H is irreducible, and [G* :
Ce+(t)]y > me(H), then # cannot be a member of (G, (t)). Also, any irreducible
Brauer character in &(G, (t)) appears as a constituent of the restriction X to G° for
some ordinary character x in £(G, (t)) (see [30, Theorem 3.1]), so (G, (1)) is a union
of unipotent blocks. In particular, if 0|y is irreducible and [G* : Cg«(t)],, > my(H)
for all nonidentity semisimple ¢'- elements ¢ of G*, then # must belong to a unipotent
block.

In [9], Bonnafé and Rouquier show that when Cg+(t) is contained in an F*-stable
Levi subgroup, L*, of G*, then Deligne-Lusztig induction R¥ yields a Morita equiva-
lence between (G, (t)) and &(L, (t)), where L = (L)' and (L, F) is dual to (L*, F™*).

This fact will be very important in what follows.

Remark. As this thesis is primarily concerned with the groups GU,(q) and Spa,(q),
we make a few remarks about these cases. We note that in the case of G = GL,(F,),
the dual group G* is actually isomorphic to G, and G = G¥ is also isomorphic to
the dual G* = (G*)". Therefore, in this situation we can simplify things by making
the substitution G* = G in the above discussion. In this case, we also have that the
center of G is connected, and therefore so is Cg=(s) for any semisimple s € G*.
Also, for G = Spa,(q) with ¢ even, the dual G* is isomorphic to G. This follows
from the fact that the duality switches the root systems of types B,, and C,,, but these
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are the same when our field has characteristic 2. Hence in this case as well, we can
make the substitution G* = G in the above discussion. Moreover, when G = Spg(q),
q even, with G = G and (G*, F**) in duality with (G, F), each semisimple conjugacy
class (s) of G* = (G*)I" satisfies that |s| is odd. Hence by [20, Lemma 13.14(iii)],

the centralizer Cg+(s) is connected.

2.4 Centralizers of Semisimple Elements of Unitary and Sym-
plectic Groups

We present here some well-known results pertaining to the structure of centralizers
of semisimple elements of the finite unitary groups (over fields with arbitrary order)
and finite symplectic groups over fields with even order, as these will be useful in
later chapters. Similar calculations can be found in various papers. For example, in
[56], Nguyen uses analogous calculations to describe the centralizers of semisimple
elements of the orthogonal groups.

We begin by introducing some notation. Let f be an irreducible polynomial of
degree d over a field of size g. If v is one root of f in some extension field of F,, then
the set of all roots of f is {«, a¥, al . aq<d71)}. Note that when the field is size ¢2,

2(d—1)

the roots are «, oﬂ2, ey ad , and the map J;: a — a~? may or may not keep the

set of roots fixed. Thus J; induces an action on the set of irreducible polynomials,
and when viewed as such is an involution. Similarly, the map Jo: o — a~! may or
may not keep the set of roots fixed when the field is of size ¢, and J, induces an
involutory action on the set of irreducible polynomials.

We define J := J; in the case of the unitary groups and J := J, in the case of
the symplectic groups. Let f¥ := J(f) denote the irreducible polynomial of degree

_2(d—1)+1 _ _ _od-1 .
q or ot a™, ...,a”® " in the case J = J; or Ja,

d with roots a9, a‘q3, oY
respectively. We say that a polynomial f over Fp (respectively, F,) is self-check if

f = f and is not self-check otherwise.
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2.4.1 Centralizers of Semisimple Elements of GU,(q)

Note that for an irreducible polynomial f over [F 2, to be self-check, the degree d of f
must necessarily be odd, and the roots must satisfy it =1, Moreover, these two

conditions are sufficient to ensure that f is self-check.

Theorem 2.4.1. Let G = GU,(q), with natural module V = Flz, and let s be a
semisimple element of G. Decompose the characteristic polynomial P(t) € F2[t] of s

acting on V in the form

14 m
P(t) = Hfi(t)ki [T (9:()g;()")"

j=f+1

where each f;, g; is an irreducible polynomial over Fp2 and
o fi=f7, and deg fi = d;
e g #¢gY and degg; = degg! = d;
g; # g7 and degg; g9y =d;

y4 m
[ ] Zj:l kjdj + 2 Zj:£+1 Tjdj ="N.

Then ,
Ca(s) = [[ GUL(¢%) x [] GL., ().
j=1 j=t+1
Proof. Let
P(1) ]
‘/i - V )
i
and

P(t)
Wi = ng(t)g; GE

ThenV =P, VieP ; Wj is an orthogonal decomposition of nondegenerate subspaces

] ).

and s = [[, s|v;-[1 ; Slw; is a product of semisimple elements acting on these subspaces.
Note that since C' := Cg(s) commutes with s, it fixes each of V;, W, for all 4, j. Then
letting Cy := Cspw)(slw) for W =V, or W;, we have C' =[], Cy; x [[; Cw;.
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Claim 1. Cy, = GUy, (¢%).

Write W .=V, d :==d;, k := k;, and f := f;. Then the characteristic polynomial
of s on Wis f(t)F. Let A € Fea be an eigenvalue of the action of s on W. That is,
A is a root of fin F,. If d = 1, then the claim is clear, as W = ker(s — \). So let
d > 2. In this case, the claim follows from the argument in part (B1) of [73, Proof of
Theorem 4.1].

Claim 2. Cy, = GL,,(¢*%).

Now let W := W;, m := r;, d := d;, and g := g;. The characteristic polyno-
mial of s acting on W is (g(t)g” (t))™. Let A € F 4 be a root of g(t), so A is an

eigenvalue of s acting on W. Then A\, A7, \¢", ..., a2

and A4 N9, Y

are all of the roots of g(t)
27U are the roots of g”(t). Let Wi=W ®q2 F,2a, choose a
basis eq, ..., €a,,q for W, and define o to be a Frobenius endomorphism on W given by
oY mie; Y x?gei, where x; € IF 4.

Now we can decompose W as
Wew e .oW,aoW od..oW,

where Wj .= ker(s — A7°"™") and W]’ := ker(s — A"7"""""™). Since s is semisimple,
we know that each Wj and ﬁ//J’ has dimension m. Also, o permutes the Wj and ﬁ//J’
cyclically: U(ﬁ//j) = fVVjH;J(fVVJf) = WJJ(H. Further, Cy fixes each fVV] and W;, and
h € Cy commutes with . Thus the action of h on W is completely determined by
its action on W, ® Wl’ Hence, Cy < G Loy (¢*?).

Let (-,-) denote the nondegenerate Hermitian form on V', which we may view as
a form on W and extend to a nondegenerate Hermitian form on W. Ifwe ﬁ/J] and

uerforlgjgk,then

2(3—1)

(w,u) = (sw,su) = (AT “w,\u) =\

2(3—1)

A (w, u)
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2(7-1)

so that either (w,u) =0 or \? = \"% Since g # ¢, the latter gives a contradic-
tion, yielding

Wit > w;.
j
If w' e fV[7J{, then

2j—-1)+1 2(—-1)+1

(w',u) = (sw', su) = (A9 w', M) = A1 (W' u)

2(j—1)+1

so that either (w’,u) =0or A= = A7 ¢ . The latter case would mean that j =1,

so we have

Wi > w;.
j=2

Then we have

Wi Pwie@Pw,. (2.4.1)

Jj>2
Choose a basis wy, ..., w,, for W, and a basis wh, ..., w, for Wl’ and suppose that
with respect to these bases, h € GL(Wl ® Wl’) acts via the matrix A = (ays) on W,
and via B = (by) on W]. From (2.4.1)), we see that h € GL(W; ® W) is in Cyy, if
and only if

(wy, wy) = (hwy, hw;) = (Z kWi, » bzﬂUE) =) aibf; (wy, wy)
2 ¢ el

for all ¢,5. Since (-,-) is nondegenerate, we see that B is completely determined by

A, s0 Cyy = GL,,(q"%), as claimed.

2.4.2 Centralizers of Semisimple Elements of Sp,,(q), ¢ even

Recall that in this case, an irreducible polynomial f of degree d over F, is self-check
if and only if for every root a of f in the extension field F 4, the element o' is also

aroot of f. Let V = IF?I” be the usual module for G = Spy,(¢) with nondegenerate
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symplectic form (-,-). Fix a basis for V' and let J denote the corresponding Gram

matrix for (-,-).

Theorem 2.4.2. Let G = Spy,(q) with q even, and let s be a semisimple element
of G. Decompose the characteristic polynomial P(t) € F,[t] of s acting on V in the

form

HOENESVER || FAGKE | IORIMGE
i J
where each f;, g; is an irreducible polynomial over F, and
o fi=fY, 1ismnotaroot of f;, and deg f; = d;
o g; # g and degg; = deggy =k,
® 2n=mg+ Y ;dim;+23 kjn;.

Then
Ca(s) = Spmy(q) & @D GU.w, (¢%*) & @D G L, (¢").
i j

Proof. If we let

U = ker(s — 1),
=[],

and
[P

[ L0 T
T Lgg )],
then V = U P,V ® D i W; is an orthogonal decomposition of nondegenerate

subspaces. Note that since C' := Cg(s) commutes with s, it fixes each of U, V;, W; for
all 4,7. As in the case of unitary groups above, let Cy 1= Cspw(s|w) for W = U, V,
or Wj, so that C' = Cy x [[; Cy; x [[; Cw;.

Claim 3. Cy = Spp, (q).
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First note that my is even, since each d; must be even (as 1 is not a root of f;, so
the roots come in pairs A\, A\™') and 2n = mg + >, dym; + 22]. k;jn;. Now, U is the
set of fixed points in V under s and has dimension mg. That is, Cy = Cspw)(slv) =

Cspwy(1y). Therefore, we see that Cyy =2 Sp(U) = Spm,(q).
Claim 4. Cy, = GU,,,(¢%/?).

Write W :=V,, d := d;, m := m;, and f := f;. Then the characteristic polynomial
of s on Wis f(t)™. Let A € Fa be an eigenvalue of the action of s on W. That is,
A is a root of f in E. Then the roots of f are A\, A%, \?", ...,)\qd_l and since A\7!is a
root of f and 1 is not, we have A=t = \?" for some 1 < r < d — 1. But this means
A = X = A0 = X" and therefore 7 = d/2. So A=t = "7,

Now define W 1= W ®q F e and fix a basis ey, ..., enq of W. Define a Frobenius

endomorphism on W by

md md
o E xieil—>g zle;
=1 =1

where x; € F,a. Because s is semisimple, we know that its minimal polynomial
has distinct roots, so (t — A? ") is the largest elementary divisor which is divisible
by (t — A?""), and the eigenspace ker(s — A? ') has dimension m. Thus we can
decompose W

W=W,a. oW,

where Wj = ker(s — )\q‘j_l) and dim Wj =m for j = 1,....,d. Note that ¢ permutes
the TW;s cyclically: O'(/W/j) = /W/J-H, where we define Wdﬂ = W,.

Further, 0 commutes with g € Cyy, since

go (Z $i€i> =9 (Z x?@) = ngg(ei) =0 (Z 901‘9(61‘)> =99 (Z 1701‘6@‘)

and g fixes each W}, since

(5= A7) (gw) = sg(w) = A" g(w) = gs(w) —gA? " (w) = g(s—AT")(w) = g(0) =0
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forweﬁ//j.

Thus the action of ¢ on W is determined by the action of g on /T/Ivfl, as
g(a?w) = o (gw)

for w € Wy. Therefore, Cyy — GL(Wy) = GLy(¢%).

Now, if u € WZ and v € W] with 1 < 4,7 < d, then (u,v) = (su,sv) =
ATy v), which means either (u,v) = 0 or A\ t¢7" = 1. Letting i = 1,
the latter case would imply that A™! = P so j =d/2+1. Similarly, if i = 14d/2,

then either (u,v) =0 or j = 1. This and the nondegeneracy of (-,-) implies that

WIL = @ /WZ and Wler/Q N Wﬁ = 0. (2’4-2)
jAd/2+1
Choosing a basis {wy, ..., w,, } for W, gives a basis {v; = 0%/?(w;)} for WHd/Q, and
we have
(0"11}7;, O'Uj) = (wi, ’Uj)q,
SO

a/
(vi,w;) = (0% 2w;, 0 ?v;) = (wi,v;) ™"

Because of this and (2.4.2)), we see that (-,-) determines a nondegenerate hermitian
space of dimension m over F 2.2 = Fa.

Then h € Cy if and only if (w;,v;) = (hw;, hvj) = (O, akiwe, Y, a‘éjmw) =
Dan, 2 aij (wg,v¢) where h acts by the matrix A = (a;;) with respect to the basis
(w;) and as (a?j/Q) with respect to the basis (v;). That is, h € Cy if and only if
h € GU,,(¢%?), which proves the claim.

Claim 5. Cy, = GL,,(¢").

Now let W := W, m = n;, k := k;, and g := g;. The characteristic polyno-
mial of s acting on W is (g(t)g” (t))™. Let A € Fu be a root of g(t), so A is an
eigenvalue of s acting on W. Then A\, A%, A\, ..., A? " are all of the roots of g(t) and
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AL A7 A" are the roots of g“ (t). As before, let W=Ww ®q Fr, choose a

qr

basis eq, ..., €a,,, for W, and define o to be a Frobenius endomorphism on W given
. q

by o: > xie; = Y xje;, where x; € Fu.

Now we can decompose W as
Wew e .oaWaWa.. oW

where Wj = ker(s—A\? ") and /I/IZ/ .= ker(s—A"""). As before, since s is semisimple,
we know that each Wj and W]’ has dimension m. Also, o permutes the Wj and /V[V/]’

cyclically: O’(fV[\/jj) = WjH;U(WJ{) = fV[7jf+1. Again, Cy fixes each fV[7j and fV[7jf, and
h € Cy commutes with o. Thus in this case, the action of A on W is completely
determined by its action on /V[vfl &) Wl’ Hence, Cy < G Loy, (¢%).

Moreover, if w € /V\V/1 and u € Wj for 1 < j <k, then
(w,u) = (sw, su) = Aw, A u) =X\ (w,u)

so that either (w,u) = 0or A¥ ' = A~ Since g # ¢, the latter gives a contradiction,

so we have

Wit Pw;.
J
Ifu € W]’, then
(w,u) = (sw,su') = Aw, A7 W) =X A" (w, )

so that either (w,u/) = 0 or A = A? ", The latter case would mean that j = 1, so we
have
Wi > w;.
Jj=2

Then since (-, ) is nondegenerate, we have

WinWi=0 and Wi =@wW,aPWw,. (2.4.3)

i j>2
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Now we choose a basis wy, ..., w,, for W, and a basis wh, ..., w,, for W{ Suppose h
acts by the matrix A = (ays) on W, and by the matrix B = (bge) on /V[vfl’ with respect
to these bases. From ([2.4.3)), we see that h € GL(Wl @ Wl’) is in Cy if and only if

(wy, w;) = (hw;, hwy) = (Z (g W, Zb&w2> =) anibe; (wy, wp)
3 ¢ .

for all 4, j. Since (+,) is nondegenerate, this means that B is completely determined
by A, so Cy = GL,,(¢*), which completes the proof of the claim, and therefore of

the theorem.
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CHAPTER 3

BOUNDS FOR CHARACTER DEGREES OF UNITARY
GROUPS

Given a finite group G, let b(G) := max{x(1)|x € Irr(G)} denote the largest irre-
ducible complex character degree of G. (Note that b(G) is also an upper bound for
the largest absolutely irreducible degree in characteristic £ # 0.) One problem of in-
terest in the representation theory of finite groups is to determine information about
b(G). We may ask whether we can find an explicit formula for this number, or if we
can bound it somehow. Of course, nothing can be said in general, so we restrict our
attention to the case of simple groups and groups closely related to simple groups. It
remains an open question to determine b(G) explicitly for many nonabelian simple
groups.

Certainly we know that b(G) < /|G| and that b(C,) = 1 for a cyclic group
C,,, and we can use the Atlas [18] to obtain information about the character degrees
for sporadic groups. It is well-known that the irreducible complex representations
of S, are labeled by partitions A - n of n, and that the degree of the character
corresponding to the partition A is given by the hook-length formula. However, it is
still a difficult question to determine from this formula which partition actually yields
the largest degree. The best result regarding this problem is due to Vershik-Kerov
[74] and Logan-Shepp [46], and says that there are universal constants 0 < A < B so
that

exp(—By/n)Vn! < b(S,) < exp(—Ay/n)Vnl.

The question we are concerned with is how b(G) can be bounded for G a simple
group of Lie type. For exceptional groups of Lie type, F. Liibeck [49] has computed

all character degrees, so we are interested in the case of finite classical groups. G.
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Seitz [64] has shown that for groups of Lie type defined over a field of characteristic
p with ¢ elements, b(G) < |G|, /|To|, where T} is a maximal torus of minimal order.
Moreover, he has shown that for ¢ sufficiently large, this is actually an equality. For
this reason, we are particularly interested in the case that ¢ is small. For example, if
G = SL,(2), then Ty = 1, so in this case, Seitz’ bound gives us no more information
than the trivial bound \/@ .

Now, viewed as polynomials in ¢, Seitz’ bound has the same degree as |G|, = St(1),
where St is the Steinberg character for (G, which suggests that we consider the ratio

bE) — MY Note that this ratio is always at least 1. Fixing ¢, we may ask whether

St(1)
b(G)
St(1)

there is some universal constant C' such that < C for any n. It turns out that
the answer to this question is no. In fact, the main goal of this chapter is to prove

the following theorem:

Theorem 3.0.3. Let G be a finite unitary group (i.e. G = GU,(q), PGU,(q), SU,(q),
or PSU,(q)). Then

b(G)/2 <2 (log,(n(g* = 1) +¢%) "

max {1, i (logq((n - 1)(1 - q—2) + q4))2/5} < W

Note that in the case of finite unitary groups, St(1) = ¢™"~1/2. We also note
that similar bounds are found for the other groups of Lie type in [42]. This shows
that if we fix ¢, then as n grows infinitely large, so does the ratio gg—ﬁ))

In the remainder of the chapter, we prove Theorem beginning by showing
that the degree of the Steinberg character of G is larger than that of any other

unipotent character.

3.1 The Largest Degree of a Unipotent Character in Finite
Unitary Groups

Let ¢ be a power of p and let G be GU,(q), SU,(q), PU,(q), or PSU,(q). The unipo-
tent characters of G are in one-to-one correspondence with partitions « of n of the

form o = (g, ..., ) with 1 < a3 < ay < ... < ay,. Denote \; := o + i — 1 for
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1 <7 < m. Then the unipotent character corresponding to «, which we denote by

X%, has degree

wry @+ D)@ = 1) (g" = (=1)") [T (g™ — (=1)NH A ghv)
X(1) = (m—1>+<m—2>+m '
g\ 2 2 TL T2 (* — (=1)F)

(See, for example, [16]).

(3.1.1)

The Steinberg character is the unipotent character St corresponding to the par-
tition (1,...,1), which has degree St(1) = ¢""~Y/2 = |G|,. In this section, we show
that St(1) > x*(1) for any unipotent character y* # St of G. (We note that this is
also shown in [42] using a different approach.)

The following inequalities, which can be found in [73], will be useful in what

follows.

Lemma 3.1.1. Let 2 < a; < ag < ... < ag be integers and €1, ...,e0 € {1, —1}. Then

1 @ o (g™
1_(g"te) (@ +e)
2 qa1+a2+...+ae

Theorem 3.1.2. Let G = GU,(q), SU,(q), PU,(q), or PSU,(q). Let x € Irr(G) be a
unipotent character of G which is not the Steinberg character, St. Then x(1) < St(1).

Proof. We want to show that if « is a partition of n of the form above and «a #

statement can be verified by direct calculation. So suppose that the statement holds
for unitary groups of degree smaller than n. We will use St,, to denote the Steinberg
character for a unitary group of degree m. Note that if & = (n), then x*(1) = 1,
so assume that a = (aq,..., ) with m > 1 and «,,, > 1. Let § be the partition
of n — ay, given by f = (aq,...,am—1). Then by induction, we can assume that
x?(1) < Stp_aq, (1) = gr=am)n=amn=1/2 Thys, we have
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We will show that f(«) := X5 q("faﬁii’:;”;*”” is smaller than 1.

xA (1)
We have

[T (@ = DY T, T (@ — (=DM eg™)

T )
q 17 TT (g% — (—1)%)
and
e - e = COO IS T = (DY)
m—2
q( 2 ) [T T (= (- 1))
so that
) Tay (@ =~ (DO @ — (1)
XA (1) m— 1
q( ’ ) (g — (~1)F)
N U Y il Gt 000 § L TS (g™ = (1))
m—1
q< : ) (gt = (1))
Now,
Y /\k:m_ (g +k—1) :m_ ak+m_ k—(m-—1)= (n—am)—l—m_ k
and
(m2‘1 ) — (m—1)(m —2)/2 = >k
so that

X1 @ o (@ = (DR T (@ = (1))
x(1) (g — (—1)k) '
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Note that ¢"(»~D/2 = H?;ll ¢' and ¢(n—om)(—am=1)/2 — H?;lam_l q*, so
0O T 1@ = (CDW) T (@ — (= 1))
T (¢F = (DM Tz, ¢
e, 41 (6" = (CDP T (@ = (=1)A )
| CLECEVLON | L

(@ Amet — (—1) A TR (68— ()9 T (M = (1))
(+ DILZ(6" = (DO TR0 a1

2 [Ty a1 @ Ty @

H221 q* Hz;i_am.;_l q*
_ 23qR

fla) =

where R =n 4+ 377 On — M) — 07 ke

Note that the second-to-last inequality follows by Lemma since \,, — Ay =
am—ar+m—k>2whenk<m-—1, A\, — e >\, — Ap_r,andn—a,,, +1 > 2
since we assume m > 1. Moreover, if A\, — \,,_1 = 1, then we have that (¢*=*m-1 —
(=1)Am=Am-1) /(g + 1) = 1 = ¢* =1 /q and otherwise, we have \,, — A\, > 2 for
k<m—1, and clearly 1/(¢+ 1) < 1/q.

Now, we have

m—1 m—1
A — M) = (0 — ap +m — k)
k=1 k=1
m—1 m—1 m—1
= Oy, — o + 14
k=1 k=1 (=1
m—1
= (m—l)am—(n—am)+Z€
=1
so that
m—1 Am
R = n+mam—n+Z€—Zk
(=1 k=1
am+m—1
= ma, — Z k=may, —(m+m+1)+(m+2)+...+(m+a, —1))
k=m

am—1 am—1
= may, — (mam—l— Z k) = — Z k=—(am—1)a,/2
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Thus we have f(«o) < q(amfﬁ <1 for oy, > 3.

Now suppose that «,, = 2. This means that « = (1,1,...,1,2,...,2). Say j is the
first position for which a; = 2. That is, oy = 1 for £ < j and o, = 2 for k > j. Thus,
N =ifori<jand \; =i+1fori > j. Also,n=2m—j+1land n—a,, =2m—j—1.
In this case, we have

a1 (@ = (DM THZ1 (7% = (= 1)“"“)1_[2";1((1“‘“ — (=1)rmA)
Hk:l ¢ — (=1)F) Hk n— am+1q
[ a1 (@ = (DM Tt (@ = (DO TS (@™ = (=)™ F)
(@ = (DM T, €
Hz:n—am+1(qk - (_1)k) g:lj(qZ - (_1)4)
(P — (1)) Ty ”(qk—(—l)’“)Hk n—am+1 "
[T (d" —(— )T (¢ - (—1)’“’)
(g — (=1)A ) ”(qk ( 1) ) (e
("' = (=)™ ((J” (D" [ (¢ = (1))
¢ — (1)) Ty ](q —(—1)k)
- (=
1

fla) =

(
("' = (=D)"H)(g" 1) )T (4" = (-1))
e s C VS | e ’( b= (=1DF)
("' = (=D (e" (— )")

(T = ()T — (1))

So we see that

@ = (S — (1)
R e e e e e )

If 2m — j is even, then we have

2m—j _ 1 2m—j+1 1
f@) = e T A
q2m7] (qm+1 _ (_1>m+1)<qm+17] _ (_1)m+1,J)
g2 (2m—=i)+1
<
qu*j(qm+1 _ (_1>m+1)<qm+1fj _ (_1)m+1—j)
_ g2t
<qm+1 _ (_1)m+1)<qm+1fj _ (_1)m+1—j)
9g2m—i+1
< Py by Lemma |3.1.1

= 2/qg< 1L
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If 2m — j is odd then j is odd, and we get

(@™ 4+ 1)(g#m 7 = 1)
@i (gt — (=1)mHL)(gmHtd — (=1)mtid)

fla) =
Note that since j is odd, m + 1 — j is the opposite parity of m + 1. Consider (g™ —

(—=1)™ ) (g1 — (=1)™*177). We have that this is either (g™ — 1)(¢™" 7 + 1)
or (qu + 1)(qm+1*j —1). In the first case, we have

<qm+1 o 1)<qm+1fj 4 1) — q2mfj+2 . quj+1 + qm+1 -1 > q2mfj+2’
where the last inequality is because m — 7 + 1 < m + 1. In the second case, we have

. 2 .
<qm+1 + 1)(qm+1—j o 1) > §q2m+2—j7

unless we are in the case ¢ = 2 and j = m. This inequality is because

(@™ + DT 1) ¢t e ) gt
qm+1qm+1—j qm+1qm—j+1 - qm+1—j

Y

which is minimized when ¢™™'77 is minimized, so is at least 2/3 unless ¢" 7! = 2.
Now, this means that, unless ¢ = 2 and m = j (a case in which explicit computa-
tion yields the result),

2m—j 1 2m—j+1 2m—j 1 2m—j+1 2m—j 1
fla) < 24+ Dl ) _ 3@ +1)(q ) _ 3@+

2q2m—i q2m—i+2 2q2m—i q2m—i+2 2q2m—i+1

since for z > 4 and ¢ > 2, 3x + 3 < 2gx. (Note that here we've used the fact that
2m—j=n—1>2and g > 2.)

Thus we have shown that in any case, f(a) < 1, and therefore that the Steinberg
representation has larger degree than any other unipotent representation for GG a finite

group of unitary type.

3.2 Proof of Theorem [3.0.3

In this section, we prove our bounds for the ratio gg_(Gl)) in the case that GG is a finite

unitary group. For more clarity, we may sometimes write Stg for the Steinberg
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character of the group G. Throughout this section, let ¢ be a power of the prime
p. Note that if for G = GU,(q), we have b(G)/Stg(1) < C for some bound C, then
the same is true for G = SU,(q), PSU,(q), or PGU,(q). Therefore, to find an upper
bound for b(G) /St (1) for G any of these finite unitary groups, it suffices to find one
for G = GU,(q).

Lemma 3.2.1. Let G = GU,(q), and denote by b(G) the largest irreducible character
degree. Then

e = k{_%ﬁp

where P is
- kj i —id;\ TT™ rj —2id;
[ TL2 (1 — (=g ) TTy T (1 — g %)

and the maximum is taken over possible characteristic polynomials

175 11 (e
=041

i=1

for semisimple elements. Here f; = fY and g; # g, in the sense of Section m

and d; 1s the degree of f; or g;, depending on the index 1.

Proof. Since G = G* is self-dual, we know from Lusztig’s correspondence that

) — e {102l v 0}

qn(n—l)/Q o qn(n—l)/2

where s is a semisimple element of G and 1) is a unipotent character of Cz(s). More-

over, from Section we know that the centralizer of s is of the form

L m
Co(s) = [[GU(¢*) x T] GL.(¢*%),
j=1

j=0+1

where the characteristic polynomial of s acting on s is

0 m
f(t) = Hfi(t)ki H (g;(t)g; ()" )"

j=f+1
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with f; = f¥ and g; # g/, deg f; = d;, deg g; = deg g]‘-/ = d;. Note that 25:1 k;d; +
23 rids =

Now, by Theorem we know that this is maximized when ¢ = Stc ), the
product of the Steinberg characters for the factors GUy,(¢%) and GL,,(¢*¥). So we

see that
bG) _ |Gl Hﬁzl gk s/ gm0
qn(nfl)/2 s ‘CG(S)lp/qn(nfl)/Q
We have
n—1
Gly = (" = (1))

1=0
j=1

= TI<TIa - (-1
j=1 j=1

= qn(nfl)/%n H(1 _ (_1)jqu)
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and
¢ kj—1 m. - Tj—
|CG(S)‘p’ — H H( dj(kj—1) _ H—k H H 2d;(r;—i) _ )
j=1 i=0 j=0+1 i=0
L kj . . m Tj
= TITIwe" -0y I TJ@ -1
j=1i=1 j=0+1i=1
¢ kj m ¢ kj m rj
— H quij H Hq2zd HH 1 s 7 —d 1)' H H(l _q—dez)
Jj=1li=1 j=Cl+11i=1 Jj=1li=1 j=t+1i=1
L k;
— H ikj(k;j—1)/2+d;k; H 2d;rj(rj—1)/2+2d;r; H H 1 o z —d; z)
q
Jj=1 Jj=0+1 j=1li=1
] .
: H [T =g 2%
j=0+1i=1
L k]
_ qu.:l kjd;j+230, ) ryd; qu kj(kj—1)/2 H q2d T rﬁ1)/2H z —d; 2)
j=0+1 j=1li=1
H H —2d 1
j=l+11i=1
¢ kj m T
_ dikj(k;—1)/2 2d;r;(r;—1)/2 1 —d; 1 —2d 1
_qu [T eoe=2 T 0 - o I To-
j={+1 j=1li=1 j=£+11i=1
Thus we see that
|G, H§:1 qdiki(kj=1)/2 Ty % iTi (ri=1)/2 [T, (1= (-1)q79)
oty T T (1 — (- 1)ia ) TT g TL (1 — 4 2%%)

which completes the proof.

]

The following bounds will be very useful in the remainder of this section and are

proved in [42] Lemma 4.1].
Lemma 3.2.2. Let ¢ > 2. Then
o [[2,(1—q7") > exp(—a/q), where a = 21n(32/9).

o TI5,(1—q7) > 9/16.
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o [[2.(14¢7%) < 16/15.
o 1 <J[L,(1—(-1)q") <3/2.

Lemma 3.2.3. Let k be an odd positive integer, £ an integer with ¢ > k, and q an
integer with ¢ > 2. Then Hf:k(l —(=1)ig") > 1.

It will be useful to estimate the number of monic irreducible polynomials of a

given degree over a certain finite field, which is the purpose of the next two lemmas.

Lemma 3.2.4. Let py(q) denote the number of monic irreducible polynomials of degree

d > 2 over F,. Then
d d

< pale) < L.
Proof. Write py := pa(q). Given a monic irreducible polynomial f € F,[t] of degree
d, we know that f has d distinct roots, each of which are elements of F 4. But the
number of elements of F« which are not contained in any proper subfield is at most
q¢® —1. Thus dpg < ¢%. Moreover, the number of elements of [F,a not contained in any

proper subfield is at least [Fya| — 3 ; [Fou»| where the sum is taken over the distinct

primes which divide d. But this means
d—1

dpa>q'=> ¢ >q¢"=> ¢ =q¢"—(¢"=q)/(g - 1).

pld r=1
Now, we have that 2(¢? —q)/(¢—1) < ¢ —q < ¢* for ¢ > 3. Thus (¢ —¢q)/(¢—1) <
q*/2. So ¢ = (¢" —q)/(q—1) > ¢" — ¢*/2 = ¢*/2 for ¢ > 3.

Now let ¢ = 2.
/2
dpa>q" = ¢ >q¢" = ¢ =q¢" = (" —a)/(g-1)
pld r=1

We have 2(¢¥/**! — q)/(q — 1) = 2(24/**! — 2) = 4242 — 1) = 2422 _ 4. But
24 — (24/242 _4) is positive for all d, so (2%/%F! —2)/(2—1) < 2¢/2, which means that
24 — (24241 _2)/(2 — 1) > 27 — 2¢/2 = 24/2  and this completes the proof.
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Lemma 3.2.5. Let ng denote the number of pairs {f, f*}, where f is a monic ir-
reducible polynomial in Fp2(t] of degree d such that f # f*, where f = Ji(f) as in
Section [2.4.1. Then if d > 2,

except in the case (q,d) = (2,2).

Proof. First note that the upper bound is clear from Lemma [3.2.4] since 2n, <
pa(q*). Moreover, a monic irreducible polynomial f € F[t] satisfies f = f¥ if and
only if deg(f) is odd and any root « satisfies ittt =1 (see, for example, [73], Part
(B1) of the proof of Theorem 4.1]). Thus we see that for d even, 2n; = py.

First, consider the case that d is odd. If d = 3, then F,6/FF 2 has no intermediate
fields, and therefore

2dng =6n3 > ¢ -~ - (¢"+1)=¢" - - -1,

which is larger than 4¢°/5 for ¢ > 3. Moreover, if ¢ = 2, we know that every
element of F} satisfies a® = 1, so in particular a?** = o = 1. Thus in this case,
2dng = 6nz > ¢* — (¢? +1) — 1 =¢° — ¢ — 2 = 54 > 4(2%)/5 = 4¢*!/5. Then for
d = 3, the statement holds.

Now let d > 3 be odd. Subextensions of [ 2a containing g are of the form

Fg2m where m|d. The number of o € Fj2a which are roots of irreducible degree-d

q

polynomials over F 2 (so are not found in a proper subextension) and satisfy it =1

is therefore

Ld/3]
2ng > =D "= (" + 1) = = ' 1+ D)
m|d m=1

q2( ld/3]+1) _ q2 )

2d d
- 1
q (q+ T

since we are assuming d is odd.
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2(Ld/3J+l)_q2

Thus it suffices to show that (qd +1+1 ) ) < ¢*?/5. We have that for

q23,
- <qd s qQ(Ld(/;Jil)l— qz) — 5¢0 45+ Q2_5_1(q2(Ld/3J+1) — @)
< 5¢% 45+ @B _ 2 since ¢ > 3
< 5t +5+q¢*—¢* since |d/3] +1<d/2ford>4
< 6q% since 5 < ¢* for ¢ > 3
<

Now suppose ¢ = 2. Then
2(ld/3]+1) _

¢ —1

q

q° d 5,4 10 4 2d
5(qd+1+ )§5(2)+5+§2 —20/3<§2 <2
where the last inequality is because 10/3 < 4 and d + 2 < 2d for d > 2.
Thus the claim holds in the case that d is odd.

Now suppose d > 2 is even. Then 2ny = pg, so

d d & 2 2d g2 — 2d q d
2dng > ¢° —Zq2m2q2—zqm:q —qg—_l:q _q2_1<q_1).
m|d m=1

Thus it suffices to show that q;’—il(qd — 1) < ¢*1/5. For ¢ > 3, we have

2
q
5 (q2 —(a" - 1)) <¢*(g" = 1) < ¢ < g¥

since d > 2. If ¢ = 2, then
2
q d 204
5 -1 | =—=—(2-1).
(Zoa ) =5 -

But 22¢ — %(Tl — 1) is positive when d > 3, so this completes the proof.

]

Theorem 3.2.6. Let G be of unitary type (i.e. G = GU,(q), PGU,(q),SU,(q), or

PSU,(q)). Then
b(G)

1.27
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Proof. We may assume that G = GU,,(q), so from Lemma/3.2.1| we want to maximize

_ [T, (1—(~1)q) |
[T T2 (1= (1)) [T7 ey TT (1 — g %)

Now, the numerator is

g =g +a)0 - ) [JO - (1),

It is clear that

n

[Ta-vig™ ﬁ1+q—l ﬁl—i—q_l ) < 16/15
i=5 =5

i=5
by Lemma The function (1 +z7)(1 —272)(1 +272)(1 — 2™*) is decreasing on
[3,00), and is smaller at = 2 than = = 3, so we have that (1 + ¢ ')(1 — ¢ ?)(1 +
g 3)(1—q*) < (4/3)(8/9)(28/27)(80/81) < 1.214 and therefore the numerator is no
more than 1.3.

Now, H§:1 Hfil(l — (=1)ig7%) > 1 by Lemma 3.2.2 so we have

< 1.3
P = T, T2, (1 — g2
j=t+1 1li=1 q
Note that
m o0 m
H H 72zd H H(l _ q72zdj> > H exp(—ozq’wf)
j=0+1i=1 j=0+1i=1 j=t+1

by Lemma Let by be the number of distinct irreducible polynomials g of degree
d over F 2 such that g # ¢g* and g occurs in the decomposition of the characteristic
polynomial of the semisimple element. Then by < ¢??/d. Note that Yo bad < m
since the characteristic polynomial must have degree n. Letting L be the natural log

of the denominator, we have

—L/a < zm: q_2dj = Zn: b2—dq_2d.

j=0+1 d=1
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Note that the by/2 comes from the fact that each index j represents the product
g;j - gj/, so two distinct polynomials with g # ¢¥ occurring in the decomposition.
Replacing by/2 with real numbers x4, we wish to maximize Y -, z4¢~>* subject to
the conditions Y o~ zqd < n/2 and 0 < z4 < ¢*/2d.

Now there is some dy such that this is optimized when x4 = ¢*¢/2d for d < dy and
xq =0 for d > dy + 1. That is, d is the largest integer such that

do
S (¥/2d)d < /2,
d=1
or equivalently,
do 2(do+1) 2
2 _ (g )
nz Z T = q>—1 ’
d=1
and therefore
log, (n(¢®> — 1)+ ¢*
do+1< gq( (q ) ! )
2
Now, we have
do+1 dotl | dotd 1
Do S D gy = g 2 i< 50 nido )
—1 d=1

so that
P < (1.3)e ! < (1.3)eze(1+ndot) — (1.3)e/2(dy + 1)*/2.

Finally, this yields

< 2 (log,(n(q* — 1) + ¢*)) "™,

1 2 1) + 2 1.27
p <y (0
as desired.

]

Let G be a finite group with normal subgroup N. Let x € Irr(G) and define the
constant k% (x) to be the number of irreducible constituents of x|x. The next lemma

describes the value of k§(x) in the case that G/N is cyclic.
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Lemma 3.2.7. Let G be a finite group with normal subgroup N such that G/N is
cyclic. Then

v (x) = #{\ € Ie(G/N): Ax = x}.

Proof. Let ¢ be an irreducible constituent of yy and set T = Ig(¢). Then by
Clifford theory, we know that xyy =€ EEF w9 so that

kS (x) = e[G: TT. (3.2.1)

Moreover, since G/N is cyclic, we have that e = 1 (i.e. ¢ is extendable to T)
(see, for example [33], corollary 11.22). Now, Gallagher’s theorem implies that the
[T : N] distinct irreducible constituents of ! are of the form 63 where 0|y = ¢ and
B € Irr(T/N). Then the irreducible constituents of ¢ are of the form (86)¢ (see, for
example, [33], theorem 6.11). But since G/N is cyclic, we know that any irreducible
character of T'/N is extendable to G/N. (To see this, note that the character values
at the generator of T'/N are [T : N]th roots of unity, obtained by taking powers of
the [G : N|th roots of unity found as character values of the generator of G/N.) In
particular, write 3 = A|p for some A € Irr(G/N), so (80)¢ = (Ar0)¢ = X\. But of
course,  is a constituent of ¢, so that we can write any other irreducible constituent
of % as X' for N € Irr(G/N).
Thus we have that the number of irreducible constituents of ¢ is
(G )| ) G2 N]
FDNEm(G/N): oy =x} A (G/N) Ay =}

But also, the number of irreducible constituents of ¢ is [T : NJ, since p%(1) =

e()[G: N] =[G : N|x(1)/|[G:T] =[T: N]x(1) and each irreducible constituent of

©%(1) has degree (1) (since it must be equal to x when restricted to N, by Clifford’s
theorem). Thus we have shown that

(G : N

#{A e Ir(G/N): Ax = x} = TN

- [GT]a

~

which completes the proof by (3.2.1)).
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]

Now, we wish to find a lower bound for b(G)/q""~Y/2 given that G is of unitary
type. To do this, we will exhibit a character degree which occurs simultaneously for
each of GU,(q), SU,(q), PGU,(q), and PSU,(q) by finding a semisimple element s €
GU,(q) which lies in SU,(q) such that the character x € Irr(GU,(q)) corresponding
to ((s),St(Cqu,(q)(s)) is trivial at the center and remains irreducible when restricted
to SU,(¢q). In the following discussion, let G := GU,(q) and S := SU,(q). From
Lemma [3.2.7, we see that for y € Irr(G), the restriction x|g is irreducible if any only
if there is no nonidentity A € Irr(G/S) such that Ay = x.

Note that letting G = GL,(F,) and F the Frobenius map F': (a;) — T(al)™!, we
can write G = G¥'. In this case, G* = G and G = G*, and since Z(G) is connected,
we know Cg(s) is also connected for any semisimple s € G. Hence it makes sense to
discuss the semisimple character ys of G corresponding to s. We may think of x, as
the character corresponding via Lusztig’s correspondence to the product of principal
characters in Cg(s).

Now, characters in Irr(G/S) are precisely the characters y,; for t € Z(G). But
given a semisimple s € G and t € Z(G), the set of characters £(G, (s)) - x: is equal
to the set of characters £(G, (st)). (See, for example [20, Proposition 13.30].) Then

since Irr(G) is the disjoint union,
(@) = | | (G, (s)),

over semisimple conjugacy classes (s) of GG, to achieve our goal it suffices to choose a

semisimple s lying in SU,(q) such that s and st are not conjugate for any t € Z(G).
Theorem 3.2.8. Let G = GU,(q), SU,(q), PGU,(q), or PSU,(q). Then

e > 1 (g, (0 = D1 =)+ )",
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Proof. Let ng be the number of pairs of monic irreducible polynomials f € F[t]
of degree d such that f # f“. Let pg be the total number of monic irreducible
polynomials of degree d over F,.. By Lemma [3.2.5, we have that

Suppose that n —2 < 6ns. Then in particular, n —2 < ¢®, so n —1 < ¢°. In this case,

the statement is evident, since

i (logq((n . 1)(1 . q72) + q4))2/5 < i (logq(q6(1 . q72) + q4))2/5
- i (log, (" — g* +¢*))*”
L 25
= 1 (6)”
_ LG b

Thus we may assume that n — 2 > 6ng. Let dy be the largest integer such that

n—2>m:=2 230:3 dng. Then in particular,

do+1 do+1 do+1
(@ =) (-1) =D =) P+t > 2D dnat gt > n—2+¢"+¢".
d=1 d=3 d=3

Since 2dng < ¢*? is a strict inequality, we see that this implies
(@ =) /(¢ 1) 2n—1+¢ +q",

SO

PP > -1+ +) P -+ =n—-1)( 1)+,

and ¢2(dot+1) > (”_1)(‘2#. Thus we have

1> log,((n — 1)(; —a)+d) (322)

Consider the polynomial i := [T, [T, (g:97) € Fp[t], where the g;gf for i =

1,...,nq are all the pairs of non-self-check monic irreducible polynomials of degree
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d. Let a be the product of the roots of h. Note that 4™ = 1, s0ot —a ! is a
self-check monic irreducible polynomial. (Indeed, we may write & = A9 where
A € Fgp is the product of the roots of the g;’s, so A™7 is the product of roots of
g7’s. Hence since \""' = 1, we see a?"! = 1.) Choose a semisimple element
s of GU,(q) with characteristic polynomial (¢ — 1)"~™ (¢ — a~1)h(t). Note that
det(s) = 1, so s € SU,(q). Moreover, s is not conjugate to sy for any nontrivial
vI € Z(GU,(q)), so by Lemma and the discussion following it, the character
x corresponding to ((s),Stcy,, (s)) in Lusztig correspondence is irreducible when
restricted to SU,,(¢). (Indeed, spec(ys) = yspec(s), so if a # 1, then  has multiplicity
n—m — 1 > 2 in spec(s7y), but multiplicity at most 1 in spec(s). If & = 1, then v
has multiplicity n —m in spec(sy), but multiplicity 0 in spec(s). In either case, s and
sy have different eigenvalue multiplicities, so cannot be conjugate.) Moreover, since
s € SUL(q) = [GUn(q), GU,(q)], x is trivial at Z(GU,(q)) (see [54, Lemma 4.4(ii)]), so
X can be viewed as an irreducible character of G for G = GU,(q), SU,(q), PGU,(q),
or PSU,(q).
In the case that a = 1, the centralizer of s in GU,(q) is

do
Cav@)(8) = GUn_m(q) x [ [ GL1(g**)"
and if o # 1, the centralizer is
Cavni)(5) = GU,_pn1(q) x GU(q) X H GL1(g*)"

Thus in the first case,

x( [, (1 - (=)'
qrin /2 [L (1= (=1)ig™) 30:3(1 — g )
H?:n—m—l—l(l —(=1)'q™")
30:3(1 — g 2d)na
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In the second case, we get
b(G) X I (1= (=1)'¢)
n(n—1)/2 = n(n—-1)/2 —1\ T ™1 i —i) T —2d\n
q q (1+q )Hzl (1= (=1)q™) d:3(1_q )
[T, (= (=1)'¢)
(14 ¢ [Tis(1 — g2

Thus since the second case gives a smaller bound, it suffices to consider only the

second case.

Note that [} (1—(—1)'q™") > 15/16 by Lemma3.2.3| since we know n—m > 3

=n—m

and if n — m is odd, then the product is at least 1, and if n — m is even, then the

product is at least (1 — ¢~(»=™)) which is at least (1 —27%) = 15/16.
Now taking the natural log and noting that 1/(1 —z) > e” on 0 < x < 1, we get

= 1 & 2d & 2¢% 2d _ 2 o1
1 (P B ST (= B Sl SEPR R oF

d=3 d=3 d=3 d=3
do 2/5
2 1 2 3 do+ 1
This yields
ﬁ 1 N (do + 1)2/5
_ 4—2d\n 3/2 :

s (L= g2 e’/

Then from (3.2.2)), we have

be) 15 (log((n—1)(1—q*)+q)\*
qn(n—l)/Q 16(1 +(]_1) 2e3/2

3 (logq((n - 1)(1 — q_2) + q4>)2/5

13 1+qt

> 1 (log,(n — 1)(1 %) +¢)"",

which completes the proof.

O

Remark. Note that if (r,d) € Qsg X Zs is such that ng > ﬁ for d > ¢, then an
argument analogous to the proof of Theorem shows that for G finite of unitary
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type,
b(G) 15 (log,((n — 1)1 —g2) +¢* %)
gn(n=1)/2 - 16 - C, 1+ ,

with C, :=2" - ¢" a1 1/d,

Recall that we are particularly interested in the case that ¢ is small. For this

reason, we note the following corollary.

Corollary 3.2.9.

s MPSUMR) _

STCESVE 2 (log,(3n + 4))1‘27

(logy(3n/4 +19/2))

e~ =
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CHAPTER 4

THE BLOCKS AND BRAUER CHARACTERS OF Spg(2%)

In this chapter, we discuss some aspects of the blocks and Brauer characters of Spg(2%)
that will be useful in Chapters [5] and [/l We begin in Section by showing that
Bonnafé and Rouquier’s [9] results apply to the centralizers of nontrivial semisimple
elements of G = Spg(2%), which yields a Morita equivalence between blocks of G and
blocks of these centralizers. In Section [4.2] we use this information to prove Theorem
[1.1.1] which describes the low-dimensional representations of G. In Section [4.3], we use
D. White’s [76] results to describe the Brauer characters of G which lie in unipotent
blocks. Finally, in Section [4.4] we give the distribution of ordinary characters of G
into non-unipotent blocks and use the results of Section and results of various

authors to describe the Brauer characters in these blocks.

4.1 On Bonnafé-Rouquier’s Morita Equivalence

Recall that in [9], Bonnafé and Rouquier show that when Cg+(t) is contained in an F*-
stable Levi subgroup, L*, of G*, then Deligne-Lusztig induction RY yields a Morita
equivalence between &(L, (t)) and &(G, (t)), where L = (L)* and (L, F) is dual to
(L*, F*). Also, recall that when G' = Spg(q), ¢ even, with G = GF and (G*, F*) in
duality with (G, F), each semisimple conjugacy class (s) of G* = (G*)F" satisfies that
|s| is odd. Hence by [20, Lemma 13.14(iii)], the centralizer Cg+(s) is connected.

While applying Deligne-Lusztig theory to Spa,(¢) with ¢ even, it will be convenient
to view G = Span(q) as SO2,41(q) = Span(q), so that G* = Span(q).

Lemma 4.1.1. Let G* = Spg(q), q even, with G = GY and (G*, F*) in duality
with (G, F). The nontrivial semisimple conjugacy classes (s) of G* each satisfy

Cg(8) = L* for an F*-stable Levi subgroup L* of G* with Cg«(s) = (L*)f" =: L*. In



68

particular, Bonnafé-Rouquier’s theorem [9] implies that there is a Morita equivalence
E(L, (1)) < E(G,(t)) given by Deligne-Lusztig induction (composed with tensoring
by a suitable linear character) when t # 1 is a semisimple {'-element, where L = L*

and (L, F) is dual to (L*, F*).

Proof. Write G* = (G*)!”", as above. Direct calculation shows that for each semisim-
ple element s # 1 of G*, Cg+(s) < Cg+(S) for some F*-stable torus S in G* containing

1 g € G*, whose cen-

s. (Each such s is conjugate in G* to a diagonal matrix s’ = gsg~
tralizer in G* depends only on the number of distinct entries different than 1 and their
multiplicities. Hence we may choose S to be ¢g~15’g, where S’ is the torus consisting
of all diagonal matrices in G* with the same form as s'.) Therefore, Cg+(s) = Cg=(.9),
which is an F™*-stable Levi subgroup of G*.

Let t be a semisimple '-element of G*. Writing L* = Cg+(t), we see that t € Z (L")
and therefore t € Z(L*). But then by [20, Proposition 13.30], tensoring with a suitable
linear character yields a Morita equivalence of &(L, (t)) <> &(L, (1)). Hence there is
a Morita equivalence & (G, (t)) <> &E(L,(t)) <> &L, (1)) by this fact and Bonnafé-

Rouquier’s theorem [9]. O

Proposition 4.1.2. In the notation of Lemmal[4.1.1, let t be a semisimple ¢'-element
of G*. Let 6 € &(G,(t)) be an irreducible Brauer character. Then 6(1) = [G* :
Co+(t)]2@(1) for some ¢ € IBry(L) lying in a unipotent block of L. Moreover, if
0(1) = [G* : Cg+(t)], then the equivalence given by Lemma maps 0 to the

principal Brauer character of Ca«(t) and 0 lifts to a complezx character.

Proof. From Lemma m, Deligne-Lusztig induction R$ provides a Morita equiva-
lence between (L, (1)) and &(G, (t)). Hence RY gives a bijection between ordinary
characters in & (L, (1)) and &(G, (t)) and also a bijection between ¢-Brauer characters
in these two unions of blocks, which preserve the decomposition matrices for these

two unions of blocks.
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Let B be a unipotent block in L, and let ¢, ..., ¢,, be the irreducible Brauer
characters in B. Let xi,...,xs be the irreducible ordinary characters in B. Then

we can write X; = Y

i1 dijpj, where (d;;) is the decomposition matrix of the block

B. Writing ©* for the image of an ordinary or Brauer character, ¢, of L under
Deligne-Lusztig induction RY, we therefore also have X} = Z;n:l dij©j.-
Moreover, we may write ¢ = Zle ar;X; for some integers ai;. We claim that

wr =0 ariX; as well. Indeed,

oL = Z akiXi = Zaki (Z dij%‘) = Z ©j (Z &kidig) ;
i=1 i=1 j=1 j=1 i=1
SO Zle ag;d;j = O; is the Kronecker delta by the linear independence of irreducible
Brauer characters. Now,

Za;ﬂ-ﬁ = Zaki (Z dij@;) Z% (Z (i U) Z%CSIW Pk
i=1 i=1 j=1

=1
proving the claim.
Note that xf(1) = [G : L]yxi(1) for 1 < i < s. Letting § = ¢}, we can write

0 =>7 | arX;, and hence

ZamX, G L Zalsz G L]Q'wk( ) = [G* : OG*(t)]?SOk(l)?

which completes the proof of the first statement.
For the last statement, we further note that the principal character 1¢,. () is the
only Brauer character of the group Cg-(s) with degree 1 lying in a unipotent block.
O

The following lemma records the semisimple classes of Spg(q) whose index of the

centralizer have smallest 2'-part.

Lemma 4.1.3. Let ¢ > 4 be even and let s € G* = Spg(q) be a noncentral semisimple
element. Then either [G* : Cg«(s)]y > (¢—1)%(¢*+1)(¢*+¢*>+1), or s is a member of
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Table 4.1: Semisimple Classes of G* = Spg(q) with Small [G* : Cg+(s)]o

Semisimple Class (s) [G*: Co+ ()] Co+(s)
Ca,0 q;;l Spa(q) X GUi(q)
3,0 q;:11 Spa(q) x GLyi(q)
C6,0 (@ +1D(g—1)*(¢* +qg+1) GUs(q)
C5,0 (@ +1)(g+1)%(¢* —q+1) GLs(q)
C10,0 (¢ — (¢ +1)(¢* +¢* +1) | GUs(q) x Spa(q)
C8,0 (¢ +1)(¢*> +1)(¢" +¢* +1) | GLa(q) x Spa(q)

one of the classes in Table which follows the notation of [{7] and lists the classes

in increasing order of [G* : Cg+(s)]e. The table also lists the isomorphism class of

Co+(5).

Proof. This is evident from inspection of the list of semisimple classes and the sizes

of their centralizers in [47, Tabelles 10 and 14]. O

4.2 Low-Dimensional Representations of Sps(¢q)

The purpose of this section is to prove Theorem [1.1.1 We recall the statement of the

theorem:

Theorem (1.1.1). Let G = Spg(q), with ¢ > 4 even, and let € # 2 be a prime dividing
|G|. Suppose x € IBry(G). Then:
A) If x lies in a unipotent £-block, then either

1. X < {1g,&3,ﬁé —61,33—(52,ﬁ§—(53}, where

S le, (P +a+1), o [ 1a L(g+1),
5y = 5y =

0, otherwise, 0, otherwise,
and
) { 1G7 E’(q?’_{_l)’
3=

0, otherunse.

2. x 18 as in the following table:
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Condition on £ X Degree x(1)
2/(¢®—1) or
3#0(¢® —q+1) X6 (¢ + ¢ +1)
(" +1) X6 — lg P+ +1) 1 [
X28
(g +1) =Xe—Xs—RXetle | (®+g+1)(g=D*?+1)

3. x 18 as in the following table:

Condition on £ X Degree x(1)
(> —1) or
3#(¢® —gq+1) X7 A+ +1)
4> +1) X7 = Xa Pl +a+1) —qlg+ (@ +1)/2 i
X35 — X5
(g +1) =X —Xe+xs—x1 | (4=D(@+D@* +¢*+1) —alg—1)(¢* - 1)/2

or

4. x(1) > D, where D is as in the table:

Condition on £ D
(g —1)(¢* + 1) ' (e —D*(®+q+1)
L(g+1),
(g+1)¢ #3 19 @ -2+ D g+ D) —2qg—D(F -1 +1
(g + 1),
(g+1)¢=3 e —2(P+ )P —g+D+1
3£ —q+1D) | 3¢*(q—1D%(@P +q+1)— 2ala— D3P +q+1) =19l —1D3q-1)

B) If x does not lie in a unipotent block, then either
1. x € {7, Ghicis(@-1p-1)/20<0< (@ 1)-1) /2

2. x(1) = (@ + V(g =D +q+1) or (¢ + g+ 1)%(¢* — g+ 1) (here x is
the restriction to (-reqular elements of the semisimple character indexed by a

semisimple ' - class in the family cg o or c5 o respectively, in the notation of [47]

- see Table ,

5.x(1) = (= D(+ D(¢" + ¢+ 1) or (g + 1)(¢* + 1)(¢" +¢* + 1) (here x is
the restriction to (-reqular elements of the semisimple character indexed by a

semisimple ' - class in the family ciop or csp respectively, in the notation of

[47] - see Table , or
4. x(1) = alg" + ¢* +1)(g — 1)*/2.

We begin by introducing the Weil characters of Spa,(q).
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4.2.1 Weil Characters of Sps,(q)

It is convenient to view Spa,(q) as a subgroup of both G Ly, (q) and GUs,(q). In [27],
Guralnick and Tiep describe the linear-Weil characters and unitary-Weil characters,
which are irreducible characters of Sps,(q) for ¢ even and n > 2 obtained by restriction
from GLs,(q) and GUs,(q).

Consider the action of G'La,(g) on the points of its natural module F2*. The
irreducible constituents of the permutation representation of this action yield the
complex irreducible characters known as Weil characters for G'Ls,(q), denoted 7!
for 0 < i < q—2. If n > 2, these restrict irreducibly to SLs,(q), giving the Weil
characters of SLy,(q). The 7 for i > 1 have degree (¢*"—1)/(g—1), and 72 has degree
(¢*"—q)/(q—1) (see, for example, [27]). More generally, the largest composition factor
of the restriction of the corresponding Weil characters to ¢-regular elements yield the
irreducible f-modular Weil characters of G Lo, (q).

Now consider the action of GLs,(q) on the set of 1-spaces of its natural module
Fg", and let P be the stabilizer of a 1-space (v)r,. Then P has a Levi decomposition
P =UL,where U = O,(P) and L = GL,_1(q)xGL1(q). (Here pis the characteristic
of F,.) Consider a linear character a € Irr(GL4(q)). Note that GL,(¢q) = C,—1, and
hence there are ¢ — 1 such linear characters. The character o extends to a linear
character of L by taking lgr,, ,(q) X o, and by the identification L = P/U, we can
then inflate this character to a character of P. By an abuse of notation, we will also

denote this character of P by a. Inducing to G, we obtain the character Ind%(a),

q2n_1
q—

which has degree *—

. If a # 1p, then it turns out that this (complex) character is
actually irreducible, and the ¢ — 2 characters obtained in this way are actually the 7

for 1 < i < q— 2. If, however, a = 1p, then Ind%(a) — 1¢ is irreducible, and this is

2n
the degree- £—4 character 7°.
q—1 n

If we write 7, for the permutation representation of G'Lo,(q) acting on its natural

dimp, ker(g—1)

module, then 7,,(g9) = ¢ , where the kernel is taken on the natural module.
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Table 4.2: Weil Characters of Spa,(q) [27, Table 1]

Complex Linear ¢-Modular Linear
Weil Characters Degree Weil Characters (¢ # 2)
Z g | 5 {0
" ¢-1) " 0, otherwise
2 (Q”;(1)£q1"+q) 72 _{ L, g’(qn_hl)’
n a-1) n 0, otherwise
Ta . 7
1<i<(g—2)2 1<i< (g Do —1)/2
Complex Unitary ¢(-Modular Unitary

Weil Characters Degree Weil Characters (¢ # 2)

1 T ~
a, (¢ 2(q)4(rq1) q9) a,
3 (¢"+1)(¢"+q) B\ _ L, fl(g+1),
" 2(¢+1) " 0, otherwise
i ¢n—1 i
no g+1 n
1<i<gq/2 1<i<((g+1)pr —1)/2

The Weil characters of SUs,(g) can be obtained in an analogous manner, defining
¢, to be the character (,(g) = (—q)diqu2 ker(g_l), where now the kernel is taken over
the natural module Fg? of SUy,(q). This character then decomposes into the sum of
characters (! for 0 < i < ¢, which we call the Weil characters of SUs,(q).

Guralnick and Tiep [27] show that the restrictions to Sps,(q) satisfy 7!|gp,.(q) =
T gpon(@) A0d Clspan() = €I 5pan(q)s and these are irreducible for 1 <4 < 2
and 1 < j < 4. Also, 7,)|sp,,(q) decomposes into the sum of two irreducible charac-
ters p. and p2, and similarly ¢°|sp,.q) = @n + Bn for irreducible characters a, 3,,.
Moreover, [27, Theorems 7.5,7.10], yield that the restrictions of these characters to
the (-regular elements of Sps,(q) are either irreducible Brauer characters or the sum
of an irreducible Brauer character and the principal character 1g,,, (). These nontriv-
ial irreducible Brauer characters are called the /-modular linear-Weil characters and
¢-modular unitary-Weil characters, and are listed in Table which is a recreation
of [27, Table 1].

The formulae from [27] for calculating the values for the characters 7° and (' in
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SLs,(q) and SUs,(q), respectively, are

1 Z(Sm dimg,, ker(g— 69) 251,’0 (421)
q —
and
; 1 d Zid dim; ker( —§j)
n9) =T > & (=g e (42.2)
j=0

Here & and 6 are fixed primitive (¢ — 1)th roots of unity in F, and C, respectively.
Similarly, &, € are fixed primitive (g + 1)th roots of unity in F2 and C, respectively.
The kernels in the formulae are computed on the natural modules W := (F,)*" for

SLyn(q) or W := (F2)?" for SUs,(q).

4.2.2 The Proof of Theorem [1.1.1]

We are now ready to prove Theorem [1.1.1, We do this in the form of two separate
proofs - one for part (A) and one for part (B).

Proof of Theorem 1| (A). Suppose that x € IBry(G) lies in a unipotent block.
The degrees of irreducible Brauer characters lying in unipotent blocks can be extracted
from [76], and we have listed these in Section [4.3] Note that the character x, in the
notation of [76] is the Weil character p? in the notation of [27]. Similarly, y3 = (s,
X4 = p3, and x5 = ag.

We consider the cases ¢ divides ¢ — 1, +1,¢* — g+ 1,¢> + ¢+ 1, and ¢*> + 1
separately. Let D, denote the bound in part A(4) of Theorem for the prime /.

First, assume that ¢|(¢ — 1) and £ # 3. If x(1) < D, = X11(1), then since ¢ > 4,
x must be X1 = lg, X2, X3, X4, X5, X6, OF X7. Hence we are in situation A(1), A(2), or
A(3).

Now let £](¢* 4+ g+ 1). Note that we are including the case £ = 3|(q— 1). In either
case, if x(1) < Dy = X11(1), then x is 1g, X2, X3, X4 — la» X5, X6, OF X7, as ¢ > 4.
Again, we therefore have situation A(1), A(2), or A(3).



5

If ¢](¢*>+ 1), then again Dy, = X11(1). A character in a unipotent block has degree
smaller than this bound if and only if it is 14, X2, X3, X4, X5, X6 — L&, OF X7 — X4, which
gives us situation A(1), A(2), or A(3) in this case.

Now let £](¢?> — ¢+ 1) with £ # 3. Then D, = \1;(1) — X5(1), and x(1) < D, if
and only if x is 1g, X2 — 1g, X3, X4, X5, X6 OF X7, SO we have situation A(1), A(2), or
A(3) for this choice of /.

Finally, suppose ¢|(¢ + 1). In this case, D, = ¢7(1). Note that from [76], the
parameter a which occurs in the description for this Brauer character (see Section
4.3)) is 1 if (¢ + 1), = 3 and 2 otherwise. Also, note that in this case, D. White [70]
has left 3 unknowns in the decomposition matrix for the principal block. Namely, the

unknown [ is either 0 or 1 and the unknowns s, 83 satisfy
1<f<(q+2)/2, 1<p5<q/2

Now, using these bounds for f, and fs, we may find a lower bound for ¢10(1) as

follows:
¢10(1) = x30(1) = Ba(x11(1) = x5(1)) = (B2 — 1)x23(1) — xas(1)
= ¢103(¢° s — B34" /2 + B34/2 — ¢a — (B2 — 1)qd1¢6/2)
> $103(¢° 01 — (4/2)q" /2 + /2 — b1 — (a/2)a166/2)
= ¢103(q° P — ¢° /4 + q/2 — s — P drb6/4).

Here ¢; represents the jth cyclotomic polynomial. As this bound is larger than D,
for ¢ > 4, and the other Brauer characters are known, with the possible exception of
w2 = X2 — P1 - 1g, we see that the only irreducible Brauer characters in a unipotent
block with degree less than Dy are 1, Xo—51-1a, X3—1a, X4: X5, X6 —X3—X2+1g = Xos,
and X7 — X6 + X3 — 1o = X35 — X5-

Now, recall that when ¢|(¢3+1), [27, Table 1] gives us that p3 — 15 is an irreducible

Brauer character. Since (¢ + 1)|(¢* + 1) and p3 = Xa, this implies that in fact the

unknown (; must be 1.
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Hence, we see that we are in one of the situations A(1), A(2), or A(3), and the
proof is complete for x in a unipotent block.

]

Proof of Theorem (B) As x does not lie in a unipotent block, we have y €
Ei(G, (s)) for some semisimple #-element s # 1. Let B denote the bound ¢(¢* + ¢* +
1)(¢ — 1)3/2 in part B(4) of Theorem [.1.1] Since (¢ — 1)*(¢* +1)(¢* +¢*+1) > B
when ¢ > 4, it follows from Lemma and Proposition that either x(1) > B
or x € &(G,(s)) where s lies in one of the classes 30, cs0,¢50, C60,Cs0, O Ci00
of G* = Spg(q). (Note that we are making the identification G = SO7(q) so that
G* = Sps(gq) here.) From Table[1.1] we see that in each of these cases, Cg-(s) = L* is
a direct product of groups of the form Sps(q), Spa(q), GU;(q), or GL;(q) for 1 < i < 3,
and hence is self-dual. That is, L = L* in the notation of Lemma[4.1.1] We will make
this identification and consider characters of Cg+(s) as characters of L.

If s € cgp or cap, then Cg«(s) = C x Spa(q), where C is a cyclic group of order
q—1or g+ 1, respectively. In this case, since 0,(Sp4(q)) = (¢—1)(¢* —q)/2 (see [41]),
we have x(1) > (¢° — 1)(¢ — 1)(¢* — ¢)/(2(¢ + 1)) = B by Proposition [£.1.2] unless
x corresponds to le,. (s) in IBry(Ce-(s)). In the latter case, we are in situation B(1),
as x is one of the characters 73 or @

For s in one of the families of classes ¢5o or cgo, we have Cg«(s) = GL3(q) or
GUs(q), respectively. Now, nonprincipal characters found in a unipotent ¢-block of
GL3(q) have degree at least ¢> + ¢ — 1 (see [35]). Moreover, 0,(GUs(q)) is at least
q* — q (see, for example, [73]). Hence in either case, for x € &(G, (s)), we know by
Proposition that either x(1) > (¢* +1)(¢ — 1)*(¢* + ¢+ 1)(¢* —q) > B or x
corresponds to lc,.(s) in IBry(Cg-(s)). In the second case, we have situation B(2).

Next, suppose that x € &(G,s) with s € cgg or ¢109. Here we have Cg-(s) =
GLs(q) x SLa(q) or GUs(q) x SLa(q), respectively. The smallest possible nontrivial

character degree in a unipotent block is therefore at least ¢ — 1. Since (¢ — 1)[G* :
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Ce+(8)]er > B in either case, we know by Proposition that either x(1) > B or

situation B(3) holds, and the proof is complete.

4.3 Unipotent Blocks of Sps(2%)

In this section, we use [70] to describe the Brauer characters of G = Spg(q), ¢ even,
lying in unipotent blocks, in terms of the restrictions of ordinary characters to /-
regular elements.

First let £|(¢—1). In this case, there are two unipotent blocks, the principal block
by and a cyclic block by (in the notation of [76]). Using [76], we see that the irreducible
Brauer characters of G = Spg(q) can be written as in Table if ¢ # 3 and Table
if ¢ = 3, where Y is the restriction of the character x € Irr(G) to the f-regular
elements G° of G.

Now let ¢|(¢ + 1). In this case, from [76], there are again two unipotent blocks:
the principal block by and a cyclic block b;. Using the decomposition numbers found
in [76], we see that the irreducible Brauer characters are as shown in Table [1.5] We
use the notation ¢; for the ith cyclotomic polynomial. Also, a = 2 if (¢+ 1), # 3 and
is 1if (¢ + 1), = 3. In this case, D. White has left three unknowns f; for 1 <i < 3,
which satisfy 1 < 8y < ¢/2+1, and 1 < 85 < q/2 (see [76]). Moreover, from [76], the
unknown [ is either 0 or 1. However, as discussed in the proof of Theorem [1.1.1}in
Section above, the results of [27] yield that in fact 8; = 1.

In the case £|(¢> —q+1), where £ # 3, there is only one unipotent block of nonzero
defect, namely the principal block by. Inspection of the decomposition matrices in
[76] yields the list of irreducible ¢-Brauer characters of G in this block to be as in
Table (4.6

Now, suppose £|(¢*> + ¢+ 1), where £ # 3. Then there is again only one unipotent

block of positive defect, namely the principal block by, and from inspection of the
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decomposition matrices found in [76], we find that the irreducible ¢-Brauer characters
of G in this block can be written as in Table [4.7]

Finally, let |(¢*+1). In this case, all blocks are cyclic and there are two unipotent
blocks of positive defect: the principal block, by, and the block b, and inspection of the
decomposition matrices found in [76] yields that the irreducible ¢-Brauer characters

of G in the unipotent blocks can be written as in Table

Table 4.3: /—Brauer Characters in Unipotent Blocks of G = Sps(q), ¢|(¢ — 1), ¢ # 3

(a) Principal Block bg

¢ € IBr(G) N by Degree, (1)
X1 1
X2 sa(+q+1)(¢+1)
X3 lal@—q+D(P+1)
X4 sa(®—q+ )( +1)?
X6 Pt + >+ 1)
X7 Pl + >+ 1)
Xs s (P +q+1)(P+1)
X 14 (¢* — g+ 1) (g + 1)°
X10 %q4(q2 —q+1)(¢*+1)
)?12 qg

(b) Block by

v € IBr(G) N Degree, ¢(1)
X5 5 — 1) +q+1)
Xi1 s (g — 1?4+ q+1)
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Table 4.4: {—Brauer Characters in Unipotent Blocks of G = Sps(q), £ = 3|(¢ — 1)

(a) Principal Block by

¢ € IBr(G) N by Degree, (1)
X1 1
X2 sa(@+aq+ 1) (P +1)
X3 54(¢* —q+1)(¢* +1)
Xa— X1 5@ —q+1)(g+1)° -1
X6 gt +q*+1)
%, P+ +1)
Xs s (P +q+1D)(P+1)
Xo — X3 50N —q+1)(g+ 1) —3q9(® —q+1) (" +1)
Xo—Xa+x1 | 3¢ (P —a+1D)(@P+1) —39(@ —q+D(g+1)*+1
Xi2—Xo+Xs | ¢ — %q4(q2 —q+1(g+1)*+ %Q(q2 —q+1)(¢*+1)

(b) Block by

Y e IBI‘(G) N b1

Degree, (1)

o~

X5
X11

sq(g —1)*(¢* +q+1)
5* (¢ —1)*(*+q+1)

Table 4.5: {—Brauer Characters in Unipotent Blocks of G = Spg(q), ¢|(q + 1)

(a) Principal Block by

@ € IBr(G) N by

Degree, (1)

Y1 = X1

w2 = X2 — B1X1

®3 = X3 — X1

Y4 =X5

P5 = X28
=X6—X3—X2+X1

©6 = X35 — X5

=X7—X6+X3— X1

7 = X22 — (@ = 1)X5 — X3 + X1
=X8 — X7 —aXs — X3 + X1

P8 = X23
=X10 — X7 + X6 — X3

Y9 = X11 — X5

»10 = X30 — B3(X11 — X5) — (B2 — 1)X23 — X28

1
ta(@®+q+1)(?+1) - B
sa(@® —gq+1)(¢?+1)—1

2a(a®> +q+1)(g—1)?

(@ +q+1)(g—1)3(¢*+1)

b193(dacds — 3961)

Lag3esde
599363
Sa(a* 01~ Sat + Bq - g4 — P!
193 q" P4 Pl q p) q 4 5

Lap1o3dads — 25 qd2ps — Sadads + 1

qo1P6)

(b) Block by

(Y2 € IBI‘(G) N bl

Degree, (1)

X4
Xo — X

Jala+ (¢ —q+1)
s2(g+ 1% — g+ 1)(¢* = 1)
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Table 4.6: {—Brauer Characters in Unipotent Blocks of G = Sps(q), £|(¢* — ¢+ 1),

043

(a) Principal Block by

p € IBr(G) N by Degree (1)
X1
X2 — X1 %q(q2+q+ )( +1)—1
Xs— X2+ X1 (@ +a+ )@ +1) =50 +q+ 1) (P +1)+1
Ni2—Xs+X2—X1 | ¢ — %q4(q2+q+ D+ 1)+ 5¢(+q+1)(*+1) -1
X5 sa(a—1)*(*+q+1)
Xi1 — Xs 3¢ (¢ — 1) (q +q+1) —359(¢— 1) +q+1)
(b) Blocks of Defect 0
¢ € IBr(G) Degree, (1
X3 s —q+1)(¢* +1)
X4 5@ —q+1)(g+1)°
X6 Pt + >+ 1)
X7 Pt + >+ 1)
Xo 50 —q+ 1) (g + 1)
Xio0 s (P —q+ (P41
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Table 4.7: {—Brauer Characters in Unipotent Blocks of G = Sps(q), £|(¢* + q + 1),

043

(a) Principal Block by

¢ € IBr(G) N by Degree, (1)
X1 1
X4 — X1 %(CI +1)*(¢*—q+1) -1
Xo—Xa+x1 | 3¢ (P +1)(@—q+1) —39(¢+1)* (¢ —q+1)+1
X3 5a(¢° + )(q —q+1)
Xo — X3 s @+ 1) —q+1) =30+ 1) (¢ —q+1)
Xiz—=Xo+Xs | ¢’ =3¢ (¢+ D (*—g+D+359(@+ 1) —q+1)

(b) Blocks of Defect 0

¢ € IBr(G) Degree, (1)
% L@ +q+ D2 +1)
X2 Sa(® +q q
s s0(a— 1) +q+1)
X6 q2(614 + q2 +1)
X7 A+ 3 +1)
s %q (q +q+1)(¢*+1)
Xi1 50 (¢ —1)*(¢* +q+1)




Table 4.8: (—Brauer Characters in Unipotent Blocks of G'= Sps(q), £|(¢* + 1)

(a) Principal Block by

NS IBI"(G) N bo

Degree, (1)

1

X1

X6 — X1 ¢+ +1)—1
Xo—Xe+X1 |30 (a+ 1% —a+1)—*(¢"+¢*+1) +1
Xu1 20" (@ —D*(* +q+1)

(b) Block by

p e IBI‘(G) N bl

Degree, ¢(1)

sqlg+ 1) (P —q+1)

X4

X7 — Xa A+ +1) —tqlg+1)*(¢* —g+1)
Xe—Xrt+xa |- +P+1)+39(q+ 1) (*—q+1)
s 2q(g— 1)@ +q+1)

(c) Blocks of Defect 0

¢ € IBr(G) Degree, (1)

X2 s +a+ 1) +1)
X3 5@+ 1)(?—q+1)
Xs AN +q+1)(*+1)
X10 s (P +D(P—q+1)
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4.4 Non-Unipotent Blocks of Sps(2%)
4.4.1 Non-Unipotent Block Distributions for Irr(Sps(2%))

We list here the block distribution, in cross-characteristic, for irreducible characters
of positive defect lying in non-unipotent blocks of G = Spg(q) with ¢ even. Any char-
acters not listed either have defect zero or lie in a unipotent block, whose distribution
can be found in [76]. In this section, the notation for characters of G is taken from
CHEVIE [26]. The indexing sets are as follows:

For e € {£1}, let I  be theset {i € Z:1 < i< q—e—1}, and let I,_ be a
set of class representatives on [ gfe under the equivalence relation 1 ~ j <= i ==4j
mod (¢ —€). Let I3,
i< ¢ —1,(¢q—1) fi,(¢g+1) fi}, and let I 2. be a set of representatives for the

={ieZ:1<i<¢land ), :={i €Z:1<

equivalence relation on I),__ given by i ~ j <= i = +j or +¢j mod (¢* — ¢).
Similarly, let Ips = {i € Z:1<i<¢*—¢(¢> +eq+1) fi} and I3 a set of
representatives for the equivalence relation on Igg_e given by i ~ j <= i = %7, +q7j,
or +¢%j mod (¢* — €). Given one of these indexing sets, I, we write I¥ for the
elements (iq, ..., 1) of I, x I,... X I, (k copies) with none of iy, s, ..., i the same and
I™ for the set of equivalence classes of I* under (i, ...,ix) ~ (p(i1), ..., p(ix)) for all
p € Sk.

We will denote by B;(J) the ¢-blocks in &(G, (s)) of positive defect, where s is
conjugate in G* to the semisimple element g;(J) in the notation of [47]. (Here J
denotes the proper indices. For example, for the family g¢, J = (i) for i € I, 4,
and for the family gso, J = (4, j, k) where (i,7,k) € I7},.) In most cases, Cg+(s) has
only one unipotent block, and therefore £ (G, (s)) is a single block. However, when
multiple such blocks exist, which occurs for i = 6,7, 8,9 when £|(¢?—1), we will denote
by B;(J)® the the block corresponding in the Bonnafé-Rouquier correspondence (see
Lemma to the principal block of Cg-(s) and by B;(J)®) the block corresponding

to the unique other block of positive defect. (Indeed, in such cases there are only two
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blocks of positive defect in &(G, (g:(J))).)

The block distributions listed in this section follow from the theory of central
characters (the central characters of G' can be obtained from CHEVIE [26]) together
with the definition of & (G, (¢;(J))) and Broué-Michel’s result [12] that this is a union
of ¢-blocks.

4.4.2 (P +1)

Let k € I,_1,t € I 41,8 € L2y with (¢* + 1),]s and write m := (¢* 4+ 1)

Bg(k) = {x13(k), x14(k), x17(k), x18(k), x62(k, ) : m|r}

Br(t) = {x19(t), Xx20(t), x23(¢), X24(t), x65(7, t) : m|r}

Boy(5)Y = {xs55(r): 7 = £s or +¢s mod m}

Bou(s)V = {xs6(r): 7= %s or +£¢s mod m}

Bso(k,s) = {xe2(k,7): 7=*xsor £¢s mod m}

Bss(s,t) = {xes(r,t): r = £sor £¢gs mod m}

4.4.3 3#U(PF+q+1)

In the following, let k € I,_; and v € I,s_; with (¢*—1),|v and write n := (¢*+q+1)e.

Bg(k) = {xa25(k), x26(k), x27(k), x63(r): 7 = £k(¢* + ¢+ 1) mod (¢ — 1)n}
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Bsi(v) = {xe3(r): r = £v,+qu, or £¢*v mod (¢ — 1)n}

4.4.4 3#U(PF—q+1)

In the following, let ¢ € I,1 and w € I3, with (¢*+1),|w and write n := (¢*—q+1)e.

Bo(t) = {xas(t), x20(t), x30(t), Xe6(7): 7 = £t(¢* — ¢+ 1) mod (g + 1)n}

Bsy(w) = {xe6(r): 7 = +w, £qw, or +¢*w mod (¢ + 1)n}

4.4.5 ((¢g—1)

In the following, let ki, ko, k3 € I,y with €d|k:i and none of kq, ko, k3 the same. Let
t1,t2,t3 € I with none of t1,%5, %3 the same, u € 24y, and s € [,y with 04s,
where (¢ := (¢ — 1),. Let v € I ;s and w € Iy, with (¢* — 1)¢|v. Moreover, let

m = (q—1)p. When £ =3, let n:= (¢° + ¢+ 1)y.

Bﬁ(k‘l)(o) = {xa3(r), x14(r), x15(r), X16(r), X18(7), X30(J, ), Xa0(F, ),

X41(j7 T)7X42(j7 T)7X57<T7j7 Z) r= :tkl mod m7m|jam|l}

By (k)Y = {xur(r): r = £k mod m}

Br(t1) = {x19(t1), x20(t1), x21 (1), x22(t1), X24(t1), Xas (7, t1), Xaa(rs 1),

Xar (s t1), Xas(7, 1), X58(7, J, t1) : m|r,m|j}

(Note: &(G, g;(t1)) also contains the defect-zero block {x23(t1)}.)
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( {X25(7’1),X26(7“1)>X27(7“1)7X39(7’1,T2)7X40(7’17T2), if ¢ £ 3
X57(11,79,73): 1,72, 73 = £k;  mod m}

Bg(ki) =
8( 1) {X25(7’1),X26(7"1),X27(7”1)7X39(7“1,7”2)7X4o(7“1,7“2);
X57(r1,72,73), X63(74): T1,72,73 = £k;  mod m, ifl¢=3

ry = +ki(¢*> +q¢+1) mod mn}

By(t1) = {x2s(t1), x30(t1), x61(r,t1): * = (¢ — 1)ty mod m(¢+ 1)}

(Note: E(G, go(t1)) also contains the defect-zero block {x20(t1)}.)

Bi1(k1) = {x31(71), x32(71), X33(r1), X34(71) 5 Xa1 (71, 72), Xa2(71, 72), X30(71, 7)),

Xa0(r1,7), X57(r1,72,7): 11 = £k1  mod m,ry = +k;  mod m,m|j}

Bis(t1) = {x35(t1), x36(t1), X37(t1), x38(t1), Xa0(t1,7), x50(t1,7), Xa5(7), Xa6(J)
X50(J,7): 7 =%(¢g — 1)ty mod m(q+ 1), m|r}

Bl6<k17 /f2) = {X39(7"177‘2),X40(7"177’2)7X57(7”17j; 7‘2)5 r; = £k; mod m,
j = £k mod m}

B17(k1, k2) = {X41(7’1,7“2)7)(42(7’1,7”2)7X57(7”1,7”2yj)5 r; = £k; mod mam|j}

Big(ki,t1) = {xas(r,t1), xaa(r, t1), X58(r, 7, t1) : 7 = £k mod m,
j =tk mod m}
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Big(s) = {xa5(r), Xa6(r), X59(r,J): 7 = £s or £¢s mod m(q+ 1), m|j}

Boo(k1,t1) = {xar(r,t1), xas (7, t1), x58(r, 7, t1) : = £ky  mod m, m|j}

Bay(t1, k1) = {xa9(t1,7), x50(t1,7), X50(J,7): j = £(¢ — 1)t;  mod m(q + 1),

r==+k; mod m}

Bos(t1,t2) = {xs1(t1,t2), Xx52(t1,t2), xe1(r, t2): 7 = £(¢ — 1)ty mod m(q¢+ 1)}

Bos(t1,ta) = {xs3(t1, t2), x54(t1, t2), Xe0 (7, t1,t2) : m|r}

Bos(u) = {xs5(u), x56(n), xe2(r,u): ¥ =0 mod m}

Bos(k1, k2, k3) = {x57(r1,72,73): 7 = £k; mod m}

Bog(k1, k2, t1) = {xss(r1,72,t1): 75 = £k; mod m}

Bar(s, k1) = {xs0(r,j): r=+xsor +£¢qs mod m(qg+1),j =+k; mod m}

ng(k’l,tl, tg) = {Xﬁo(?", tl,tg)l T = :|:k’1 HlOd m}
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Bag(s,t1) = {xe1(r,t1): 7 = £sor £¢s mod m(q+1)}
Bso(ky,u) = {xe2(r,u): r = £k; mod m}

{xe3(r): 7 = v, +qu, or £¢*>v mod m(¢®> +q+1)} if £ #3
{xe3(r): 7 = v, +qu, or £¢*>v mod mn} if ¢ =3

B31 (’U) = {
ng (tl, tQ, tg) = {X64(t17 tg, tg)} (defect zero)
Bss(u,t1) = {xes(u,t1)} (defect zero)

Bsy(w) = {xe6s(w)} (defect zero)

4.4.6 (|(qg+1)

In the following, let ki, ko, ks € I,_1 with none of ki, ko, k3 the same. Let t1,19,t3 €

I,1 with ¢?[t; and none of 1, t2, t3 the same, u € [2,;, and s € I,2_; with (%|s, where

(4= (q+1)p. Let v € I ;s and w € I3, with (¢*+1),Jw. Let m := (¢+1)p. When

(=3, write n:= (¢* — g+ 1)3.

Bﬁ(kl) = {X13(/€1), X15(/<71), X16(k1)7X17(/€1), XlS(kl)a X47(/<717 7’), X48<k17 7’);

X49(7"7 k1)7X50(7“> k1)>X60(1f177’,j)3 m\?“,m\j}

(Note: &(G, gs(k1)) also contains the defect-zero block {x14(k1)}.)

B7(t1)(0) = {Xlg(r)> X21(7”)> X22(7’)> X23(7’)> X24(7’)> XSl(ja 7")7 X52 (j7 r),

X53(j7 T)7X54(j7 T)7X64(Taj7 Z) r= j:tl mod m7m|]7m|l}
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Br(t)M = {xa0(r): 7= £t; mod m}

Bg(k’l) = {XQ5(]€1), X27(k}1>,X59(7”7 k?l)l r = :t(q + 1)]{31 mod m(q — 1)}

(Note: &(G, gs(k1)) also contains the defect-zero block {xa6(k1)}.)

( {x28(71), X20(71), X30(71)5 X51 (71, 72), X52(71,72) if043

X64(71,72,73) 1 71,79, 73 = £t;  mod m} )

By(t) =

o(f) {xas(r1), X20(71), X30(71), X51(r1, 72), X52(71, 72),

X64(71,72,73), X66(74) : 71,72, 73 = £t1 mod m, if ¢ =3,
ry = +t1(¢* —q¢+1) mod mn}

B (k1) = {X31 (/ﬁ), X32(k?1)7 X33(/€1), X34(/€1), X43(7€1, 7“); X44(k’1, 7“)7

Xa5(7)s xa6(7), X61(j,7): j = (¢ +1)ky  mod m(q — 1), m|r}

B13(751) = {X35(T1)7X36(7"1)aX37(7“1),X38(7”1)7X53(7“1,7‘2)7X54(7“1,7“2)>X51(7"1,j);

X52(71,7), X6a(r1, 72, 7): 11 = £t mod m,ry = £t mod m,m|j}

BlG(kla kz) = {X39(k1, k2)7 X4o(k1, k2)7 X59(7”a k2)3 r= i(q + 1)k1 mod m(q - 1)}

Bl?(]ﬁ, kz) = {X41(/f1, k2>7X42(]<71, k2)7X58(k1; kzﬂ’)i m|r}

Byg(k1,t1) = {xas(k1,7), xaa(k1,7), x61(j,7): j = £(¢ + 1)k;  mod m(q — 1),

r=+t; mod m}



B19(5) = {X45<T>7X46(T)7X61(T7j): r=dzsor gs mod m(q - 1),m]j}

Boo(k1,t1) = {xar(k1,7), xas(k1,7), x60(k1,7,j): 7 = £t mod m,m|j}

Boy(t1, k1) = {xa0(r, k1), X50(7, k1), X60(Kk1,7,j): 7 = £t mod m,

j = +t; mod m}

Bao(t1,ta) = {xs1(1r1,72), X52(r1,72), X64(71, 7, 72) s 75 = £t; mod m,
j ==+t mod m}

Bas(t1,t2) = {x53(71,72), X54(71,72), X6a(r1,72, ) : 75 = £t; mod m,m|j}

Baos(u) = {xs5(u), x56(u), xe5(u,7): 7 =0 mod m}

325(]{?1, kg, k’g) = {X57(l€17 k?g, k?3)} (defect ZeI'O)

BQ6(k1, kQ,tl) = {Xg,g(kl, k‘g,?”): r = :i:tl mod m}

Bor(s, k1) = {xso(r,k1): 7 =+sor £¢qs mod m(q—1)}

Bog(k1,t1,t2) = {xe0(k1,71,72): 7; = £t; mod m}

90
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Boo(s,t1) = {xe1(r,j): r=+sor £¢gs mod m(q—1),j = +t; mod m}
BSOUﬁa“) = {XGQ(lﬁ,U)} (defect zero)

Bsi1(v) = {xe3(v)} (defect zero)
B32(t17t27t3) = {X64(r1a 7027713)3 r; = *t; mod m}

Bss(u,t1) = {xes(u,r): 7 = £t; mod m}

{xe6(r): 7 = tw, £quw, or £q¢*w mod m(¢* —q+ 1)} if £ #3,
{x66(7): 7 = *w, +qw, or +¢*w mod mn} if ¢ =3

334(111) = {
4.4.7 Non-Unipotent Brauer Characters for Spgs(2%)

Tables and give the irreducible Brauer characters of G = Spg(q), g even,
listed by the families & (G, (t)) for ¢'-semisimple elements ¢ € G*. The indexing sets
for t = gi are as given in Section [.4] for Bj. Characters listed in the same set
for the same choice of ¢ make up the Brauer characters of a single block. Notation
for the characters of G is taken from CHEVIE [26], and the notation for the class
representatives t € G* is from [47]. As usual, X denotes the restriction of x € Irr(G)
to l-regular elements G° of G.

The results in the tables follow from Lemma[4.1.1, Theorem [2.4.2] and the decom-
position numbers for the unipotent blocks for the low-rank groups. The decomposition
matrices for the unipotent blocks of SLy(q) (and therefore Sps(q) = SLo(q), GL2(q) =
Cy-1 X SLa(q), and GUs(q) = Cyy1 X SLa(q)) and GL3(q) can be obtained from [35],
and those for Spy(q) are found in [75]. Note that the number « found in the descrip-
tion of the Brauer characters of &(G, (t)) for ¢ in the family g¢ or g7 when ¢|(q + 1)
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is as in [75], and by [60], we have a = 1 when (¢ + 1), = 3 and o = 2 otherwise. The
decomposition matrices for the unipotent blocks of GU;(q) were found in [25], up to

an unknown in the case £|(¢ + 1), which is found in [61].



Table 4.9: /—Brauer Characters in Non-Unipotent Blocks of G = Spg(2%), £ # 2

G (8) conpen 1Br,(G) N €0(G. (1))
(1) £](g — 1) {X13(k1), X14(k1), X15(k1), X16(k1), X18(k1)}, {X17(k1)}
g6 (k1
£l(q+1) {X13(k1), X15(k1) — X13(k1), X16(k1) — X13(k1), X17(Fk1),
X18(k1) — aX17(k1) — X16(k1) — X15(k1) + X13(k1)},  {X1a(k1)}
(g + 1) {X13(k1), X14(k1) — X13(k1), X18(k1) — X14(k1) + X13(k1), X17(k1)},
Cq—1 X Spa(q) a {X15(k1)}, {X16(k1)}
[ (Caln)) {Xiz(k)}, {X1a(k)}, {X1s5 (k) }, {X1e (k) }, {Xa7r (k1) }, {X1s (k1) }
) 2l(q — 1) {X19(t1), X20(t1), X21(t1), x22(t1), X24(t1)},  {X23(t1)}
g7 (t1
£l(qg+1) {X19(t1), X21 (1) = X19(t1), X22(¢1) — X19(t1), X23(t1),
X24(t1) — aX23(t1) — X22(t1) — X21(t1) + X19(t1)},  {X20(t1)}
(e + 1) {X19(t1), X20(t1) — X19(t1), X24(t1) — X20(t1) + X19(t1), X23(t1)},
Cgt1 X Spa(q) a {X21(t1)}, {X22(t1)}
[ (Cln?) {X19(t1)}, {X20(t1)}, {X21 (¢1)}, {X22(t1)}, {X23 (1)}, {X24(t1)}
(k1) 3£ (qg—1) {X25(k1), X26(k1), X27(k1)}
g8t (g +1) {X25(k1), X27(k1) — X25(k1)},  {X26(k1)}
GLs(q) f(g* +q+1) {X25(k1), X26 (k1) — X25(k1), X27(k1) — X26(k1) + X25(k1)}
(g3 —1)(g+1) {Xos5(k1)}, {X26(k1)}, {Xo7(k1)}
go(t1) £(qg — 1) {X28(t1), X30(t1)}, {X20(t1)}
ol £(q + 1) {X28(t1), X29(t1), X30(t1) — 2X29(t1) — X28(t1)}
GUs(q) 3#£0(¢> —q+1) {X2s(t1), X29(t1), X30(t1) — X28(t1)}
£ +1)(g—1) {X2s(t1)}, {X20(t1)}, {X30(t1)}
911 (k1) £](g — 1) {x31(k1), X32(k1), X33(k1), X34 (K1)}
el(a+1) {X31(k1), X32(k1) — X31(k1), X33(k1) — X31(k1),
GLala) X Spa(d) X34 (k1) — X33(k1) — X32(k1) + X31(k1)}
2(q) X op2(q
£ )q®—1) {Xs1(k1)}, {X32(k1)}, {X33(k1)}, {X3a(k1)}
(g — 1) {X35(t1), X36(t1), X37(t1), X38(t1)}
g13(t1)
{X35(t1), X36(t1) — X35(t1), X37(t1) — X35(t1),
GUz(q) x Sp2(q) ey X3s8(t1) — X37(t1) — X36(t1) + X35(t1)}
2(q) X op2(q
£ J(q® —1) {X35(t1)}, {X36(t1)}, {X37(t1)}, {X38(t1)}
916 (k1 ka) £](qg — 1) {X39(k1,k2), Xa0(k1, k2)}
916151, B2 £(q + 1) {X39(k1, k2),X40(k1, k2) — X39(k1, k2)}
Cq_1 X GLa(q) ¢ j@* -1 {X39(k1, k2)}, {Rao0(k1, ka2)}
g17(k1, k) £(qg — 1) {Xa1(k1,k2), Xa2(k1, k2)}
1T, 2 £|(q + 1) {Xa1(k1, k2), Xa2(k1, k2) — Xa1(k1, k2)}
(Cq—1)% x Spa(q) £ f(g® = 1) {Xa1(k1, k2)}, {Xa2(k1, k2)}
(k1,t1) £](qg — 1) {Xa3(k1,t1), Xaa(k1,t1)}
g1stin. 1 £l(q +1) {Xa3(k1,t1), Xaa(k1,t1) — Xa3(k1,t1)}
Cq41 X GL3(q) ¢ J@* -1 {Ras(k1,t1)}, {Raa(k1, t1)}
910(s) (g — 1) {Xa5(s); Xa6(s)}
1o Ll(q+1) {X45(s), X46(s) — Xa5(s)}
Cyp2_q X Sp2(9) £ )q® —1) {Xa5(s)}, {Xa6(s)}
2(q — 1) {Xa7(k1,t1), xas(k1,t1)}
g20(k1, t1) Ll(g+1) {Xar(k1,t1), Xas(k1,t1) — Xar(k1,t1)}
Cq—1 X Cqy1 X Spa(a) £ J(q® = 1) {Xa7(k1,t1)}, {Xas(k1,t1)}
(t1, k1) (g — 1) {Xa0(t1, k1), Xs0(t1, k1)}
g21{1, 1 2l(g+1) {Xa9(t1,k1), X50(t1, k1) — Xa9(t1,k1)}
Cq—1 X GU2(q) £ J(q* = 1) {Xa9(t1,k1)}, {X50(t1,k1)}
2(q — 1) {X51(t1,t2), x52(t1, t2)}
g22(t1, t2) £(q +1) {X51(t1,t2), X52(t1,t2) — X51(t1,t2)}
Cg+1 X GUz(q) [ (CR)) {X51(t1,t2)}, {Xs2(t1,t2)}
(t1,t2) £](q — 1) {X53(t1,t2), X54(t1, t2)}
g2sit1,t2 el(q+1) {Rs3(t1, t2), Rsa (b1, t2) — Rs3(t1, t2)}
(Cq41)% x Spa(a) £ J(q® = 1) {Xs3(t1,t2)}, {Xpa(t1,t2)}
(w) £(q — 1) {Xs55 (), X56(u)}
924 €l(g+1) {X55(u), Xs6(u) — X55(w)}
Cp21q X Sp2(9) ¢ e - 1) {Xs5(w)}, {Xs6(w)}
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Table 4.10: /—Brauer Characters in Non-Unipotent Blocks of G = Spg(2%), ¢ # 2,

Continued
t Condition
o onr | IBr(G)NEG, (1)
ki, ko k »
925 (K1, 2, 3) all ¢ # 2 {Xs7(ks kg hz) }
(qul)

ki, ko, t -
(gza(l)lg X20111 all € #2 | {Ras(ka, karth)}
q— q

927 (s, k1) N
Cq—l X Cq2—1 all £ ?é 2 {X59(S, kl)}

gos (K, t1, 1) ~
all ¢ £ 2 ki, ti,t
Cy1 X (C’q+1)2 # {Xeo(k1,t1,t2)}

920(8,t1) ~
Cy1 X Cpr_y all £ 2 {Xe1 (s, t1)}
gs0(k1, ) N
Coyx Cpyy | EF2 {Roz (e, u)}
g (v) all ¢+ 2 (Res(0)}
Oq3—1
g32(t1, tzagts) all ¢ £ 2 {(Roa(tr, ta, t3)}
(Cyt1)
ga3(u, 1) N
11 ¢#2 s (u, t
Cyr1 X Cppq all £ # {Xes(u, 1)}
934(w) all £ 2 {9?66@))}

Cq3+1
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CHAPTER 5

CROSS-CHARACTERISTIC REPRESENTATIONS OF Spg(2¢)
AND THEIR RESTRICTIONS TO PROPER SUBGROUPS

Recall Section [I.1], where we provide an overview and motivation of the Aschbacher-
Scott program and introduce the main theorems of this chapter.
We begin in Section by making some preliminary observations, listing some

useful facts, and reviewing some of our notation. In the remaining sections, we prove

Theorems|1.1.2]and [L.1.3] first making a basic reduction to rule out a few subgroups,

then treating each remaining maximal subgroup H separately to find all irreducible

G—modules V' which restrict irreducibly to H. Finally, in Section we treat the

case ¢ = 2 and prove Theorems [L.1.4] and [1.1.5]

5.1 Some Preliminary Observations

We adapt the notation of [37] for the finite groups of Lie type. In particular, L, (q)
and U, (q) will denote the groups PSL,(q) and PSU,(q), respectively. OF (q) and
0,,,(q) will denote the general orthogonal groups corresponding to quadratic forms
of Witt defect 0 and 1, respectively. Moreover, if X acts on a group Y, we denote by
Y : X or Y x X the semidirect product of Y with X. More generally, we may write
Y. X if Y is a (not necessarily complemented) normal subgroup with quotient X. If
7 is a positive integer, we will sometimes write Y : r (or Y.r) if X = C, is the cyclic
group of order r, and an elementary abelian group of order r will be denoted by [r].

Given a finite group X, recall that we denote by 9,(X) the smallest degree larger
than one of absolutely irreducible representations of X in characteristic ¢. Similarly,
my(X) denotes the largest such degree. When ¢ = 0, we write my(X) =: m(X).

Given y a complex character of X, we denote by X the restriction of x to f-regular
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elements of X, and we will say a Brauer character ¢ lifts if ¢ = X for some complex
character y. Throughout the chapter, ¢ will usually denote the characteristic of the
representation.

As usual, Irr(X) will denote the set of irreducible ordinary characters of X and
IBr,(X) will denote the set of irreducible ¢-Brauer characters of X. Given a subgroup
Y and a character A € IBry(Y'), we will use IBr,(X|)) to denote the set of irreducible
Brauer characters of X which contain A\ as a constituent when restricted to Y. The
restriction of the character ¢ to Y will be written ¢y or ¢|y, and the induction of
A to X will be written A¥ or sometimes Ind;s(\) for more clarity. We will use the
notation ker ¢ to denote the kernel of the representation affording ¢ € IBry(X).

We begin by making a few general observations, which we will sometimes use

without reference:

Lemma 5.1.1. Let G be a finite group, H < G a proper subgroup, F an algebraically
closed field of characteristic £ > 0, and V' an irreducible FG-module with dimension

greater than 1. Further, suppose that the restriction V|y is irreducible. Then

VIH/Z(H)| >m(H) > my(H) > dim(V) > 0,(G).
Lemma 5.1.2. Let x € Irr(G) such that X|g € IBry(H). Then x|g € Irr(H).

Proof. We may write x|g = ), aip; for ¢; € Irr(H) and non-negative integers a;.
Then IBr,(H) 3 Xu = Y, @i, and by the linear independence of irreducible ¢-Brauer
characters and the irreducibility of Xz, we see that there is exactly one index i for
which a; is nonzero, and it must be that x|z = ¢;.

[]

Lemma 5.1.3. Let G be a finite group, H < G a subgroup, and ¢ a prime. Let
H denote the set of irreducible complex characters of degree 1 of H. If x € Irr(G)
such that x|g — X\ &€ Irr(H) for any A € HU {0}, then X|g — p & IBry(H) for any
w € IBry(H) of degree 1.
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Proof. Write x|y = Y _;_, 6; where 6; € Irr(H) are not necessarily distinct. Each 0;
is a non-negative integer linear combination of irreducible Brauer characters of H. By
way of contradiction, suppose X|g —p € IBr,(H) for some p € IBr,(H) with p(1) = 1.
Then )7, 0; = Xlz = ¢ + p for some ¢ € IBr,(H). By the linear independence of
irreducible Brauer characters, we conclude that s < 2 and, allowing for reordering of
the 6,’s, either 51 = p and 52 = j or 51 = ¢ + p. In the first case, x|y = 01 + 02 with
0, € H, and in the latter case, x|y = 6; € Irr(H), yielding a contradiction in either

situation. O

Lemmas 5.1.2| and [5.1.3| suggest that in some situations, we will be able to reduce to

the case of ordinary representations.

5.1.1 Other Notes on Sps(q), ¢ even

We note that |Sps(q)] = ¢°(¢* — 1)(¢* —1)(¢° — 1), so if £ is a prime dividing |Sps(q)|
and ¢ # 3, then ¢ must divide exactly one of ¢—1, ¢+ 1, ¢>+1, ¢>+q+1, or ¢> —q+1.
If ¢ = 3, then it divides ¢ — 1 if and only if it divides ¢> + ¢ + 1, and it divides ¢ + 1
if and only if it divides ¢*> — ¢ + 1. In what follows, it will often be convenient to
distinguish between these cases.

D. White [76] has calculated the decomposition numbers for the unipotent blocks
of G = Spg(q), ¢ even, up to a few unknowns in the case ¢|(¢ + 1). Recall that in
Section of Chapter [, we have summarized these results by giving the description
(in terms of the restrictions of ordinary characters to (-regular elements) of the /-

Brauer characters for GG that lie in unipotent blocks, along with their degrees.

5.2 A Basic Reduction

The goal of this section is to eliminate many possibilities for subgroups H yielding
triples as in Problem [1, We do this in the form of two theorems, treating Sps(q) and
Spa(q) separately.



98

Theorem 5.2.1 (Reduction Theorem for Sps(q)). Let (G, H,V) be a triple as in
Problem (1], with ¢ # 2, G = Spe(q), ¢ > 4 even, and H < G a mazimal subgroup.
Then H is G-conjugate to either Go(q), OF(q), or a mazimal parabolic subgroup of G.

Proof. First note that from [41], 9,(G) = (¢* — 1)(¢* — ¢)/(2(¢+1)). Second, by [10]

and [37], the maximal subgroups of G are isomorphic to one of the following:
2. Spa(q) 1S3

3. Spa(q) x Spa(q)

4. Spe(qo), where ¢ = ¢, some m > 1

6. O (q)
7. a maximal parabolic subgroup of G.

If H is as in (1), then by Clifford theory, m(H) < 3(¢* + 1) < 0,(G), since
m(SLs(¢*)) = ¢® + 1. Hence by Lemma [5.1.1 H is not of this form.

If H is as in (2), then (Spa(q))® < H of index 6, so by Clifford theory, m(H) <
6(q+ 1)3, which is smaller than 9,(G) unless ¢ = 4. When g = 4, we have 6(¢+1)* <
¢*(¢> — 1), so we can restrict our attention to the Weil characters, by Theorem [1.1.1]
Now since the /-modular Weil characters are of the form X or ¥ — 14 for some complex
Weil character x € Irr(G) (see Table [1.2)), it suffices by Lemma to note that
neither x(1) nor x(1) — 1 divides |H| for any complex Weil character x, so these
degrees cannot appear as ordinary character degrees for H. Hence again, H cannot
be of this form.

If H is asin (3), then m(H) < (¢*+1)(¢+1)?, since by [49], m(Spa(q)) < ¢+1 and
m(Sps(q)) < (¢ +1)*(¢* +1). Hence m(H) < D, where D is the bound in part (B)
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of Theorem [1.1.1] so by Theorem x must either lift to an ordinary character or
belong to a unipotent block of G.

Moreover, part (A) of Theorem yields that the only irreducible Brauer char-
acters in a unipotent block that do not lift and have degree at most m(H) are
,;% — 1,85 — 1 in the case l(q+1), ;% — 1 in the case ¢|(¢* — g+ 1), or pi — 1 in
the case £|(¢*> + ¢ + 1). From [49], we see that none of the degrees corresponding to
these characters occur in Irr(H) = Irr(Sps(q)) ® Irr(Spa(q)), and moreover none of
the degrees of characters in Irr(G) can occur in Irr(H). Thus by Lemma there
are no possible such modules V' for this choice of H.

Finally, suppose H is as in (4). Then

m(i) = { @+ D@ a5+ Dl +1)°if gy >4
65(q0 + 1)(ai + (s + a5 +1) ifgo <4

by [49], and 9,(G) = " —D6" —4i") g

2(q+1)
(qg - 1)(618 - qg) Lo 4 2 2 2
(G > = — +q+1 - 1) >m(H
e( )_ 2((]3_'_1) 2%(% qo )((10 ) ( )

as long as qo > 4, and we have only to consider the case H = Spg(2).

Here as long as ¢ > 8, we also have 0,(G) > m(H), so we are reduced to the
case H = Spg(2),G = Spg(4). Then m(H) = 512 and 0,(G) = 378. Moreover, from
Theorem [I.1.1] the only irreducible ¢-Brauer characters of G which have degree less
than or equal to m(H) are Weil characters, which are all of the form X or ¥ — 1
for x € Irr(G). Now, from GAP’s character table library (see [24], [L1]), it is clear
that the only /-Brauer character of G whose degree also occurs as a degree of H is
a3, which has degree 378. However, there is an involutory class of H on which the
character of this degree takes the value —30, but there is no such involutory class in
G for az. Thus a3 does not restrict irreducibly to H, and there are no possible triples
(G, H,V) with this choice of G and H, by Lemma [5.1.3|

Therefore, we are left only with subgroups H as in (5)-(7), as claimed.



100

Theorem 5.2.2 (Reduction Theorem for Sps(q)). Let (G, H,V) be a triple as in
Problem (1], with ¢ # 2, G = Sps(q), ¢ > 4 even, and H < G a mazimal subgroup.

Then H is a maximal parabolic subgroup of G.

Proof. Let V afford the character y € IBr,(G). From [41],

(@-D(@—q 1 2
2(q+1) —EQ(C]—U )

0(G) =
and by [23] and [10], the maximal subgroups of G are

1. a maximal parabolic subgroup of G (geometrically, the stabilizer of a point or

a line)
2. Spa(q) 1Sy (geometrically, the stabilizer of a pair of polar hyperbolic lines)
3. 04(q), e =+ or —
4. Spa(q?) - 2
5. [q"] : Cq2—1

6. Sps(qo), where ¢ = ¢f*, some m > 1

9. Cq2+1 . 4

10. Sz(q) (when g = 2™ with m > 3 odd)

If H is as in (2), H has an index-2 subgroup K isomorphic to Sps(q) X Spa(q), so
by Clifford theory, an irreducible character of H must restrict to either an irreducible
character of K or the sum of two irreducible characters of K of the same degree.

In particular, this must be true of x|y, as we are assuming x is irreducible on H.
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Suppose first that x|x € IBr,(K). Now by [49], m(K) = (¢ + 1)* < 0,(G) unless

= 4, in which case @y is the only character of G with degree sufficiently small.
Since Spy(4) has ordinary character degrees 1,3,4, and 5, we see that as(1) = 18 is
not an ordinary character degree of K, and therefore by Lemma , Qs is not
irreducible. Thus we must have that ygx is the sum of two irreducible characters
of the same degree, and hence x(1) is even. Moreover, x(1) < 2(¢ + 1)?, which is
again smaller than 9,(G) unless ¢ = 4. When ¢ = 4, using the GAP Character Table
Library [I1], we see that this leaves the ¢-modular Weil characters as, Bg,ﬁ%, and
p3, which have degree 18,34,34, and 50, respectively, as the only possibilities for .
(The characters pg -1, pA% — 1, or B\Q — 1 have odd degree, a contradiction.) Now,
using GAP, we see that K has no irreducible character of degree 17 and exactly one
irreducible character of degree 25. Inspecting the character values, we see that on
classes consisting of elements of order 3, p does not take twice the value of this degree-
25 character of K. Thus 3, p3, and p3 do not restrict irreducibly to H. Also, using
GAP, we can construct the character table of H to see that there is a unique character
of degree 18, but that this character takes the value 0 on one of the classes containing
order-4 elements, and as does not. Hence this character is not the restriction of o,
and by Lemma [5.1.2) H cannot be as in (2).

If H is as in (3), then

€ SLQ( 2)2 ife=—
i =0i(g) = { (SLs(q) X%LQ(Q)).Q ife=+ "~

Y

Thus m(H) < 2(¢*> + 1) or 2(q + 1)2, which are smaller than 0,(G) for ¢ > 8. Now,
when ¢ = 4, the only members of IBr,(G) with sufficiently small degree are the /-
modular Weil characters corresponding to v, B2, p3, and p3, and hence either lift to an
ordinary character or are of the form Yy — 14 for an ordinary character y of G. Direct
calculation using GAP and the GAP Character Table Library ([24], [I1]) shows that
no ordinary character x € Irr(G) satisfies x|y € Irr(H) or x|y — 1 € Irr(H) when
H =2 S1,(16).2. Thus by Lemma [5.1.3] H cannot be Oy (4).
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If H=0;(4) = (SLy(4) x SLy(4)).2, then as discussed above, x cannot restrict
irreducibly to K = SLy(4) x SLy(4) = Spa(4) x Spa(4). Repeating the argument
from case (2) above, we see that the only possibility for x is the Weil character as.
Now, computation in GAP shows that ay restricts to SLy(4) x SLy(4) as the sum of
two irreducible characters of degree 9. However, it is clear by inspecting the character
values on the third class of involutions in the character table for O} (4) stored in GAP
[24] that the unique character of degree 18 cannot extend to the unique character,
a, of degree 18 in G. Hence, by Lemma [5.1.2] H cannot be as in (3).

If H is as in (4), then the bounds for m(H) are the same as O, (¢), and when
q = 4, the two groups are the same. Thus the same proof as in case (3) when € = —
shows that H cannot be as in (4) either.

If H is as in (5), then it is solvable and by the Fong-Swan theorem, every ¢-Brauer
character lifts to an ordinary character. Hence by Lemma [5.1.2} it suffices to consider
the problem when y € Irr(G) is an ordinary character. H has a normal subgroup of
the form [¢?] : C,—; with quotient group C,_1, so by Clifford theory any irreducible
character of H has degree t - 6(1), where ¢ divides ¢ — 1 and 6 € Trr([¢*] : Cy1).
Moreover, since [¢*] is a normal abelian subgroup of [¢*] : C,_1, Ito’s theorem (see
[33, Theorem (6.15)]) implies that 6(1) divides ¢ — 1. It follows that any character of
H must have degree dividing (¢ — 1)?, which is smaller than 9,(G), so H cannot be
as in (5).

If H is as in (6), then

m(H)=<¢ qlep+1)(@g+1) ifgp=4
qé‘ if go = 2
by [49], and 9,(G) = W. Thus
4 4 2
q9 — 1)(q — ¢ 1
oGy > W= Dl — %) _Laa py o )

2(¢¢+1) 2

and H cannot be as in (6).
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If H is as in (7) or (8), then |H| = 8(¢ + 1)?, and therefore by Lemma [5.1.1]
my(H) < 2v/2(q £ 1), which is smaller than 0,(G) for ¢ > 4. If H is as in (9), then
|H| = 4(¢*> + 1), so my(H) < 24/¢*> + 1, which is also smaller than d,(G) for ¢ > 4.
Hence, H cannot be as in (7)-(9).

Finally, if H is as in (10), then from [49], m,(H) = (¢ — 1)(q¢ + v/2¢ + 1), which
is smaller than 0,(G) as long as ¢ is at least 8. Since this subgroup only exists for
q = 2™, m > 3 odd, this shows that H cannot be as in (10) either, which leaves (1)
as the only possibility for H, as stated.

[

5.3 Restrictions of Irreducible Characters of Sps(q) to Ga(q)

Let ¢ be a power of 2. The purpose of this section is to prove part (2) of Theorem
[1.1.2 Viewing H = G»(q) as a subgroup of Sps(q), we solve Problem [1] for the
case G = Spe(q), H = Ga(q), and V is a cross-characteristic G-module. That is,
we completely classify all irreducible ¢-Brauer characters of Spg(q), which restrict
irreducibly to G3(q) when ¢ # 2. As remarked earlier, this provides the “converse” of
G. Seitz’ theorem [64] for case (iv) when p = 2.

For the classes and complex characters of Spg(q), we use as reference Frank
Liibeck’s thesis (see [47]), in which he finds the conjugacy classes and irreducible
complex characters of Spg(q). For Ga(g), we refer to [22], in which Enomoto and
Yamada find the conjugacy classes and irreducible complex characters of Go(q). For
the remainder of this section, we adapt the notation of [22] that ¢ € {1} is such
that ¢ = ¢ mod 3.

For the ¢-Brauer characters lying in unipotent blocks of Spg(q), we refer to work
done by D. White in [76], and for the Brauer characters of Ga(q) we refer to work
by G. Hiss and J. Shamash in [29], [32], [66], [67], and [68]. Since many of these

references utilize different notations for the same characters, we include a conversion
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Table 5.1: Notation of Characters of Sps(q)

Degree | Guralnick-Tiep [27] | Liibeck [47] | D. White [70]
% Pé X1,4 X4
% & X1,2 X2

q;T_ll 75 Type x13
% ag X1,5 X5
% B3 X1,3 X3

q;T_ll G Type xi9

Table 5.2: Notation of Characters of Ga(q)

Degree Guralnick-Tiep [27] | Enomoto-Yamada [22] o 9]11;828}_,?(?6??6?78]}3[68]
% (P3)|cs(a) 05 X5
% (043>’G2(q) 5 X7

= (1) |eata) xs (i) Xi,

= S Y5 (0) X,
a(P+a+D(aF

q(q2—q+61)(q—1)2 0/1 §16

q(q4+§12+1) 91 X18

3 4 14

between notations in Tables 5.1l and 5.2

Our first step is to find the fusion of conjugacy classes from Go(q) into Sps(q).

5.3.1 Fusion of Conjugacy Classes in G(q) into Sps(q)

In this section, we compute the fusion of conjugacy classes from H = Gs(q) into
G = Sps(q). Table 5.3 summarizes the results.
We begin with the unipotent classes. In the notation of [22] and [47], the unipotent

classes of H and G, respectively, are:
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Class in Gg(q) AO A1 A2 A31 Agg A4 A51 A52
Order 112 ] 2 4 4 4 8 8

1,0 1,1 1,2 1,3 1,4 1,5 1,6 1, 1,8 1,9 1,10 1,11

Order 1 2 2 2 2 4 4 4 4 4 8 8

Armed with the calculation of commutators of unipotent elements of H and G
given in [22] and [47], respectively, explicit calculations shows that for any element
u € H of order 8, u* lies in the class A;. Similarly, any u € G of order 8 satisfies that
u* lies in the class c12. Thus the class A; of H must lie in the class ¢; 5 of G.

Now, [40, Proposition 7.6] implies that the characters 7 for 1 < i < (¢ — 2)/2
restrict irreducibly from GLg(q) to the character y3(i) in Ga(g) (in the notation
of [22]). Since the only eigenvalues of unipotent elements are 1, we can use the
values given in [22] of x3(i) on the different classes and Equation to find the
dimensions of the eigenspaces for each unipotent class in Gs(q). Then using the
explicit descriptions of the unipotent class representatives in [47, Sections 1 and 4],
we find the dimensions of the eigenspaces for each unipotent class in Spg(q) so as to
find the values of T§ on the classes. With this information, we see that ¢; 4 is the only
conjugacy class of G of involutions on which 7 has the same value, ¢*> + ¢ + 1, as on
the class A, in H. This tells us that the class Ay of H must lie in the class ¢; 4 of G.

Moreover, x3(i) = 74|y has the value ¢+ 1 on all classes of order-4 elements in H.
Among the classes of order-4 elements of G, 74 only has this value on the classes C15
and ¢y 6. Hence Ay, Aso, and Ay must sit inside (¢ 5 U ¢16). However, the order of
the centralizer in H = Gy(q) of an element of As; is 6¢* and of Ay is 3¢, so if e = 1
(that is, ¢ = 1 mod 3), then these do not divide 2¢°(¢ + 1), which is the order of
the centralizer in G = Spg(q) of an element in the class ¢; 6. On the other hand, if
¢ = —1, then they do not divide 2¢%(q — 1), which is the order of the centralizer in
Spe(q) of an element in the class ¢;5. Noting that |Cy(z)| must divide |Cg(x)| for
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x € H, we deduce that

C15 if e = 1,

ASI’A4 < Hm { Cl,6 le = -1
We claim that the class A3y does not fuse with the classes As; and Ay in Spg(q).
C15 if e = ]_,
C1,6 ife=-—1
the character x = x1.2 € Irr(G) in the notation of [47]. Note that this character has

Indeed, suppose otherwise, so that As;, Ay, A4 are all in { . Consider
the same absolute value on all elements of order 8, namely . From [22, Tables I-1,
I1-1], we know the fusion of the Borel subgroup B = UT into the parabolic subgroup
P of H and the fusion of P into H. For the convenience of the reader, we have
included these fusions and the class sizes for the unipotent classes of B in Table [5.4]
following the notation of [22]. Using this information and the fusion of the elements
of order 2 and 4 from H into G which we know (or are assuming), together with the
fact that U < B is the union of the unipotent conjugacy classes of B, we calculate
that [xu, xu] is not an integer, a contradiction. Therefore, Azy must not fuse with
Aszp and Ay, so
Ay C Hﬂ{ ae ife=1,

s ife=-—1

We return to the remaining unipotent classes (namely, those consisting of elements
of order 8) after calculating the fusion of the non-unipotent classes.

Let W and W denote the natural modules for SLg(q) and SUs(q), respectively.
The eigenvalues of the semisimple elements acting on W or W is clear from the nota-
tion for the element in [47] and [22]. Namely, the element h(z1, 29, 2z3) has eigenvalues
21, %2, 23, zgl, z;l, zfl.

For example, the class representative in [22] for the class D (i) of Ga(q) is
h(n',n7%, 1), and the eigenvalues (acting on either W or W) of this element are
n', ', n~%,n~" 1, 1. The class representative in [47] for the class ¢10,0(i1) is h(E1, £, 1),
which has eigenvalues éil, Nil,éf u éf “1,1. Now, we see that both 1 and é represent
primitive (¢ + 1)st roots of unity in C in the respective papers, and a comparison of

notations tells us that Dy (2) must sit inside ¢10,0(%).
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A similar analysis of notations yields the results for the other semisimple classes,

which can be found in Table[5.3] For the convenience of the reader, we include below

the list of semisimple class representatives in each notation, together with the fusions

for the semisimple classes:

N Nth root of unity in [22] | Nth root of unity in [47]
g—1 g G
g+1 n &1
¢ —1 0 G
(¢*—1)/3 w
¢ +q+1 T G
¢ —q+1 o g
Semisimple Class | Representative Class in Representative
in Gs(q) (from [22)) Spela) (from [47))
MGG G =1
cso €=1, % S Fi
By h(w,w,w) { 6o €= —1 h(Er €1 EN) e=—1
taking i; = (¢ +€)/3
Culi) Ry, 7%, 1) 1 MGG G )
! o 0 taking ip = 2i;
Cn (i) h(y', 1) s PG G 1)
. S h( 11 M2 i3)
A 1—] 15151
C(i, j) h(v', 97, 77) €22,0 taking i3 — iy + iz
Dll(i) h(ni 77—21’ ni) e h( ila 1'17 12)
’ ’ 0 taking io = 243
Dy (i) h(n', ", 1) €10, h(E &)
. S h( 11 ¢l ig)
- ] 195151
D(Zvj) h(77 s 1751 ) 29,0 taking i3 _ il + Z.2
, o ICRNCENGD
i pg—1)t qi 152 161
Er (i) h(B", 0175, 07%) 26,0 taking i = i1
. . WG G
i nqi (g+1)i » 52 1
Es (i) h(6", 07,0 ) 24,0 taking iy — i1
— 3
. ) ) ) h((?; 1 qin ~q n)
i qi g 163 563
Es (i) P, r, ) €28,0 taking i; = (¢ — 1)i
——— "
. ) . . h(&s L Fqia ¢l 11)
i —qi g% 153 083
Ea(®) hlo, o7, 0T) e31,0 taking i1 = (¢ + 1)i

We note that the result for By depends on € since the element w of ]]:7‘;2 in the
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notation of [22] is n@*V/3 if ¢ = —1 and 4@ V/3 if ¢ = 1, where 7 is a (¢ + 1)th root
of unity and v is a (¢ — 1)th root of unity.

Now, for arbitrary elements, we use the fact that conjugate elements must have
conjugate semisimple and unipotent parts. In the cases of the classes c¢141(i), co1.1(7)
in Spg(q), these are the only non-semisimple classes with semisimple part in the

appropriate class, from which we deduce
Clz(i) C 01471(7;) N H and Dlg(l) C C2171(7;) N H.

For C = Cy(i), Das(i), By in G2(q), comparing the dimensions of the eigenspaces
of the unipotent parts of the classes in Spg(q) that have semisimple part in the same
class as that of the representative for C, we obtain only one possibility in each case,

yielding

. . . . c ife=1
022(2) C C&g(l), DQQ(Z) C 610,3(2), Bl C { CZi lf c— 1

This leaves only the classes By(0), B2(1), B2(2), and the classes of elements of
order 8 in Gy(q). For these classes, we again utilize the fact that the scalar product
of characters must be integral. Note that the character p3 is the character y;4 in
the notation of [47] and the character as is the character y; 5 in the notation of [47],
and that for the classes whose fusions have been calculated so far, these characters
agree with the characters 6 and 6, of Ga(q), respectively, in the notation of [22].
Also note that to compute [p8|cy(q)s P3lazi)] O [@slaue), @sles(], the fusion of the
order-8 classes is not needed, since the absolute value of each of these characters is
the same on all such elements of Spg(q).

Suppose that any of By(0), Bo(1), or Ba(2) fuses with B; in Spe(q). Then for
€ = 1, [pilase) P3lea(e] is not an integer since [f2,65] is an integer. If € = —1,
then [OZg’GQ(q),()é3‘G2(q)} is not an integer, using the fact that [6,05] is an integer.
Since there is only one other non-semisimple conjugacy class in Spg(q) with the same

semisimple part, this contradiction yields that By(0), B2(1), and B(2) must fuse in
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Spe(q), and

By(0) U By(1) U By(2) C { o de=1 a0 0

cgo ife=—1

Finally, we may return to the order-8 unipotent classes. If the two classes A5y, Aso
fused in Spg(q), then we would have that p} agrees with the character 6, on all
conjugacy classes of G5(q) except either As; or Asy. Using this fact, we can calculate
[93]Ga(), B2] to see that it is not an integer, so these two classes cannot fuse. If As
was contained in ¢;1; and Ase was in ¢ 19, we would again see that [p§|6~2(q), 92} is

not an integer, so we must have
A51 C 10 N GQ((]) and A52 C C1,11 M GQ((]),

which completes the calculation of the fusions of classes of G1(q) into Spg(q).



Table 5.3: The Fusion of Classes from Gs(q) into Sps(q)

(a) (b)
Class in Class in Class in Class in
Ga(q) Sps(q) Ga(q) Spes(q)
A() C1,0 B C5.0 if e = 17
A1 C1,2 0 C6,0 ife=-1
AQ C14 B C51 if e = 17
. 1 .
A cs ife=1, cg1 ife=—1
31 C16 ife=-—1 C5.2 if€:17
Y Sy B»(0) JRET I
A ce ife=1, oo ife=—1
32 C15 ife=-—1 C5.2 if€:1,
Y B,(1) JRET I
a5 ife=1, ceo ife=—1
A4 ’ . ’ ;
c1g ife=-—1 5o ife=1,
: By(2) T
A51 Cl,l(] C672 lf € = —1
Aso C1,11
(c)
Class in | Class in
Ga(q) | Sps(q)
Cll(i) C14,0
Cha(1) Cla,1
Co (1) 8,0
Coa(7) 33
C(iv j) C22.0
Dn(i) C21,0
D12(i) C21,1
Dzl(i) 10,0
Doy (1) C10,3
D(Z}j) €290
E;(7) €260
Ez(l) C24,0
E5(i) €280
E4(i) C31,0
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Table 5.4: Unipotent Classes of B and Fusion into P and H

Size of Class Class in B Class in P Class in H
1 Ag Ao Ao
g—1 A Ay A
qlg—1) Ag Ao Az
a*(g—1) Az Az Ay
*(g—1) Aqr Az Ao
%q2(q — 1) Aqo An Az
%qz(q —1)2 Aus Ago A3z
?(g—1) As1 Ay Ay
Ao e=—1 Asza e=—1
{ 1q2§q_1)22 =l A, 0<i<ite Ay i=0 e= Azp i=0 e=1
30°(@—1D7 e=1 Ay i#£0 e=1 Ay i£0 e=1
As t=0 As t=0
Ayo te A32 te
qQ(q - 1)2 each A53(t)’ te Fq Agql t e Qg Az te Qo
As t e Qs Ay t € Qs
g—1) Ag1 Ag1 Az
2q°(q —1)? Ag2 As2 Az
2q°(q — 1)? Ags Ag3 Aszo
24" (g —1)? A7 An As1
34" (g — 1) A7z A7z As2
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5.3.2 The Complex Case

In this section, we consider irreducible ordinary characters x € Irr(Spg(q)) which
restrict irreducibly to G3(g). We also discuss the decompositions of the linear Weil

character, p3 and unitary Weil character, (3, which are reducible over Go(q).

Theorem 5.3.1. Let G = Spg(q), H = Ga(q) with ¢ > 4 even. Suppose that V is an
absolutely irreducible ordinary G-module. Then V' is irreducible over H if and only if

V' affords one of the Weil characters
o i, of degree q(q+ 1)(¢* + 1),
o 71 1<i<((¢g—1)w—1)/2, of degree (¢°> + g+ 1)(¢* + 1),
o a3, of degree 3q(¢ —1)(¢* — 1),
o (5, 1<i<((¢g+1)r—1)/2, of degree (¢* —q+1)(¢> = 1).

Proof. Assume V|y is irreducible. Using [49] to compare character degrees of H
and G, we see that the degrees of the characters p}, 74, a3, ¢} are the only irreducible
complex character degrees of G which also occur as irreducible character degrees of
H. Moreover, we see that these character degrees appear in G with exactly the
multiplicity given in the statement of the theorem. Thus it suffices to show that each
such character indeed is irreducible when restricted to H.

Note that from [40], the characters 7 for 1 < i < (q — 2)/2 actually restrict
irreducibly from GLg(q) to G2(q), and 7i|g,(e) = x3(7) in the notation of [22].

We use the fusion of the classes of H into G found in Section to compute
the character values of (% on each class. The class representatives for G found in
[47] are given in their Jordan-Chevelley decompositions, from which we can find the
eigenvalues from the semisimple part (as discussed briefly in Section , and the
total number of Jordan blocks (and therefore the dimensions of the eigenspaces over

IF 2 for the relevant eigenvalues) from the unipotent part. We then obtain the values of



113

¢4 by using the formula (4.2.2). We conclude that (§|y agrees with the character x4(2)
of H in the notation of [22], and therefore is irreducible on H for each 1 <i < ¢/2.
The cases of the characters pl and a3 are easier, since we see that in the notation
of [47], p} is the unipotent character x;4 and a3 is the unipotent character xis.
Given the fusion of classes found in Section , we see that x14|p agrees with the
character 6, in [22] and x15|x agrees with the character 6 in [22], meaning that p3

and ag are therefore irreducible when restricted to Ga(q).

]

Note that Theorem tells us that the only characters which restrict irreducibly
from Spg(q) to Ga(q) are Weil characters. Before moving on to the ¢-modular case, we
briefly discuss the restriction to Ga(q) of the Weil characters missing from Theorem

and show that they restrict as the sum of two irreducible characters.
Theorem 5.3.2. Let q be a power of 2. Then

1. the linear Weil character p3 in Irr(Spg(q)) decomposes over Ga(q) as
(p§>|G2(q) = 0 + 04,

and

2. the unitary Weil character B3 in Irr(Spe(q)) decomposes over Go(q) as

(Bs)lca(a) = 01 + Ou,

where 61,07,04 € Irr(G2(q)) are the characters of degrees %q(q +1)%(¢*> +q+1),
2q(q —1)%(¢* —q+1), and 3q(q* + ¢* + 1), respectively, as in the notation of
Enomoto and Yamada, [22].

Proof. This follows from the fusion of conjugacy classes found in Section [5.3.1] and

the character tables in [47] and [22], noting that the character p3 and (33 are given
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by x12 and x13, respectively, in the notation of [47]. (Indeed, by comparing degrees,
and using [49] for the multiplicities of degrees in Spg(q), we know that these are the

correct characters.) O

5.3.3 The Modular Case

In this section, we consider more generally the irreducible Brauer characters y &

IBr,(Spe(q)) in characteristic £ # 2 which restrict irreducibly to Ga(q).

Theorem 5.3.3. Let G = Sps(q), H = Go(q) with ¢ > 4 even. Let { # 2 and suppose
X € IBry(G) is one of the following:

-1
b ﬁilg - 1’ £| g1’ )
0, otherwise

o 7, 1<i<((¢—Dr—1)/2

® O3,

o (L 1<i<((g+1)r—1)/2.
Then x|u € 1Br,(H).

Proof. We may assume that ¢||G|, since otherwise the result follows from Theorem
[5.3.1] We consider the cases ¢ divides (¢ — 1), (¢ + 1), (¢* — ¢ + 1), (¢* + ¢ + 1), and
(¢* + 1) separately.

If ¢|(g—1), then (pi)|g = X15 in [32],[29]. From [32, Table I], we see that if £ = 3,
then indeed X 15 — 1y is an irreducible Brauer character of H. From [29], we see that
if ¢ # 3, then Xi5 is an irreducible Brauer character. We also see that (as)|y has
defect 0, so indeed (as)|y € IBry(H).

By [32] and [29], (E;)) H = )Aféa is an irreducible Brauer character, and the ((¢ —

1)y — 1)/2 characters (73)|g = X}, which lie outside the the principal block are also

irreducible Brauer characters, completing the proof in the case ¢|(¢ — 1).
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Now let ¢|(q + 1). In this case, Hiss and Shamash show in [32] and [29] that

. S, . . . +1),,—1
(73)|m = Xj, is an irreducible Brauer character and the %

characters (@,) H =
)/(\'éa lying outside the principal block are irreducible Brauer characters. Also, from
[32, Section 3.3] and [29, Section 2.2], X1; = @s|y € IBry(H). Finally, note that
(p3)|rr has defect 0, which completes the proof in the case ¢|(g + 1).

Suppose £|(¢* — q + 1), where £ # 3. From [68, Section 2.1], we see that X,
lies in the principal block with cyclic defect group and that X7 € IBr,(H). As this
character is the restriction of ag to H, we have (as)|g € IBry(H). We see from their
degrees that X5, X7,, and X}, are all of defect 0, so their restrictions to f-regular
elements are irreducible Brauer characters of H. But these are exactly the restrictions
to H of the characters p}, 7%, and (i, respectively, which completes the proof in the
case l|(¢> —q+1).

Now assume £|(¢>+ g+ 1), where £ # 3. Then from the Brauer tree for H given in
[68, Section 2.1], we see that Xi5—1 € IBry(H), and since (p)|g = X15 in Shamash’s

notation, this shows that ;:1,) — 1 restricts irreducibly to H. Also, X7, X}, and X,
have defect 0, so Xi7, X}, and X/, € IBr(H) as well. As (as)|g = Xur, (C5)|g = X},

and (75)|z = X{, in Shamash’s notation, it follows that all of the characters claimed
indeed restrict irreducibly to H, completing the proof in the case £|(¢®> + q + 1).
Finally, if ¢|(¢* + 1), then ¢ does not divide |H|, which means that IBr,(H) =
Irr(H), and the result is clear from Theorem
[l

Theorem 5.3.4. Let G = Spg(q), H = Go(q) with ¢ > 4 even. Suppose that V' is an
absolutely irreducible G-module in characteristic £ # 2. Then V is irreducible over H
if an only if the (-Brauer character afforded by V is one of the Weil characters

-1
o ﬁé - 1, €| a1’ ’
0, otherwise

o 7, 1<i<((q— e —1)/2
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L4 6[\3,
© G 1<i<((g+1)e—1)/2.

Proof. If V affords one of the characters listed, then V' is irreducible on H by Theo-
rem [5.3.3] Conversely, assume that V' is irreducible on H and let x € IBr,(G) denote
the /-Brauer character afforded by V. If x lifts to a complex character, then the result
follows from Theorem [5.3.1] so we assume x does not lift. We may therefore assume
that ¢ is an odd prime dividing |G|. We note that x(1) < m(H) < (¢+1)*(¢* +¢*+1)
by [49], and if ¢ = 4, then m(H) = q(q + 1)(¢* + ¢* + 1).

Since (¢ — 1)(¢*> + 1)(¢* + ¢*> + 1) > m(H) when ¢ > 4, it follows from part (B)
of Theorem that either y lifts to an ordinary character or y lies in a unipotent
block of G. In the first situation, Theorem and Lemma [5.1.2] imply that x is
in fact one of the characters listed in the statement. Therefore, we may assume that
x lies in a unipotent block of G and does not lift to a complex character. Again we
treat each case for ¢ separately.

Since m(H) is smaller than the degree of each of the characters listed in situation
A(3) of Theorem [L.1.1] we see that the only irreducible Brauer characters which do
not lift to a complex character and whose degree does not exceed m(H) are p3 — 1g
and B3 — 1¢ when €|(q+1), p% — 1¢ in the case 3 # £|(¢> — ¢+ 1), p} — 1¢ in the case
l(¢* +q+1), and X — 1g when £|(¢* + 1).

From Theorem , we know that (p3)|a,q) = 61 + 01 and (B3)|cyq) = 07 + 04
in the notation of [22]. Also, 8, = X14,0; = Xj6, and 0] = X5 in the notation of
Shamash and Hiss.

Suppose £|(q + 1). From [29, Section 2.2], we know that X1, — 1 € IBry(H) when
¢ # 3, and therefore neither ;% — 1 nor B3 — 1 can restrict irreducibly to IBr,(H). If
¢ = 3, then by [32 Section 3.3], )?14 + )?18 — 1 ¢ IBry(H), since this is ¢14 + 2¢15 in
the notation of [32, Table II]. Similarly, X4 + X1 — 1 & IBr,(H), so we have shown

-~

that if ¢ = 3, again neither p3 — 1 nor 33 — 1 can restrict irreducibly to IBr,(H).
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Suppose £|(¢* — g+ 1), where £ # 3. From [68, Section 2.1], the Brauer character
)A(m — 1 is irreducible, and X4 is defect zero, meaning that )?14 is also irreducible.
But this implies that X 14+ X 16 — 1 is not irreducible. Recalling again that X4 = 6,
and X5 = 0y, this shows that p2 — 1¢ does not restrict irreducibly to H.

(P +qg+1) = q:_—_ll, then we know that pi — 1¢ is irreducible, by Theorem
[5.3.3] so we are done in this case.

Finally, if £|(¢>+1), then ¢ cannot divide |H |, which means that IBry(H) = Irr(H),
and every irreducible Brauer character of H lifts to C. Since the degree of Yg — X1 is

not the degree of any element of Irr(H ), we know x cannot be Y — X1, and the proof

is complete.

5.3.4 Descent to Subgroups of Gs(q)

We now consider subgroups H of Spg(q) such that H < G5(q). In [55], Nguyen finds
all triples as in Problem |1 when G = G(¢q) and H is a maximal subgroup. Noting
that none of the representations described in [55] to give triples for G = G1(q) come
from the Weil characters listed in Theorem [5.3.4] it follows that there are no proper
subgroups of H of G(q) that yield triples as in Problem (1| for G = Spg(q).

5.4 Restrictions of Irreducible Characters of Sps(q) to the
Subgroups O3 (q)

In this section, let ¢ > 4 be a power of 2, G = Sps(q), and H* = OF(q) as a subgroup
of G. Since q is even, we have H* = QF(q).2 = L{(q).2 (see [37, Chapter 2]). This
means that there is an index-2 subgroup of H*, which we will denote K*, which

satisfies
e~ e ) SLa(q) e=+
K= Li(q) = { SUy(q) €= —.
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We at times may simply refer to H and K rather than H* and K& if the result is
true in either case.
The following lemma describes the order-2 automorphisms of K+ inside H*, which

will be useful when applying Clifford theory to these groups.

Lemma 5.4.1. The order-2 automorphism of K~ = Qg (q) identified with Ly (q) in-
side H™ = O (q) = Q5 (q)-2 identified with Ly (q).2 is given by 7: (ai;) — (af;). The
order-2 automorphism of K™ = Q¢ (q) identified with L] (q) inside H" = Of (q) =
Qf (q).2 identified with L] (q).2 is given by o: A~ (A~H)T.

Proof. The first statement can be seen easily since Out(K ™) is cyclic (see, for ex-
ample, [37, Section 2.3]) so K~ has only one order-2 outer automorphism.

From [37, Chapter 2], we see that € (¢q) is the index-2 subgroup of Of (¢) com-
posed of elements that can be written as a product of an even number of reflections.
Hence the order-2 automorphism can be given by conjugation by any element of
O¢ (¢) which is a product of an odd number of reflections. In particular, the matrix
Js = ( .?3 ‘g’ ) can be written as the product of 3 reflections. Namely, J3 is the
product ri7rors of the reflections r; switching the standard basis elements e; and f;.

Now, from [37, Chapter 2], the identification of L] (¢) with Q¢ (g) is given by the
action of Ly (¢q) on the second wedge space A*(W) of the natural module W = F;
for L} (q). We claim that the automorphism o: A — (A™1)T of L] (q) corresponds to
conjugation by Js in Of (¢) under this identification. Certainly for g € Q¢ (¢q), we have
gJ3g" = Js, so JzgJs = (¢g71)T. Hence it suffices to note that by direct calculation,

the transpose of an element in L} (¢) acting on its natural module corresponds to the

transpose of the corresponding action on the wedge space. O]

The purpose of this section is to show that restrictions of nontrivial representations

of G to H are reducible. We again begin with the complex case.
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Theorem 5.4.2. Let G = Spg(q) and H = OF(q), with ¢ > 4 even. If 1 # x €
Irr(G), then xg is reducible.

Proof. Assume that x|y is irreducible. For the list of irreducible complex character
degrees of K* = LF(q) and G = Sps(q), we refer to [49].

As [H : K] = 2, we see from Clifford theory that yg has degree e - ¢(1) where
e € {1,2} and ¢ € Irr(K*). Inspecting the list of character degrees for K* and for
GG, we see that for ¢ > 4 there is only one character degree of G which matches a
character degree or twice a character degree for K*. It follows that the only option
for x(1) is (¢* + 1)(¢> — ¢+ 1)(¢ + 1)? in case — and (¢* + 1)(¢* + ¢+ 1)(¢ — 1)* in
case +, and that e = 1. This means that if x|z is irreducible, then x|k must also be
irreducible.

From [47], we see that these characters are x = xs1 and Xo1, respectively. In

Liibeck’s notation [47], the characters can be written
1
X8,1 = 6(R8,1 + 3Rg 3+ 2Rg7)

and

1
X9,1 = 6(339,5 + Rgg + 2Ry 19).

In particular, on unipotent elements, these characters satisfy

1
X81 = 6(@1,1 +3Q13+2Q17)

and
1
X9,1 = 6<3Q1’5 + Q15 +2Q1,10),

where @);; is the Green function from [47, Tabelle 16]. (In Liibeck’s notation, 7 is the
index of the semisimple element, and j is the index of the torus.) We can use this to

see that on the classes of involutions, the values of x5, and xo; are as shown below:
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C10 = {1} C1,1 C1,2

Xsi | (@ + D@ —q+Dg+1)? | (@+1)(*+1) [ (g+D(@+¢+1)
Xoa | (@ +D(@+qg+D(g=1* ] —(¢—D(@+1) | (=1 —¢—1)
C1,3 C14
xsi| (g+D)(¢*+1) | ¢@+qg+1
Xou | —(¢=1D(+1) | ¢ —q+1

However, from [58], the characters xs(k,¢) of SU,(q) which have degree (¢* +

1)(¢*> — ¢+ 1)(q+ 1)2, have the value 2¢®> + ¢ + 1 on one of the classes of involutions.
(Here we may also use the character table for GUy(q) = Cyq1 X Ly (q) constructed by
F. Liibeck for the CHEVIE system [26].) Since this value does not occur on any of the
involution classes of G for xs 1, we therefore see that s does not restrict irreducibly
to H~. Similarly, the characters of SL4(q) of degree (¢> +1)(¢*> + g+ 1)(¢ — 1)? have
the value 2¢® — ¢ + 1 on one of the involution classes (see, for example, the character
table for GL4(q) = C,_; x L} (q) constructed by F. Liibeck for the CHEVIE system
[26]), so x9.1 also does not restrict irreducibly to H™.

Thus for ¢ > 4, there are no irreducible characters of G which restrict irreducibly
to H.

In the case ¢ = 4, there are additional character degrees ¢(1) of K for which
2¢(1) is a character degree for G. For K~ = SU,(4), these degrees are (¢* + 1)(¢* —
g+ 1) = 221 and (¢ + 1)*(¢*> —q¢+ 1) = 325, and for KT = SL,(4), they are
(> +q+1)(g—1)*=189 and (¢* + q + 1)(¢*> + 1) = 357. For each of these degrees,
there is exactly one character of Spg(4) with twice that degree. Using GAP [24] and
the GAP Character Table Library [I1], we can find the character tables explicitly for
Spe(4),SUL(4), and SLy(4).

There are exactly two characters of degree 221 in Irr(SU4(4)), and one of degree
442 in G. Namely, this degree-442 character of G is the Weil character $3. From direct
calculation in GAP (in particular using the “PossibleClassFusions” function), we see
that the restriction of f3 to K~ is indeed the sum of these two characters. However,

these characters extend to irreducible characters of H~, which can be seen as follows.
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These characters are x7, xs € Irr(K ™) in the notation of the GAP Character Table
Library [11]. However, by Lemma the order-2 automorphism of K~ inside H~

is given by 7: (a;;) = (af;). Thus if x; and xg do not extend, then we must have
X% = Xs, since H~ /K~ is cyclic. Now, when using GAP to construct the conjugacy

class representatives of SU4(4):
List (ConjugacyClasses(SpecialUnitaryGroup(4,4)), x->Representative(x));

we see that classes 48 and 49 must correspond to the set {5e,5f} in the notation
of [I1], by inspection of the size of the centralizer. We note that y; # xg on the

conjugacy classes be, 5f. Now, creating a function for 7 in GAP by

tau:=function(r)
local z;
z:=[List(r[1], x->x"4),List(r[2], x->x"4),
List(r[3], x->x"4),List(x[4], x—>x"4)];
return z;

end;

and using the “IsConjugate” function, we see that elements A of each of these classes
are conjugate in SU,(4) to 7(A). But this means that x7(A) = x7(A) # xs(4),
meaning that y; and yg must be fixed by 7, and therefore must be extendable to
SU4(4).2. Thus the restriction of S5 is reducible, as it restricts to H~ as the sum of
two characters.

Along the same lines, there are two characters of degree 189 in Irr(SL4(4)), and
one of degree 378 in G (namely, a3), and from direct calculation in GAP as above, we
see that the restriction of a3 to K is again the sum of these two characters. However,
we claim that these characters again extend to irreducible characters of H*. Indeed,
the characters of K in question are x5z and yg3 in the notation of [II]. By Lemma

5.4.1} the order-2 automorphism of K inside H* is given by o: A — (A™1)T. Thus
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if x52 and xe3 do not extend, then we must have xZ, = xs3. Now, when using GAP

to construct the conjugacy class representatives of SL,(4):
List(ConjugacyClasses(SpeciallLinearGroup(4,4)), x->Representative(x));

we see that classes 6 and 8 must correspond to the set {5a,5b} in the notation
of [I1], by inspection of the size of the centralizer. Now, ys2 # Xe3 on these classes.
But again using the “IsConjugate” function, we see that elements A of each of these
classes are conjugate in SLs(4) to 0(A) = (A™1)T. But this means that xZ,(A) =
X52(A) # X63(A), s0 x52 and xe3 must be fixed by o, and therefore extend to SL,(4).2.
Thus as|g+ is the sum of two characters, so is reducible.

There is exactly one character, ¢, of degree 325 in Irr(SU4(4)), which means that
if x(1) = 650, then x|x- = 2¢. Now, as H~ /K~ is cyclic and ¢ is H -invariant, we
see that ¢ must extend to a character of H™, so x|x- # 2¢.

Similarly, there is exactly one character, ¢, of degree 357 in Irr(SL4(4)), which
means that if y(1) = 714, then the restriction of x to K™ is twice this character.
Again, as H* /K™ is cyclic and ¢ is H*-invariant, this is not the case.

]

Lemma 5.4.3. Let G = Sps(q) and H = OF(q), with ¢ > 4 even and let x €
Irr(G) be one of the characters xa, X3, X4, X6 @0 the notation of D. White [76] (i.e.
X12, X135 X14, X16 n F. Libeck’s [[7] notation). If x|g — A € Irr(H) for X € I/-_;, then
the restriction to K = L7 (q) also satisfies x|x — M x € Irr(K).

Proof. Write 6 := x|y — A € Irr(H). Note that since ¢ > 4, and x(1) is divisible by
g, we know that x(1) is even. In particular, (1) = x(1) — A(1) = x(1) — 1 is odd.
Since K has index 2 in H, we know by Clifford theory that

t
O = Z 0,
=1
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where 6; € Irr(K), each 6; has the same degree, and t = [H : stabgy(6;)] divides
[H : K] = 2. That is, ¢ must be either 1 or 2. This means that if 6 is reducible,

then (1) is even, yielding a contradiction. Hence x|x — Al € Irr(K). O

Lemma 5.4.4. Let ¢ > 4 and x be one of the characters as in Lemma|5.4.5. Then
Xz — A & Ier(H) for any A € HU{0}.

Proof. Comparing degrees of characters of G and K (see, for example, [49]), we see
that neither x(1) nor x(1)/2 occur as a degree of an irreducible character of K for
any of these characters. Then by Clifford theory (see the argument in Lemma |5.4.3)),
we know that x|y & Irr(H). Moreover, x(1) — 1 does not occur as an irreducible

character degree for K, which means that x|x — Ag & Irr(K) for any A € H. Thus
by Lemma [5.4.3] x|y — A & Irr(H) for any \ € H. O

The above lemma yields the following:

Corollary 5.4.5. Let ¢ > 4 and let ¢ be a prime. If x € Irr(G) is one of the
characters xz, X3, X4, X6 in D. White’s notation, then Xy — 1y & 1Bry(H).

Proof. This follows immediately from Lemma [5.1.3] and Lemma O

We are now ready to prove the main theorem of this section, which generalizes

Theorem [5.4.2] to the modular case:

Theorem 5.4.6. Let H = OF(q) be a mazimal subgroup of G = Spe(q), with g > 4
even, and let £ # 2 be a prime. If x € IBry(G) with x(1) > 1, then the restriction

X|u is reducible.
Proof. Suppose that x|g is irreducible. We first note that from Clifford theory,
mg(Hi) = mg(Ki2> < 2mg(Ki>

Now

m(K*) < (¢ + D@+ 1) +q+1)
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and

m(K7) < (q+ 1)+ 1)(¢* —q+1)

(see, for example, [49]).

Note that q(¢* + ¢* + 1)(¢ — 1)3/2 > my(H ™) for ¢ > 4. Moreover, q(¢* + ¢* +
1)(¢ —1)3/2 > my(H"), except possibly when ¢ = 4. However, from [49], we can see
that if ¢ = 4, then in fact my(K) < 7140, so ¢(¢* + ¢* + 1)(¢ — 1)*/2 > my(H™") in
this case as well. Thus we know from Theorem that either y lifts to a complex
character, or x lies in a unipotent block.

Suppose that y lies in a unipotent block of G. Then the character degrees listed
in situation A(3) of Theorem are larger than our bound for m,(H~) for ¢ > 4
and are larger than my(H ") unless ¢ = 4 and ¢|(g+1). (Here we have again used the
fact that my(K™) < 7140.) Hence, by Theorem [L.1.1} x either lifts to an ordinary
character or is of the form Y — 15 where y is one of the characters discussed in Lemma
(and therefore do not remain irreducible over H), except possibly in the case
H=0{(4) and ¢ = 5.

If g =4 and ¢ = 5, the bound D in part (A) of Theorem is larger than
14280, so X35 — X5 is the only additional character we must consider. However, the
degree of Y35 — X5 is (¢ — 1)(¢* — ¢® + 3¢*/2 — q/2 + 1) = 13545, which is odd, so
by Clifford theory, if it restricts irreducibly to H™, then it also restricts irreducibly
to the index-2 subgroup K+. But 7140 < 13545, a contradiction. Hence X35 — X5 iS
reducible when restricted to H*.

We have therefore reduced to the case of complex characters, by Lemma |5.1.2]

which by Theorem [5.4.2| are all reducible on H.
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5.5 Restrictions of Irreducible Characters to Maximal
Parabolic Subgroups

The purpose of this section is to prove part (1) of Theorem We momentarily
relax the assumption that G = Spg(q), and instead consider the more general case
G = Spon(q) for n > 2. Let {e1,...,en, f1, ..., fu} denote a symplectic basis for the
natural module F2". That is, (e;, e;) = (fi, f;) = 0 and (e;, f;) = 05 is the Kronecker

delta for 1 < 4,7 < n, so that the Gram matrix of the symplectic form with isometry

0 I,
‘]"':<In o)’

as defined in Chapter 2 We will use many results from [27] and will keep the notation

group G is

used there. In particular, P; = stabg({e1,...,e;)r,) Will denote the jth maximal
parabolic subgroup, L; its Levi subgroup, @; its unipotent radical, and Z; = Z(Q;).

If we reorder the basis as {e1, ..., e, fjt1, .-, fu, f1, ..., fj}, then the subgroup Q)
can be written as

I AT Jn—‘ C
i (A7) Jn A € Myy,—9;;(F,),C € Mj(q),

Qj = 0 [2n72j A : T T A
0 0 I, C+C "+ (A")J,—;A=0
and
I; 0 C
Zj = 0 Ignfgj 0 . CEM](q),C+CT:O
0 0 I;
In particular, note that in the case j = n, @, is abelian and Z, = @,. Also,

L; = Spon_2j(q) x GL;(q) is the subgroup

A 0 0
Lj = O B 0 : A € GL]((]), B € Sp2n72j<q)
0 0 (A7)

Linear characters A € Irr(Z;) are in the form

I; 0 C
)\yi 0 I2n—2j 0 — (—1)TrFq/F2(Tr(YC))
0 0 I;
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for some Y € Mj;(q). These characters correspond to quadratic forms ¢y on IFg =
(f1s - [3)r, defined by gy (f;) = Yi; with associated bilinear form having Gram matrix
Y +Y7T. The P;-orbit of the linear characters Ay of Z; is given by the rank r and type
+ of gy, denoted by OF for 0 < r < j. We will sometimes denote the corresponding

orbit sums by w. From [27], we can see that for A € OF, the stabilizer in L; is

stabr, (A) = Span—2(q) x ([¢"V7"]: (GLj-(q) x O7(4))) .,

where [N] denotes the elementary abelian group of order N.

We begin with a theorem proved in [72].

Theorem 5.5.1. Let G = Spo,(q). Let Z be a long-root subgroup and assume V' is a
non-trivial irreducible representation of G. Then Z must have non-zero fized points

onV.
Proof. This is [72, Theorem 1.6] in the case that G is type C,,. O

Theorem [5.5.1] shows that there are no examples of irreducible representations of

G which are irreducible when restricted to P;.

Corollary 5.5.2. Let V' be an irreducible representation of G = Spa.(q), q even,

which is irreducible on H = Py = stabg({e1)r,). Then V is the trivial representation.

Proof. Suppose that V' is non-trivial and let x € IBr,(G) denote the Brauer character
afforded by V. By Clifford theory, x|z, = € ,co A for some Pj-orbit O on Irr(Z;)
and positive integer e. But in this case, Z; is a long-root subgroup, so Z; has non-zero
fixed points on V' by Theorem [5.5.1] This means that O = {1z,}, so Z; < kery;, a

contradiction since G is simple.

We can view Sp4(q) as a subgroup of G under the identification

Spa(q) = stabg(es, ... €n, f3, ..., fn).
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With respect to the usual ordering of the symplectic basis above, the embedding is

given by
A 0 B 0
A B 0 I,o O 0
0 0 0 I,_9

where A, B,C,D are each 2 x 2 matrices. To distinguish between subgroups of
Sps(q) and Spa,(q), we will write Pj(n) := stabgp,, (q)((€1, ..., €;)) for the jth maxi-
mal parabolic subgroup of Spa,(q), Pj@) for the jth maximal parabolic subgroup of
Spa(q), and similarly for the subgroups Z;,Q);, and L;. Note that P2(2) < P™ since

Spa(q) fixes es, ..., en. Moreover, Z82 < Z since

L 0 C 0
(2) I, C 0 I,o O 0 (n)
229(0 12)H 0o 0 1, o |€%
0 0 I,

T
and C € My(q) satisfies C' + CT =0, so ( g 8 ) + ( g 8 ) = 0 also.
The following theorem will often be useful when viewing Sp,(q) as a subgroup of

(G in this manner.

Theorem 5.5.3. Let g be even and let V' be an absolutely irreducible Spy(q)-module
of dimension larger than 1 in characteristic £ # 2. Then V is irreducible on Py =

stabg((e1, e2)r,) if and only if V' affords the (-Brauer character as.

Proof. Let Z := Z§2) be the unipotent radical of P,. First we claim that & is indeed
irreducible on P,. Note that as|z; = as|z since Z \ {1} consists of 2-elements. Now,
as(1) = |O5 |, and by Clifford theory it suffices to show that as|z = ZAGO; A=w,.
From the proof of [27, Proposition 4.1], it follows that nontrivial elements of Z belong
to the classes Asq, As, Ass of Sps(q). The values of w, are computed in the proof of
[27, Proposition 4.1], and the values of s can be found in [21]. (Note that as is the

character 65 in the notation of [21].) These character values are as follows:
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1 A31 A2 A32
wy [ qlg=1)2%/2] —qlg—=1)/2 | —qlq—1)/2 | q/2
oy [ qlg—1)/2 ] —qlq—1)/2 | —qlq—1)/2 | q/2

Thus as|z = w, , and @y must be irreducible when restricted to P.

Conversely, suppose that x is the Brauer character afforded by V, and x|p, =
¢ € IBry(P;). By Clifford theory, |z = e} ,.o A for some nontrivial Ps-orbit O of
Irr(Z). It follows that ¢ satisfies condition W5 of [27], so x is a Weil character of
Sps(q) by [27, Theorem 1.2].

Now, following the notation of the proof of [27, Proposition 4.1], we have
Glz =174 (¢ + Dwi + (2¢ + 2)w, .

Since Z consists of 2-elements, [27, Lemma 3.8] implies that (4|7 = as|z+62|z—12

for each 1 <i < ¢/2, so by the definition of (5 (see [27, Section 3]),

Glz =(g+ 1|z + (¢ +1)Blz —q- 12

Since we have already shown as|z = wy , it follows that §2| 7z = lz+w;+w, . Recalling
that Zﬁ|z = aslz + BQ\Z — 1z = 2wy + wy, this shows that if x is any of the unitary
Weil characters aside from s, then x|z contains as constituents multiple Py-orbits of
characters of Z, a contradiction.

Now suppose x is a linear Weil character. The values of w; and wy on Z are
obtained in [27, Proposition 4.1], and the values of p}, and p3 are obtained in [21].

These values are as follows:

1 A31 AQ A32

Wy ¢ —1 ¢ —1 -1 -1

wy gl —1)/2] —qlg+1)/2| qlg—1)/2 [ —q/2
py 4@ +1)/2 | —ql¢—=1)/2| qlg+1)/2 | ¢/2

p3 | alg+1)%/2 | ql¢+1)/2 | —q(q—1)/2 | q/2

From this we can see that

palz =wi +q-1z
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and

polz = (q+1) -1z +wi +wy.

Moreover, [27, Lemma 3.8] implies that on Z, 7|z = p3lz + p3|z + 1 for each 1 <
i < (¢ —2)/2. Thus any linear Weil character will also contain multiple Py-orbits of
characters when restricted to Z, a contradiction.

This shows that only @s can restrict irreducibly to P,, as stated.

The following corollary follows directly from the proof of Theorem [5.5.3]

Corollary 5.5.4. Let Z, be the unipotent radical of Py = stabgy, g ((e1, €2)r,). Then

OQ’ZQ = Z )\7 /82’22 = Z A+ Z >\+1Zza

AeOy X0y A€0;

and

C;’ZZZQ Z >‘+Z)\a

)\GO; A€,

for each 1 <1i < q/2. Moreover,
p%|ZQZQ'1Z2+Z)\’ p%|Z2:<Q+1)'1Z2+Z)‘+Z)‘7
)\E(’); AEOq AEO;

and

Tl =(20+2) 1z + > A+2 > A
A€01 \eoyF

for each 1 <i < (q—2)/2.

The following theorem shows that for any n > 2 and any characteristic £ # 2, the
group G = Spy,(2%) yields a triple (G,V, H) as in Problem [I| with H = P,.

Theorem 5.5.5. Let G = Spa,(q) with q even and n > 2, and let V' be an absolutely
irreducible G-module in characteristic £ # 2 affording the (-Brauer character Q.

Then V is irreducible on P, = stabg({e1, ..., en)F,).
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Proof. Note that IBry(Z,) = Irr(Z,) since Z, is made up entirely of 2 - elements.
Let \y € Irr(Z,) be labeled by

(Y,
Y_(Y3 Y4)€Mn(q)

with Y] € Msy(q),Ys € M, _(q). Identifying a symmetric matrix X € Ms(q) with

both
I, X )
( o ) e 7
and
I X4 (n)
( 0 I, ) € 2"
where
X 0
we see

)\y(X) _ (_1)Tr]Fq/]F2(Tr(X1Y)) _ (_1>TrFq/F2(Tr(XY1)) _ )\Yl (X)

Thus )\y|Z§2) = Ay;. Also, it is clear from the definition that gy|(s, f)e, = @v-
From [27, Proposition 7.2], @n[gp,,_o(q) contains ay,_; as a constituent, and con-

tinuing inductively, we see @, |gp,(q) contains &, as a constituent. Now, by Theorem

5.5.3| (ip is irreducible when restricted to PZ(Q), and s 4 18 the sum of the characters
2

in the orbit O, .
Since Qia|, 2 is a constituent of @, ), it follows that @[ ,m) must contain some
2 2 n
Ay such that gy, is rank-2. Since |05 | = a,(1) and |OF| > (1) for the other orbits

with r > 2, we know a,,| ) = Z,\eog A. Therefore a,| pm must be irreducible.
n n

It will now be convenient to reorder the basis of G = Spa,(q) as

{617627 sy [3, fay o fs 1 f2}-



131

Under this basis, the embedding of Sp4(¢) into G is given by

A B A 0 B
Spa(q) 2 ( c D ) = 0 Iysa 0 | € Spanlq)
C 0 D

where A, B, C, D are each 2 x 2 matrices.
Note that P\? < P and, moreover, Z{* = Z{"™. We will therefore simply write

Zy for this group.

Theorem 5.5.6. Let G = Spa,(q) with q even and n > 2, and let V' be an absolutely
irreducible G-module with dimension larger than 1 in characteristic £ # 2. Then V' is
absolutely irreducible on P zf and only if n = 2 and V is the module affording the

{-Brauer character Q.

Proof. Assume n > 2. Let x € IBr/(G) denote the ¢-Brauer character afforded by
V', and let ¢ € IBry(H) be the ¢-Brauer character afforded by V on H := PQ(n). Write
Z := Z,. The nontrivial orbits of the action of H on Irr(Z) and those of PQ(Q) on

Irr(Z) are the same, with sizes
0il=¢"~1, |0y |— a(q—1)%, |<9+|— a(q® - 1).

By Clifford theory, x|z = €Y .0 A for one of these orbits O and some positive
integer e. (Note that O is not the trivial orbit since G is simple, so x cannot contain
Z in its kernel.) It is clear from this that V'|y has the property Wzi in the notation
of [27], and therefore by [27, Theorem 1.2], y is one of the Weil characters from Table
42

If x is a linear Weil character, then the branching rules found in [27, Propositions
7.7) imply that x|sp,(g) contains lg,,,) as a constituent, and so x|z contains 1, as a
constituent, which is a contradiction.

If  is a unitary Weil character, then the branching rules found in [27, Proposition

7.2] show that x|sp,(q) contains Zk L (5 —7, where v € {0, 1} as a constituent. (Note
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that v = 1 in the case ¢|(¢+ 1) and x = 3, — 1.) But [27, Lemma 3.8] shows that
¢! = a, + B, — 1 on Z, so by Corollary X|z contains (¢/2)(w; + 2wy ) — 7, a

contradiction since x|z can have as constituents Z-characters from only one H-orbit.
We therefore see that n must be 2, and the result follows from Theorem [5.5.3

O

We are now prepared to classify all triples (G,V, H) as in Problem [l| when G =

Sps(2%) and H is a maximal parabolic subgroup.

Corollary 5.5.7. Let q be even. A nontrivial absolutely irreducible representation V'
of Spa(q) in characteristic £ # 2 is irreducible on a mazimal parabolic subgroup if and

only if the subgroup is Py and V affords the character Q.

Proof. This is immediate from Theorem [5.5.6| and Corollary [5.5.2]

Note that we have now completed the proof of Theorem [1.1.3]

We will now return to the specific group G = Spg(q). Let H = P3 = stabg((e1, ez, e3)r, )
be the third maximal parabolic subgroup, and note that here Z3 = (3 is elementary
abelian of order ¢°. We will simply write Z for this group. The sizes of the four

nontrivial orbits of Irr(Z) and the corresponding Ls-stabilizers are
|Ol| :q3_17 ’StabLS()\” :q3(q_1)<q2_1)7

0] = ala = 1)@~ 1), [stabs, (V)] = 2°(g ~ 1)(q F 1)
and
|05] = ¢*(¢ = 1)(¢" — 1), [stabz,(M)| = q(¢” — 1).

We begin by considering the ordinary case, ¢ = 0.

Theorem 5.5.8. Let V' be a nontrivial absolutely irreducible ordinary representation
of G = Sps(q), ¢ > 4 even. Then V is irreducible on H = P if and only if it affords

the Weil character as.
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Proof. Note that aj is irreducible on H by Theorem Conversely, suppose that
x € Irr(G) is irreducible when restricted to H. Since Z < H is abelian, it follows from
Ito’s theorem (see [33, Theorem 6.15]) that (1) divides [H : Z], which is

[H : Z) = |Ls| = |GLs(q)| = ¢* (¢ — 1)(¢* = 1)(¢* = 1).

Moreover, by Clifford theory, if A € Irr(Z) such that x|g € Irr(H|A), then x(1) is
divisible by the size of the orbit O containing X. In particular, this means that ¢ —1
must divide x(1). (Note that A # 1, since G is simple and thus Z cannot be contained
in the kernel of y.) However, from inspection of the character degrees given in [49], it
is clear that the only irreducible ordinary character of G satisfying these conditions
is «s.

]

Given any ¢ € IBry(H) and a nontrivial irreducible constituent A of ¢|z, we know
by Clifford theory that ¢ = ¢ for some 1 € IBr,(I|)\), where I := stabg(\). Then
|z = (1) - A and therefore ker A < kert. Note that |Z/ker \| = 2 since Z is
elementary abelian and A is nontrivial. Viewing ¢ as a Brauer character of I/ker,

we see

Istaby, 1/2
(1) < VIRl < VIR = (2Rl - o,

Now, ¢(1) = ¢(1) - |O| where O is the H-orbit of Irr(Z) which contains . If
A € Oy, this yields

e(1) < (¢* = 1)v2¢3(q— D)(a® — 1) = (g — 1)(¢* — 1)v/2¢3(q + 1),

and we will denote this upper bound by B;.

If A € OF, then we see similarly that

p(1) < gala £ (e ~ )v/APq — D@ F D).
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We will denote this bound by Bj, so
By = (¢ - D@~ 1)V~ 1, and B =¢ (@ - 1)(¢’ - 1).
For A € O3, we have I = Z: Sps(q). If we denote K := ker, then
(K - Spa(q))/ K < I/K.

But
(K - Sp2(q))/ K = Spa(q)/ (K N Spa(q)),

which must be isomorphic to Spa(q) or {1} since Spz(q) is simple for ¢ > 4. Thus
either / ker ¢ contains a copy of Spa(q) as a subgroup of index at most 2 or 1(1) = 1.
Moreover, (ZK)/K < I/K. But

(ZK)/K 2 Z/(ZNK) = Z/ker A = 7,/27,

and thus I/K contains a normal subgroup of size 2. Assuming we are in the case
that I/K contains a copy of Sps(q), we know this normal subgroup intersects Sps(q)
trivially, and thus I/K = Z/2 x Spa(q). In either case, ¥(1) < m(Sp2(q)) = ¢ + 1,

and therefore

p(1) < (¢+ )" (e - 1)(¢* — 1) = ¢*(¢ = 1)(¢* - 1),
which we will denote by Bs. Note that Bs = By > By > By for ¢ > 4.

Theorem 5.5.9. Let G = Spg(q), ¢ > 4 even, and let H = Py. Then a nontrivial
absolutely irreducible G-module V' in characteristic £ # 2 is irreducible on H if and

only if V' affords the (-Brauer character as.

Proof. That a3 is irreducible on H follows from Theorem [5.5.5. Conversely, suppose
that V' affords x € IBry(G) and that x|z = ¢ € IBry(H). We claim that y must lift
to an ordinary character, so that the result follows from Theorem [5.5.8. We will keep

the notation from the above discussion.
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First suppose that x does not lie in a unipotent block. As the bound ¢(q¢—1)3(¢*+
¢*+1)/2 in part (B) of Theorem is larger than B; and is larger than Bs unless
q = 4, it follows that either y lifts to an ordinary character or ¢ = 4 and A\ € O3 or
O5.

Now let ¢ = 4. We identify G with SO;(4) so that G* = Sps(4). As noted
in Proposition , if x corresponds to lc.(s) in IBry(Cg=(s)), then it lifts by the
Morita equivalence guaranteed by Lemma Let u(Cg+(s)) denote the smallest
degree larger than 1 of an irreducible Brauer character lying in a unipotent block of
Cg+(s) for a semisimple element s. Using the same argument as in the proof of part
(B) of Theorem we will show that for a nontrivial semisimple element s € G*,
u(Cg+(5))[G* : Cg=(s)]2 > Bs unless s belongs to a class in the family ¢z or cyp.

Indeed, if s is any semisimple element in a class other than ¢3¢, ¢4, ¢s.0, ¢6,0, 8,0, OF
100, then [G* : Cg«(s)]y > Bs by Lemma . If s is in ¢5, then Cg«(s) = GL3(q)
and from [35], u(Cg+(s)) > ¢* +q — 1, so

u(C-(5))[G" : Co=(s)l2 > (¢" + ¢ — 1[G : Ca=(s)]

=(+q— 1)+ 1)@ +1)(¢*—q+1) > Bs.

If sis in cg, then Ce«(s) = GU3(q), s0 0,(Ca+(s)) > L%J = ¢*—q (see, for example,
[71), so
u(Ce-(5)[G" : Co=(s)]2 > (¢ — @)[G" : Co=(s)]

= (0" = )(¢* + 1)(¢ = 1)*(¢* + ¢+ 1) > Bs.
If 5 is in cgg or c10,, then Cg-(s) = GL5 (q) x Spa(q) so

w(Co(s))[G" : Can(9)]2 = (g = DIG™ = Co=(s)]

=(q—1)*(*+1)(¢"+¢*+1) > Bs.

Hence we may assume s belongs to a class in the family c3g or c4o. In this

case, Cg+(s) = Sps(q) x C for a cyclic group C. Now, the Brauer character tables
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of Sps(4) are available in the GAP Character Table Library, [24],[I1]. We can see
that the smallest nonprincipal character degree of Spy(4) for any ¢ # 2 is 18. This
corresponds to aa, which clearly lifts to C, so by the Morita equivalence guaranteed
by Lemma [A.1.7], x also lifts if it corresponds to this character. The next smallest
degree is 33 if / =5 and 34 if £ =3 or 17. If s € ¢35, then [G* : Cg«(s)]2 = 1365,
and 1365 - 33 = 45045 > 15120 = B;. If s € ¢4y, then [G* : Cg-(s)]» = 819, and
819 - 33 = 27027 > 15120 = Bj. It follows that in this case, x must again lift to an
ordinary character.

Next, assume x lies in a unipotent block. Note that the bound D in part (A) of
Theorem is larger than B3 for ¢ > 4. Hence, x must be as in situations A(1),
A(2), or A(3) of Theorem [I.1.1} Also, note that x(1) must be divisible by (¢ —1), as
|01, |05 |, and |Os| are all divisible by (¢*> — 1). Therefore, y cannot be any of the
characters pi — 1, p2—1, Bs—1, X6 —1 or X7 —X4. Thus in the case (¢*—1)(¢*+1) or
3 # (|(¢*— q+1), we know from Theorem that x lifts to an ordinary character.

Now assume /|(¢ + 1) and that y does not lift to an ordinary character. Then by
the above remarks, y must be X35 — X5, which has degree larger than B; and is odd.
Since |O3] and |OF | are each even, this shows our x cannot be this character. So, x
must again lift to an ordinary character.

This completes the proof, by Lemma and Theorem [5.5.8

O

Corollary 5.5.10. Let G = Spg(q) with ¢ > 4 even. A nontrivial absolutely ir-
reducible G-module V' in characteristic £ # 2 is irreducible on a mazimal parabolic

subgroup P if and only if P = P3 and V' affords the {-Brauer character s.

Proof. This follows directly from Corollary[5.5.2] Theorem [5.5.6, and Theorem [5.5.9,
O



137

5.5.1 Descent to Subgroups of P;

Let Z = Z3 be the unipotent radical of Ps, and let R < Z be the subgroup [¢?] given

by matrices C' € Z with zero diagonal. That is,

R:{(é ?):CGM?)(C]),CJrCT:Oy Chasdiagonal()}.

Note that the subgroups L3 = G'L3(q) and Ly = SL3(q) of P3 each act transitively
on R\ 0.

Let A = Ay be an irreducible character of Z corresponding to the matrix Y &€
Ms(q), and write A\|g = ot = py. If N is another such character corresponding to Y’
and X|r = 1/, then we have u = 4/ if and only if (Y +Y’) + (Y +Y")T = 0. (Note
that unlike characters of Z, we do not require that Y,Y” have the same diagonal.)
Hence py = puxryy for X € GL3(q) if and only if XT(Y + YT)X =Y + YT, That
is, X is in the isometry group of the form with Gram matrix Y + Y 7. As the action
of X € Ly & GL3(q) on py is given by (uy )~ = pxryx, this means that staby,(u) is
this isometry group..

In particular, if A is in the Ps-orbit O, of linear characters of Z, then this means
that stabr,(Ar) = [¢°] : (F} x Sp2(q)) = [¢°] : GL2(q). Recall that from the proof of
Theorem , as|lz = w;y is the orbit sum corresponding to O5 . Hence we have

stabz, (1) = [¢°] : GLa(q)

if 11 is a constituent of as|g. Taking the elements of this stabilizer with determinant

one, we also see

stabyy (1) = [¢%] : SLa(q)-

Lemma 5.5.11. The Brauer character as is irreducible on the subgroup P = Z :

SLg(q) Ofpg.

Proof. Let A\ be an irreducible constituent of as|z, so that A € O5 . Recall that the
stabilizer in Ls 2 G Ls(q) is stabr,(\) = [¢°] - (F* x Oy (¢)). Taking the elements in
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this group with determinant 1, we see that the stabilizer in SL3(g) is isomorphic to

(%] : (O3 (q)), and hence the Pj-orbit has length

q<ig%?$a;1)Z%q@——nw3—1)=|02%:aﬂn.

Therefore, as| py is irreducible.

]

Lemma 5.5.12. Let G = Spg(q) with ¢ > 4 even, and let V' be an absolutely irre-
ducible G-module V' which affords the Brauer character as. Write Z = Z3 for the

unipotent radical of the parabolic subgroup Pz and L = Ls for the Levi subgroup. If
H < P3 with V|g irreducible, then ZH contains Py =7 : L' = Z : SL3(q).

Proof. Note that HZ/Z = H/(Z N H) is a subgroup of Py/Z = GLs(q). As a3(1) =
q(q—1)(¢*> —1)/2, we know that | H|y is divisible by (¢ —1)(¢*>—1). Moreover, HZ/Z
must act transitively on the ¢> — 1 elements of R\ 0. Therefore, by [40, Proposition
3.3], there is some power of ¢, say ¢°, such that M := HZ/Z satisfies one of the

following:
1. M > SL,(¢%) with ¢** = ¢3 for some a > 2
2. M 1> Spa,(q®) with ¢*%* = ¢3 for some a > 2
3. M > Gs(q®) with ¢% = ¢, or

4. M - (Z(GLs(q))) < TLi(q’).

2as

Now, the conditions that ¢*** = ¢* or ¢°* = ¢ imply that H cannot satisfy (2) or (3).
As (¢ — 1)(¢® — 1) must divide |M|, H also cannot satisfy (4). Hence, H is as in (1).
But then the conditions ¢%* = ¢® and ¢ > 2 imply that @ = 3 and s = 1. Therefore,

SLy(q) <M = HZ/Z.
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Lemma 5.5.13. A nontrivial SLs(q)-invariant proper subgroup of Z must be R.

Proof. Let D < Z be nontrivial and invariant under the SLj3(g)-action, which is
given by XCX7T for C € Z and X € SL3(q). Note that here we have made the

C<—><é (;) and X<—><)O( (XE)l)T)‘

Now, note that SLs(q) acts transitively on R\ 0, so D N R must be either R or 0.

identifications

(Indeed, the action of SL3(q) on R is the second wedge A?(U) ~ U* of the action on
the natural module U for SL;3(q).) Moreover, SL3(q) acts transitively on (Z/R) \ 0,
so either DR/R = Z/R or DR = R. (Indeed, the action of SL3(q) on Z/R is the
Frobenius twist U®?) of the action of SLs(q) on the natural module U.) If R < D,
then D/R = Z/R, so D = Z, a contradiction. Hence either D = R or DN R = 0.

If DNR =0, then DR # R, so DR = Z and D is a complement in Z for R.

Hence no two elements of D can have the same diagonal. Let

g:

S Qe =
o O
o0 o

be the element in D with diagonal (1,0, 0), which must exist since SL3(q) acts transi-
tively on nonzero elements of DR/R = Z/R. If g is diagonal, then any matrix of the
form diag(a, 0,0), diag(0, a, 0), or diag(0, 0, a) for a # 0 is in the orbit of g. Thus since
D is an S L3(q)-invariant subgroup, D contains the group of all diagonal matrices. As
D is a complement for R, it follows that in fact D is the group of diagonal matrices,
a contradiction since this group is not SL3(q)-invariant. Therefore, g has nonzero
nondiagonal entries. We claim that there is some X € SL3(q) which stabilizes the
coset g + R but does not stabilize g. That is, g and X¢gX7 have the same diagonal,
but are not the same element, yielding a contradiction. Indeed, if at least one of a, b

is nonzero, then any X = diag(1,s,s™!) with s # 1 satisfies the claim. If a = b = 0



140
and ¢ # 0, we can take X to be

1 0
X=10 0
0 1

S = 3

with r # 0, proving the claim. We have therefore shown that D = R.
O

Theorem 5.5.14. Let G = Spg(q) with g > 4 even, and let V be an absolutely irre-
ducible G-module V' which affords the Brauer character ais. Then Vg is irreducible

for some H < Py if and only if H contains Py = Z : SLs3(q).

Proof. First, if H contains P}, then V| is irreducible by Lemmal[5.5.11] Conversely,
suppose that Vg is irreducible for some H < P3;. Assume by way of contradiction
that H does not contain Pj. By Lemma[5.5.12] HZ contains Pj, so HN Z is SL3(q)-
invariant. Therefore, by Lemma [5.5.13], H N Z must be 1, R, or Z. Since H does not
contain Py, it follows that HNZ =1 or R.

Write Hy := HN P;. Then H1Z = Pj. (Indeed, P} < ZH, so any g € P} can be
written as g = zh with 2 € Z,h € H. Hence z"'g=h € HNP;= H,, and g € H,Z.
On the other hand, H1Z < P{Z = Pj.)

Now, if HNZ =1, then HyNZ =1 and H, = P}/Z = SL3(q). Since V|y is
irreducible and H/H; is cyclic of order ¢ — 1, we see by Clifford theory that H; =
SL3(q) has an irreducible character of degree a3(1)/d for some d dividing ¢ — 1. Then
SLs(q) has an irreducible character degree divisible by ¢(¢*> — 1)/2, a contradiction,
as m(SLs(q)) < q(g’ —1)/2.

Hence we have HNZ = R. Then HiNZ = R as well, so (H;/R)N(Z/R) =1,
and H,/R is a complement for (Z/R) = [¢*] in Pj/R = [¢°] : SL3(q). As the first
cohomology group H'(SLs(q),F3) is trivial (see, for example [I7, Table 4.5]), any
complement for Z/R in P;/R is conjugate in P;/R to Hy/R. In particular, writing
Ky :=R:Li=R:SL;3(q), we see that K;/R is also a complement for Z/R in P;/R.
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Hence, K /R is conjugate to H;/R in P/R, so K is conjugate to H; in P}, and we
may assume for the remainder of the proof that Hy = R : L = R : SL3(q).

As H/H, is cyclic of order dividing ¢ — 1, we know by Clifford theory that if
sl is irreducible, then there is some d|(¢ — 1) so that each irreducible constituent
of as|y, has degree as(1)/d. Let g € Irr(Hy) be one such constituent, and let u
be a constituent of §|g. Then since Lj = SLs(q) acts transitively on Irr(R) \ {1x},
Iy, (p) := staby, (1) = R : ([¢°] : SLa(q)). By Clifford theory, we can write 3|g, =
P for some ¢ € Trr(Ig, (p)|p). Hence B(1) = [H : Ig(u)] - (1) = (¢ — 1)(1).

We can view v as a character of Iy (u)/ ker p, as ¢|g = e-p for some integer e. But
Ig(p)/ker p =2 Cy x ([¢°] : SLa(q)), as R is elementary abelian and p is nontrivial. If
1 is nontrivial on [¢?], then 1|, is some integer times an orbit sum for some SLy(q)-
orbit of characters of [¢?], again by Clifford theory. However, as SLy(q) is transitive
on [¢?] \ 0, it follows that ¢(1) is divisible by ¢* — 1, a contradiction since 3(1) is not
divisible by ¢* — 1.

Hence 1) is trivial on [¢%], so ¢ can be viewed as a character of Cy x SLy(q). As
q >4, (1) = q(¢—1)/2d is even. Now, the only even irreducible character degree of
SLy(q) is ¢, but ¢ # q(q¢—1)/2d, which contradicts the existence of this 5. Therefore,

az|y cannot be irreducible, so neither is as|y.

We have now completed the proof of Theorem [1.1.2]

5.6 The case ¢ =2

In this section, we prove Theorems [I.1.4] and [T.1.5] To do this, we use the computer

algebra system GAP, [24]. In particular, we utilize the character table library [11],
in which the ordinary and Brauer character tables for Spg(2) and Sp4(2) = Sg, along

with all of their maximal subgroups, are stored. The maximal subgroups of Spg(2)
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are as follows:

Us(2).2, Ag.2, 2°:8Ss, Us(3).2, 2%:L3(2), 2.[2%:(S3xSs), S3xSs Laf8).3,

and the maximal subgroups of Sp,(2) = Sg are

Ag, As5.2=S5, 04_(2> =S5, S308:, 2xS; S35

The ordinary and Brauer character tables for each of these maximal subgroups are
stored as well, with the exception of 2° : Sg and 2% : L3(2), for which we only have the
ordinary character tables. In addition, the command PossibleClassFusions(cl,c2)
gives all possible fusions from the group whose (Brauer) character table is ¢l and the
group whose (Brauer) character table is ¢2. Using this command, it is straightfor-
ward to find all Brauer characters which restrict irreducibly from c2 to c1. Below is

a sample of code utilizing this technique:

cth:=CharacterTable (" [maxsubgroup]") ;
ctg:=CharacterTable("S6(2)");

#cth:=CharacterTable(cth, p);

#ctg:=CharacterTable(ctg,p); for p-Brauer character tables
irrg:=Irr(ctg);
irrh:=Irr(cth);

fus:=PossibleClassFusions(cth,ctg) [1];

for i in [1..Length(irrg)]
do
for j in [1..Length(irrh)]
do
if irrgl[i] [1]1>1 and irrgli] [1]=irrh[j][1] then
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for m in [1..Length(fus)]
do
if not irrgl[i] [fus[m]]=irrh[j] [m] then
irredsmatch:=false;
break;
else
irredsmatch:=true;
fi;
od;
fi;
od;
od;

From here, we note that for any given ¢ # 2, az , B\g —{0,1}, and p} — {0,1} are
the only irreducible ¢-Brauer characters of Spg(2) with their respective degrees. Also,
from [27, Lemma 3.8], we know (3(g) = az(g) + 83(g) — 1 on 2-elements, which allows
us to distinguish between ¢} and the other character of degree 21. We also know p2 —1
should restrict to an irreducible 3-Brauer character, so from this we can distinguish
between p2 and the other character of degree 35, which restricts to f-regular elements
as an irreducible Brauer character for all ¢ (this is needed, for example, in the case
H = Ag.2).

Now, in the case H = P3 = 25 : L3(2) or 2° : Sg and G = Sps(2), we need
additional techniques, as the Brauer character tables for these choices of H are not
stored in the GAP character table library. However, in the case H = 2° : Sg, we can
use the above technique to see that there are no ordinary irreducible characters of G
which restrict irreducibly to H, and moreover, there is no x|g—A for x € Irr(G), A € H
which is irreducible on H. But we can also see that m(H) = 45, and any ¢ € IBr,(G)

with (1) < 45 either lifts to a complex character or is ¥ — 1 for some complex
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character y. Thus by Lemma [5.1.3], there are no irreducible Brauer characters of G
which restrict to an irreducible Brauer character of H, for any choice of ¢ # 2.

We are therefore left with the case H = P3. In this case, it is clear from GAP that
the only ordinary characters which restrict irreducibly to H are a3 and x4, where y4
is the unique irreducible character of degree 21 which is not (3. Moreover, there is
again no y € Irr(G), A € H such that x|y — A € Irr(H). Referring to the notation of
Section [5.5], we have |O;| =7, |05 | = 7,05 | = 14, and |03 = 28. So any irreducible
Brauer character of H must have degree divisible by 7. Also, m(H) = 56. We can see
from the Brauer character table of G that if x € IBr,(G) has x(1) < 56, then either
x or x + 1 lifts to C. Thus by Lemma the only possibilities are a3 and x;. Now
Qs|g is irreducible since as(1) = |O1| = |O5 |, and these are the smallest orbits of
characters in Z3. Therefore it remains only to show that Y, is indeed also irreducible
on H.

Since we know that x4|g € Irr(H), we know that x4|z must contain only one
H-orbit of Zs-characters as constituents, which means that y4|z, = 3w; or 3ws,
continuing with the notation of Section [5.5] Since Z3 consists of 2-elements, we know
X1|z, can be written in the same way. Moreover, since ¢ = 2, staby,(\) is solvable for
A # 1, so we know that if \ is a constituent of x4|z,, then any ¢ € IBr,(I|\) lifts to
an ordinary character. Since by Clifford theory, any irreducible constituent of Y4|g
can be written ¢! for such a v, it follows that if Y|y is reducible, then it can be
written as the sum of some @; for ¢; € Irr(H|\). In particular, each of these ¢; must
have degree 7 or 14. By inspection of the columns of the ordinary character table of
H corresponding to 3-regular and 7-regular classes, it is clear that x4|gz cannot be
written as such a sum on /(-regular elements, and therefore X4|y is irreducible.

This completes the proof of Theorems [T.1.4] and [T.1.5], and therefore the classifi-

cation of triples as in Problem |l when G = Spg(q) or Sps(q) with g even.
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CHAPTER 6

RESTRICTIONS OF COMPLEX REPRESENTATIONS OF
FINITE UNITARY GROUPS OF LOwW RANK TO CERTAIN
SUBGROUPS

In this short chapter, we begin a discussion of the pair (PSU,-1(q), PSU,(q)) in
Seitz’ list, as listed in Section . (We note, however, that this pair was omitted
from Seitz’ original list.) We consider triples (G,V, H) as in Problem (I} in the case
where G = SU,(q), H is a particular subgroup isomorphic to GU,,_1(q), and V is an
ordinary representation of GG. For the purposes of this chapter, it will be convenient
to alter our notation, letting S := SU,(q) and G := GU,(q). We will eventually deal
with two subgroups H and K of G with H = GU,,_1(q) = K. The problem we focus

on in this chapter is the following:

Problem 2. Let S = SU,(q) and K < G be the subgroup

e (X ) xecu).

Classify all y € Irr(S) so that x|x € Irr(K).

While we conjecture that no triples as in Problem [I] exist for our choice of G and
H, this chapter serves merely as a start to the discussion for Problem [2| and we by
no means solve the problem here.

One of the main results of this chapter, which we prove in Section [6.1], shows that
no characters can exist as in Problem [2{except possibly in the case that (¢+1) divides
n. (Note that we have included this condition in our version of Seitz’ list in Section
1.1l) In Section we show that Problem [2| can be reduced to a question about
the irreducible characters of GU,(q). We study the problem in detail for n = 5 in
Section and show that in this case, no such characters exist. In Section we
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also mention the same result for the remaining 4 < n < 7 and begin considering the
case n = 8,9.

Throughout this chapter, let G := GU,(q) and S := SU,(q). Recall that S <G
with G/S = Cyy1, Z(G) = {cly: c € Fpo; 1t =1} =2 Cpiq, and Z(S) = SN Z(G) =
Cecd(ng+1)- We will be interested in certain subgroups of G' and S, which we now

define. Let K be the subgroup of SU,(q) given by:

K= {( )g (detg()l ) X € GUnl(q)}.

Define H to be the subgroup of GU,(q) given by

]TI::{(%( 2>:X€GUn_1()a€]ngt aq“:l}

Clearly K is a subgroup of H, and in fact K = SU,(q) N H. So, since SUL(q) is
normal in GU,(q), we have that K < H. Finally, let H be the subgroup of H given

by
Hi:{()o( (1)):X€GUn_1(C])}'

H is normal in H, since

(0 2) (o) ()= (P 7)o

So we have the following lattice of subgroups, where a double line denotes a normal

subgroup:

/\
\/

We will keep the same notation for the subgroups K, H, H , as well as the notation

S = SU,(q), G = GU,(q) throughout this chapter.
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6.1 A Condition On (n,q)

Recall that our main problem in this chapter is to understand the irreducible complex
characters of S = SU,(¢q) which when restricted to K are still irreducible. In this
section, our goal is to show that if (¢ + 1) does not divide n, then no such characters

exist. We begin with two lemmas:

Lemma 6.1.1. Let S be any finite group and let K < S be a subgroup. Suppose that
X € Irr(S) is a faithful irreducible character and that x|x € Irr(K). Then

Proof. Let V be an irreducible CS-module which affords the character y. Since V|

is also an irreducible CK-module, we have

by Schur’s Lemma. Now let © € Cg(K). Then left multiplication by z is a K-
endomorphism of V', and therefore is also an S-endomorphism of V. Hence for any
seSandv eV,

sz(v) = x(sv) = xsv = xs(v).

If X is the representation of S affording V', then we know that X(x) is defined by the

multiplication of x on V', so that

In other words, X(z) commutes with all elements in the image X(S). Then we know
that X(x) = Al for some A € C, and it follows that € Z(x) (see, for example,
[33, (2.25) and (2.27)]). Since x is faithful, we know that Z(x) = Z(5), so in fact
x € Z(S). This yields the containment Cs(K) < Z(S) and therefore,
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since Z(9) is certainly contained in Cg(K).

]

X 0
Lemma 6.1.2. Let S = SU,(q) and K = {( 0 (det X)~! > - X € GUn_l(q)}. If

Cs(K) = Z(S), then (¢ + 1) divides n.

Proof. We prove the contrapositive. Suppose that (¢ 4+ 1) does not divide n. Then
there exists a € F2 such that a?™ = 1 but o # 1 (in particular, take « of order

q+1inF5). Then the element

o O!In_l 0
A= ( 0 o' )
n—1,1-n _ 1.

commutes with the elements of K and is contained in S, as det A = " "«
However, since

Z(S) = {)\[ )\ c Fq27)\q+1 =1= )\n}7

1=n and therefore

we know that A is not in Z(95), for this would imply that a = «
a™ = 1, a contradiction. Then A € Cg(K) but A ¢ Z(S), and therefore Cg(K) #
Z(9).

]

Proposition 6.1.3. Let S = SU,(q) and K as above, with (n,q*) & {(2,4),(2,9), (3,4)}.
If (g + 1) does not divide n, then there are no x € Irr(S) such that x|k € Irr(K).

Proof. For (n,q*) # (2,4),(2,9),(3,4), we have that S is perfect and S/Z(S) =
PSU,(q) is a nonabelian simple group. Now if x € Irr(S) then we know that we
can view y as a faithful character on S/kery. Moreover, we have that kery <
Z(S) < K < S. Hence it suffices to show that Clg/yery(K/ker x) # Z(S/ker x), as
then Lemma implies that y is not irreducible when restricted to K/ ker x, and
therefore that x|k & Irr(K).

Now since ¢ + 1 does not divide n, we have by Lemma that Cs(K) # Z(S).
Also, note that if A is the matrix from the proof of Lemma [6.1.2] then A ¢ Z(S)
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by the proof of Lemma and therefore A - Z(S) is nontrivial as an element of
S/Z(S). However, since this element commutes with all of K/Z(S), we see that
Cyms) (K/2(8)) # 2(8/2(5)) = {1}.

Now suppose s € S satisfies that 5 := s - ker(y) € S/kery is an element of
Z(S/ ker x). Then since ker x < Z(S), we know that

5/2(5) = (5] ker(x))/(Z(5)/ ker x)

so S/Z(S) is a quotient of S/ ker(x). Then 5-(Z(S)/ker x) is contained in the center
of (S/ker(x))/(Z(S)/ker x), which is trivial since this is a simple group. This means
that s- Z(S) € Z(S/Z(S)) = {1} and so s € Z(95).

In particular, since our element A is not in the center of S, we know that A -ker x

is not in Z(S/kerx). But A-ker x € Cg/xery(K/ ker x), which shows that

CS/kerx(K/ kerx) # Z(S/kerX)a

and therefore x|k & Irr(K).

6.2 Reducing the Problem

As discussed above, we wish to find all x € Irr(SU,(¢)) such that x|k € Irr(K). In
general, the character table for S = SU,(q) is not known. As significantly more is
known about the character table for G = GU,(q), we wish to reduce our problem to
one regarding this group instead, which is the goal of this section.

More specifically, in this section we show that if x € Irr(SU,(q)) such that x|x
is an irreducible character of K, then there is a character § € Irr(GU,(q)) such that
Olg = 1+ ... +om where m divides (n,q + 1), and each ¢; has the same degree.
Recall here that H < GU,(q) is the subgroup

H o= {( oY ) X e GUnl(q)} ~ GU, 1 (q)
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This gives us hope of using this fact to prove our conjecture that no such y € Irr(S)

exists by showing that no 0 € Irr(G) exists with this property.

Proposition 6.2.1. Let S, K,G, and H be as above. If x € Irr(S) such that x|k €
Irr(K), then there is some 6 € Irr(G) such that 0|y is the sum of m irreducible

characters of H, each of the same degree, where m|(n,q+ 1).

Proof. Let x € Irr(S) with x|x = ¢ € Irr(K) and let § € Irr(G) be an irreducible

constituent of x¢. By Clifford’s theorem, we have

Ols =e Z XY

x9€0rbc(x)
Recall that G/S is cyclic, and thus e = 1 by [33, Corollary (11.22)]. Then 6|g is the
sum of all of the elements in the orbit of x under G. Now, note that we can choose

the representatives {g: x¢ € Orbg(x)} from G/S. But we have
G/S=2{ac (Fp): ot =1}

where the isomorphism is given by ¢ - S + det(g). That is, there is a complete set of

coset representatives for G/S given by a set T of elements of G which satisfy
{detg: g€ Tt ={a € (Fp)*: a?™ =1}.

In particular, we can choose

I, 0 §
T::{( 01 a>:a€(Fq2) ;oﬂ“zl}.

[G:1a(X)] [G:1g(X)]

Ols = Z X% andso O|x = Z P9,
i=1

=1

Then

X 0 I 0
WheregiET.Butforx:(O detX‘1>€KaHdg_(O Oé)eTwehave

L (T 0N[(X 0 I 0
99 =\ 0 a 0 detX! 0 ot



151

(X 0 (X0
"\ 0 adetX 't )T 0 detxt )T

In particular, this tells us that 9 = for all g € T, so 0|k = [G : Ic(x)].
Now consider the induced character wﬁ , where we recall that H < G is the

subgroup

= X 0
H:{( 0 a):XEGUn—1<Q);CL€F;2 s.t. aq+1:1},

If pe Irr(ﬁ ) is an irreducible constituent of 1/}I~{ , then since
H/K=H/(HNS)~HS/S<G/S

is cyclic, we have by [33 Corollary 11.22] and Clifford’s theorem that

[H:I5(4)]

elx = Z P,
i=1

But also, H = K x 7, which means that ¢ =0® X where g € Irr(K),\ € Trr(7).
Then p|x = 8 € Irr(K), and so we have that in fact, p|x = 9.

Now since (9[ ﬁ) } « = |G Ia(x)]¢ and the irreducible constituents of wﬁ are the
only irreducible characters of H which contain Y as a constituent when restricted to
K, we have that

Oz = Z a; Qi
where a; are some nonnegative integers and ¢; are the irreducible constituents of wﬁ .
Note that each of these ¢; satisfy ;| = 1 by the above argument. In particular, we

have

(G 1)) =0l = ) aipili = (Z ai) (8
so that S a; = [G : Is(x)]. Also, since H = H x T, we have that ¢; = 8; ® \; where
B; € Irr(H) and \; € Irr(T), so that ;g = 8. Then

Olg = (9|ﬁ)‘H = Z%%‘|H = Zaiﬁi-
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Then 0|y is the sum of [G : I(x)] irreducible characters of H which each have the
same degree, since f3;(1) = ¢;(1) = ¢ (1) for each i. Hence, it just remains to show
that [G : I¢(x)] divides (n,q+ 1).

Let J := Ig(x). Now, clearly we have that Z := Z(G) is contained in J, and
S < J,sothat ZS < J. Then |G : J| divides [G : ZS]. But

(G228 =10/ : 25/ = 7e—er

and
P __at+l
(Z5:9)=[Z:ZNnS] = Y

Thus we have that [G : ZS] = (n,q + 1), so [G : J] divides (n,q + 1), completing the

proof. O

6.3 The Case n = 5.

Proposition implies that to show our conjecture that there are no x € Irr(S)
such that x|k € Irr(K), it suffices to show there are no irreducible characters x of

G = GU,(q) such that when restricted to H = GU,,_1(q), x can be written

Xz =¢1+ ...+ om

where m divides ged(n, g+1), and the degrees ¢;(1) are the same for each i = 1, ..., m.
We now consider the case when n = 5 and show that in this case, no such y exist.

Notice that the property m|ged(5,q + 1) requires that m = 1,5, and m can only
be 5 in the case that ¢ = 4 mod 5. If m = 1, then this is exactly when x|y is
irreducible.

To characterize characters x of G = GUs(q) which satisfy x|y = ¢1 + ... + ©m
with m|(5,¢+1) and ¢1(1) = ... = (1), we will make use of the character tables for
GUs(q) and GU,(q) found by Sohei Nozawa in [59] and [58]. The following theorem

of Zsigmondy from elementary number theory will also be useful.
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Theorem 6.3.1 (Zsigmondy). Let q,n be integers with g > 2,n > 3. Then provided
that as pairs in Z*, (q,n) # (2,6), there is a prime s such that s divides q" — 1 but s

does not divide ¢¢ — 1 for any i < n.
Using this theorem, we get the following lemma:

Lemma 6.3.2. Let G = GUs(q) and H < G the subgroup as before. If x € Irr(G)
and ¢* — ¢® +¢* — ¢+ 1 divides x(1), then x can not satisfy

Xlg =01+ ...+ om
with m|(5,q + 1) and ¢; all the same degree.

Proof. We have that ¢° +1 = (¢+1)(¢* — ¢* + ¢* — ¢+ 1), and so using Zsigmondy’s
theorem with ¢ and n = 10, we have that there is a prime s dividing ¢'° — 1 but not
dividing ¢* — 1 for any ¢ < 10. In particular, s does not divide ¢° — 1, which means
that s must divide ¢° 4+ 1. Also, s must not divide ¢® + 1 since then it divides ¢® — 1
and s can’t divide ¢ + 1 since then it divides ¢ — 1. Thus we have that there exists a
prime s dividing ¢® + 1 but not dividing ¢* — 1, ¢ + 1, ¢> — 1, or ¢ + 1. This prime s
must therefore divide ¢* — ¢3+¢® — ¢+ 1 (since it doesn’t divide ¢+ 1), and therefore
s|x(1), but cannot divide |H| = |GU4(q)| = ¢®(q + 1)(¢* — 1)(¢®> + 1)(¢* — 1). This
implies that s cannot divide (1) for any ¢ € Irr(H), and hence x|z is not irreducible.

Now, if ¢ = 4 mod 5, then suppose by way of contradiction that x|z = ¢1+...4+¢5
with ¢; € Trr(H) for 1 <4 <5, all of the same degree. Then x(1) = 5p(1) for ¢ = ;.
As s divides x(1) but not (1), we see s = 5. But this is a contradiction, since ¢ = 4
mod 5, and therefore s = 5 divides ¢ + 1, but we have already seen that s does not

divide ¢ + 1. Therefore, x|y cannot be of this form. O

The next lemma will be useful in bounding the degrees of characters for G and

H.
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Lemma 6.3.3. Let P(x) be a monic polynomial of degree r which is a product of

monic polynomials whose nonzero coefficients are from {£1}. Then
(¢—1)"<Plg) <(g+1)
for any integer ¢ > 2.

Proof. Without loss of generality, we may assume that P(q) is a monic polynomial of
degree r whose nonzero coefficients are all 1, since if each factor of this form satisfies
the inequality, then the product will also. The second inequality, P(q) < (¢+ 1), is
obvious, since the binomial expansion tells us that the coefficients of (¢ + 1)" are all
at least 1. For the first inequality, we proceed by induction.

If r=2,then (¢ —1)2=¢*-2¢+1<¢*>—q—1< P(q), and so the inequality is

satisfied. Now suppose that for polynomial degrees less than r, the inequality holds.

We know that P(q) > ¢"—q¢"'—¢*—...—q—1. We claim that ¢ —¢" ' —...—q—1 >
(q—1) (¢ —q2—..—q—1). We have that

(@-D@ " =d P~ —qg-1)=q¢ -2/ +1
and so ¢" —¢" ' — .. —q¢—12> (¢q—1)(¢ ' —¢ 2% —..—q—1) exactly when
¢ ' —q¢?—..—q—2>0. We know that 2! =272 — . —2 -2 =0, and by

Descartes rule of signs, this is the only positive real root of the polynomial. Then

since forg =3, ¢ ' —¢"2—...—q¢—2 > 0, we know that this is true whenever q > 2,
proving the claim.
This yields that
Pl)>q¢ —¢ " —¢ = —q=1>2(q-1)(¢ " —¢ . —q—1)

>(q-1)(q-1)""=(g-1)
by the induction hypothesis, and hence

(q—1)"<P(g) <(¢g+1),
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as stated.

]

Proposition 6.3.4. Let G = GUs(q) and H = GU,(q) be the subgroup of G as above.
Suppose that x € Irr(G) satisfies x|y = @1+ ... +©m with m|(5,q+ 1) and ¢; all the
same degree. Then x(1) = 1.

Proof. Assume that y(1) > 1. From Lemma [6.3.2] we see that in the notation of
Nozawa [59], x is a member of one of the following families of characters in Irr(G):
Aq1(i), A12(1), A14(7), A1g(7), F(7), as these are the only irreducible characters of G
with degree not divisible by ¢* — ¢® +¢*> — ¢ + 1.

Moreover, from [59] and [58] we see that every character degree of GUs(q) or
GU,(q) is the product of monic polynomials in ¢ whose nonzero coefficients are all £1.
We will apply Lemma to the situation where P(q) is the degree of x € Irr(G)
or ¢ € Irr(H). From [58] we note that the highest degree of such a polynomial
P(q) = p(1) where ¢ € Irr(H) is 6, and hence m(H) < (¢ + 1)°.

First, suppose x € Irr(G) is a member of the family Aj;(¢). Then from [59] we
have x(1) = ¢'°, and thus if x|y € Irr(H), then we would have that there is some
€ Irr(H) with x|g = ¢, so

(g+1)° > x(1) = ¢".

But for any ¢ > 2, this is impossible, and thus x|z is not irreducible. Hence we must

have x(1) = 5¢(1) for some ¢ € Irr(H). Now if ¢ = 4 mod 5, then x(1) = ¢'°
41 =1 mod 5, and therefore 5 does not divide x(1), a contradiction.

Now suppose that x € Irr(G) is a member of the family A;5(2). [59] tells us that
x(1) = ¢°(¢ — 1)(¢*> + 1), which as a polynomial in ¢ has degree 9. Then by Lemma

6.3.3, if x|z = ¢ € Irr(H), we have

(¢—1)" <x(1) < (¢+1)°
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so that ¢ must be 2 or 3. If ¢ = 3, then we see that x(1) = 14580 > 4096 =
45 = (g + 1)%, violating Lemma [6.3.3] Then it must be that ¢ = 2, which we by
computation in GAP (see Section is a contradiction. So x|g & Irr(H), and it
must be that ¢ = 4 mod 5. Then x(1) = 1 mod 5 and therefore 5 cannot divide
x(1), a contradiction.

For x € Irr(G) a member of the family A4(7), we have that x(1) = ¢*(¢*> — q +
1)(¢*+1). We compare this degree to all 22 possible character degrees in Irr(H), given
in [58]. For each ¢ € Irr(H), we use the rational roots test to help find any possible
integers ¢ = p* which can satisfy ¢(1) = x(1). It turns out that for this family, no
such ¢ exists for any ¢, and therefore x|y & Irr(H). Also, as in the cases above, when
g =4 mod 5 we have x(1) is not divisible by 5, again yielding a contradiction.

If x € Irr(G) is a member of the family Aig(7), then as above, when ¢ = 4
mod 5, 5 does not divide x(1). Proceeding as in the family Ay4(7), we see that since
x(1) = q(q — 1)(¢*> + 1), the only possibility of ¢ € Irr(H) such that p(1) = x(1) are
characters of H of the family x17(7), which have degree q(¢ —1)%(¢* + 1), when ¢ = 2.
Again, computation in GAP (see Section shows that these characters are not
the restriction of any character of G, and x|g is reducible.

Finally, let x be a member of the family F (i), we notice that x(1) = (¢ + 1)(¢* —
1)(¢*+1)(¢*—1), which is larger than (¢+1)° for all ¢ > 2. Hence Y is reducible when
restricted to H. Now for each ¢ € Irr(H) given by [58], we again use the rational
roots test to determine which ¢ allow for x(1) = 5¢(1). It turns out that none of the
irreducible characters of H satisfy this condition for any ¢ =4 mod 5, and therefore
x cannot be in this family.

Hence, it must be that x is a linear character of G.

We are now ready to solve Problem [2|in the case n = 5:
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Proposition 6.3.5. There are no nonlinear irreducible characters x of S = SUs(q)

such that the restriction x|k to K = GU4(q), is irreducible.

Proof. This is immediate from Proposition [6.3.4] and Proposition [6.2.1]
[l

We note that to prove Proposition we could have noted that when ¢ = 2, the
result follows from Proposition [6.1.3] so that the computations in GAP were not
necessary. However, we provide the discussion of these computations in the next

section for completion.

6.3.1 GAP Computation for ¢ =2

In order for y € Irr(G) to satisfy x|g € Irr(H), we must have that there is ¢ € Irr(H)
so that x(1) = ¢(1). For ¢ = 2, to find all such pairs of G- and H-characters, we use

the following code:

G:=GeneralUnitaryGroup(5,2);
H:=GeneralUnitaryGroup(4,2);
c:=CharacterTable(G);
d:=CharacterTable(H) ;
irrG:=Irr(c);

irrH:=Irr(d);

for k in [1..Length(irrG)]

do

if Degree(irrG[k])>1 then
for i in [1..Length(irrH)]
do

if Degree(irrG[k])=Degree(irrH[i]) then
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Print ("X") ;Print (k) ;Print(",");

Print("Y") ;Print(i); Print(" \n");

fi;
od;
fi;
od;

This code compares all degrees of irreducible characters of GG to all degrees of irre-
ducible characters of H, and prints out all pairs Xk,Yj (where Xk is the kth character

of G and Yj is the jth character of H) which have the same degree. The resulting

pairs are:

X4,Y13 X4,Y14 X4,Y15 X4,Y16 X4,Y17 X4,Y18
X5,Y13 X5,Y14 X5,Y15 X5,Y16 X5,Y17 X5,Y18
X6,Y13 X6,Y14 X6,Y15 X6,Y16 X6,Y17 X6,Y18

This means that the only possibilities for x € Irr(G) to be irreducible when
restricted to H are if y is the 4th, 5th, or 6th irreducible character of G in GAP’s
library, and the corresponding character of H must be the 13th, 14th, 15th, 16th, 17th,
or 18th. Now, in order for one of the pairs to actually satisfy Xk =: x|y = ¢ := Yj, we
must have that every value in the character table for ¢ is also found in the character
table for y. As it turns out, none of these pairs satisfy this condition, as we find using

the following code:

for k in [4..6]
do
for 1 in [13..18]
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do
Print("The ", 1, "th character of H and ",
k, "th character of G \n");
Print("i’th character value of the H-char,
j’th character value of the G-char \n");

for i in [1..Length(irrH[1])]

do
for j in [1..Length(irrG([k])]
do
if irrG[k] [j] = irrH[1][i] then
Print(i);Print(",");Print(j);
Print(" ");Print("\n"); break;
fi;
od;
od;

od;
od;

This code runs through all pairs of G-characters and H-characters which were found
to have the same degree above, and then for each such pair runs through all values
found in the character tables. If there is at least one character value of Xk which
matches the ith character value of Y1, then GAP will print “¢, ;7 where j is the first
index of a character value of Xk which matches the character value of Y1. Then any
character value of Y1 which is not printed is not found as a Xk character value, showing
that the H-character Y1 is not equal to the G-character Xk restricted to H.

Indeed, running the code, we find that for each pair of H- and G- characters with

the same degree, there is at least one character value for the H-character which does
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not match any of the character values for the G-character. This shows that for ¢ = 2,
no nonlinear irreducible character of GG is irreducible when restricted to H. Moreover,
since (5,3) = 1, this implies that when ¢ = 2, n = 5 no nonlinear irreducible character

satisfies the condition in Proposition [6.2.1]

6.4 On the Remaining Cases 4 < n < 10

So far what we have shown is that there are no nontrivial x € Irr(SU,(¢)) such that
x|k € Irr(K) when (¢+1) fn or when n = 5. Certainly, Proposition [6.1.3] yields that
for n = 7, there are no nontrivial characters of SU;(q) which restrict irreducibly to K.
The following propositions show that for n = 4 or 6, there are also no x € Irr(SU,(q))
which restrict irreducibly to SU,,_1(q).

Proposition 6.4.1. Let q be a prime power and let x € Irr(SU4(q)) such that x|k €
Irr(K), where K is as above. Then X = lgy,(q)-

Proof. Let G = SU4(q) and suppose x € Irr(G) is nontrivial and x|x € Irr(K).
Then by Proposition [6.1.3], we see that ¢ must be 3. From GAP, we see that the
only character degree that K = GU;(3) and G = SU,(3) share is 21, and that the
character of this degree in G is integer-valued, yielding only two possibilities for x|g-.
Now, observing the character values on classes consisting of elements of order 12, we
see that these integer-valued characters of K of degree 21 cannot be the restriction

of a degree-21 character of G. Hence we have that y = 1, as stated.

]

Proposition 6.4.2. Let q be a prime power and let x € Irr(SUg(q)) such that |1, €
Irr(L), where L < K is the subgroup isomorphic to SUs(q). Then x = lguy(q)-

Proof. Let G = SUs(q) and suppose x € Irr(G) is nontrivial and x| € Irr(L). Then
by Proposition [6.1.3] we see that ¢ must be 2 or 5.



161

First suppose that G = SUs(2) and L = SU;5(2). In this case, the only character
degree that these groups share is 440. Now, G has exactly one character of this degree,
X6 in the notation of GAP, and this character is integer-valued. L has 3 characters
of this degree, but only one which is integer-valued. However, this integer-valued
character of L with degree 440 takes the value 88 on a class of involutions, while no
involutions g of G satisfies x6(g) = 88. Hence in this case, we must have xy = 1.

Now let G = SUs(5) and L = SUs(5). Then the only degree in common is
1693250, which has multiplicity 1 in G and 5 in L. Observing the character tables for
GUs(q) and GUs(q) in CHEVIE [26], we see that these restrict from characters in the
family x|s of GUs(q) and x|14 of GUs(q), respectively. Observing the values of these
characters on unipotent classes, we see that a character in the family x|i4 of GUs(q)
cannot be the restriction of a character in the family x|s of GUg(q). Hence, we again
see that x = 14.

O

We now mention that if n = 8 or 9, then there is exactly one possibility for
x € Irr(SU,(q)) which could restrict to a character in Irr(SU,_1(¢)). (Though of
course, we conjecture that this character does not restrict irreducibly.)

Indeed, if n = 8, then by Proposition[6.1.3 we have that ¢ = 2 or 7. From [49], we
see that the only irreducible character degree that SUs(2) and SUz(2) share is 211904,
which has multiplicity 1 for SUg(2) and multiplicity 4 for SU7(2). Similarly, the only
irreducible character degree in common for SUs(7) and SU,(7) is 1450393913575299,
with multiplicity 1 in SUg(7) and 14 in SU(7).

If n =9, then Proposition yields that ¢ = 2 or 8. From [49],only irreducible
character degree shared by SUy(2) and SUs(2) is 29240, which has multiplicity 1 in
either group. The only degree shared by SUy(8) and SUs(8) is 31771439198720, which

also has multiplicity 1 in either group.
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CHAPTER 7

Spe(2*) 18 “GOOD” FOR THE MCKAY, ALPERIN
WEIGHT, AND RELATED LOCAL-GLOBAL CONJECTURES

In this Chapter, we prove Theorem which shows that Spg(q) and Sps(q), with ¢
even, satisfy the conditions for the reductions to the McKay, Alperin weight, blockwise
Alperin weight, and Alperin-McKay conjectures. Recall the discussion in Section

in Chapter [1] of these conjectures and the reductions.

7.1 Preliminaries and Notation

Throughout this chapter, ¢ denotes a prime, thought of as the characteristic for a
representation. As usual, Irr(X) will denote the set of irreducible ordinary characters
of X and IBr,(X) will denote the set of irreducible ¢-Brauer characters of X. Further,
BI(X|x) denotes the block of the group X containing x € Irr(X)UIBry(X), Irro(X|D)
denotes the set of height-zero characters of X which lie in any block with defect group
D, and dz(X) denotes the set of defect-zero characters of X. Given y € Irr(X), recall

that we denote the central character associated to x by w,. Further, we will denote

*

X
for B = BI(X|x), as in [33, Chapter 15]. Given a set &, write &% := > _sz. If

Y < X is a subgroup, and b € BI(Y), then the induced block b% is the unique block
B so that \;¥ (KT) = Ag(K™) for all conjugacy classes K of X, if such a B exists. (In
this situation, recall that bX is said to be defined.) Recall that A (KT) is given by
A (KNY)T).

by * a fixed isomorphism from the set of ¢’-roots of unity in C to F; and set \p = w

If a group X acts on a set & and s C &, then we denote by X, or stabx(s) the
subgroup of X stabilizing s. If X acts on a group Y, we denote by Y : X or Y x X
the semidirect product of Y with X. We may also say this is the extension of ¥ by



163

X. In such situations, if r is a positive integer and p is a prime, we will write Y : r if

X = (. is the cyclic group of order r and Y : p” if X is elementary abelian of order

s

P

For the remainder of the chapter, ¢ is an odd prime and ¢ is a power of 2. Recall
that [Sps(q)] = ¢°(¢* — 1)(¢* — 1)(¢® — 1), so if £ is a prime dividing |Sps(g)| and
¢ # 3, then ¢ must divide exactly oneof ¢ — 1, ¢+ 1, ¢* +1, ¢* +q+1,0or ¢*> — g+ 1.
If ¢ = 3, then it divides ¢ — 1 if and only if it divides ¢> + ¢ + 1, and it divides g + 1
if and only if it divides ¢* — ¢ + 1. When ¢ divides ¢° — 1, we will write ¢ € {£1}
for the number such that ¢|(¢> — ¢). If £ # 3, we write d for the integer such that
(¢5 —1)¢ = ¢¢. (Here 7, is the (-part of the integer 7.) If £ = 3, we write d for the
integer such that 3¢ = (¢ — €)3, so that (¢* — ¢)3 = 3%"!. In any case, we will denote
by m the integer (¢ — €)y.

We will also borrow from CHEVIE [26] the notation for characters of Sps(q) and

the roots of unity (; := exp (22351 ) and &; 1= exp (2’;}? > We will sometimes also

use @ or EZ to denote a corresponding root of unity in F; .

The following sets for indices will be useful. For e € {£1}, let IJ _ be the set
{ieZ:1<i<qg—e—1}, and let [, be a set of class representatives on Igfe
under the equivalence relation i ~ j <= ¢ = +j mod (¢ —¢€). Let ];’QH ={i e
Z:l<i<g@gtand I,  ={i€Z:1<i<¢g-1(-1) Mi,(g+1) [},
and let I

2—e be a set of representatives for the equivalence relation on 1'2276 given by

i~ j <= i==jor +qj mod (¢* —e¢). Similarly, let I, :={i€Z:1<i<
¢ —€(¢* +eq+1) fi} and I;5_. a set of representatives for the equivalence relation
on 1'23_6 given by i ~ j <= i = +j,+qj, or +¢*j mod (¢* — €). Given one of these
indexing sets, I,, we write I¥ for the elements (iy, ..., i) of I, x I,... x I, (k copies)
with none of i1, 4y, ..., 7 the same and I** for the set of equivalence classes of I* under
(11, .y i) ~ (p(i1), ..., p(ix)) for all p € Sk.

Let G := Spg(q) and let & denote the set of unipotent characters and &;(J)

denote the Lusztig series £(G, (s)) for G, where s is conjugate in G* to the semisimple
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element g;(J) in the notation of [47]. Here J denotes the proper indices (for example,
for the family gg, J = (i) for i € I,_;, and for the family g¢s2, J = (4, j, k) where
(3,5, k) € I3%)).

D. White [76] has calculated the decomposition numbers for the unipotent blocks
of G, up to a few unknowns in the case ¢|(¢+ 1), and we have used this information in
Section to describe the irreducible Brauer characters in these blocks. Moreover,
recall that in Section we have used the theory of central characters, which are
available in the CHEVIE system [26] for G, to determine the block distribution of the
remaining complex characters and that we have described the Brauer characters of G
in terms of the restrictions of ordinary characters to G°. In particular, recall that the
set £ (G, (g:(J))) forms a basic set for the blocks of & (G, (g;(J))) for the semisimple
l'-elements g;(J).

As in Section [4.4] when ¢|(q*—1), we will denote by B;(J) the (-blocks (or, in some
situations, just the irreducible Brauer characters) in & (G, (s)) where s is conjugate
in G* to the semisimple element ¢;(.J) in the notation of [47]. In most cases, Cg=($)
has only one unipotent block, and therefore (G, (s)) is a single block. However,
when multiple such blocks exist, which occurs for i = 6,7,8,9 when ¢|(¢*> — 1), we
will denote by B;(J)® the (Brauer characters in) the block corresponding in the
Bonnafé-Rouquier correspondence to the principal block of Cg-(s) and by B;(J)™M)
the (characters in the) block corresponding to the unique other block of positive
defect. Further, By and By will denote the (Brauer characters in the) principal block
and the cyclic unipotent block, respectively, as described in [76].

7.2 Radical Subgroups of Sps(2*) and Sp,(2)

In this section we describe the radical subgroups of Spg(q) with ¢ even and their
normalizers. In [6], J. An describes the radical subgroups for Sp,(¢) with odd ¢, and

his results in the first two sections extend to Spg(q) when ¢ is even and £|(¢* — 1),
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so we will often refer the reader there. We begin by setting some notation for the
subgroups of Sps(q) that will be of interest.

Let G = Spa,(q) with ¢q even and let {eq,es, ..., en, f1, fo, ..., fu} be the standard
symplectic basis for the natural module ]Fg” for G. For r < n, we can view Sps,.(q)

as a subgroup of G by identification with the pointwise stabilizer

Sp?T(Q) = StabG<€7’+17 -0y En, fT-‘rh cey fn)a

and by iterating this, we see that for integers vy > ro > ... > r, > 0 so that
s =y 1 <n, we may view the direct product [], Spas,(q) as a subgroup of G
which stabilizes (point-wise) a 2(n — s)-dimensional subspace of F;". Moreover, we
may further view GLE(g) as a subgroup of Spa,(q), so that [], GL;E_(q) < G under this
embedding. We will also require the embeddings GLi (¢*) < GLF(q) and GU,(¢?) <
GLy(q). (Here we use the notation GL(q) := GL,.(q) and GL; (q) := GU,(q).)

Now specialize n = 3, so G = Spg(q), and write H := Sp4(q) = stabg(es, f3). Sup-
pose first that ¢](¢?—1), and let € € {&1} be such that ¢|(g—e¢), with (g—e), = ¢%. (We
will also write € for the corresponding sign +.) Let r; > 75 > r3 > 0 be as in our dis-
cussion above, and define Q;, ,, r, := Oy (Z (H?:1 GL;, (q))), viewed as an ¢-subgroup
of G under the embedding described above. Then Co(Qr, roms) = SP2(n—s)(q) X
I, GL; (q), and if ¢; is the number of times r; appears, then Ng(Qp rors) =
Spam—s)(q) x [T (GLE (q) : 2) 1 S, where the product is now taken over the i so
that each distinct r; appears only once. (This can be seen from direct calculation, or
by arguments similar to those in [, Sections 1 and 2].) Here we can view GLs (q)
as its image under the map A — diag(A,TA™1), possibly viewed in the overgroup
Spar,(q?), with the Cy extension inducing the graph automorphism 7: A — TA™! on
GLy; (q). When r; = 0 for some 4, we will suppress the notation, so that we will write,
for example, () rather than ()10, and ()1 rather than ()1 0. Hence @)1, @2, and
Q3 are cyclic groups of order ¢?, Q11 and Qo are isomorphic to Cpa X Cya, and Q111

is isomorphic to Cya x Cpa x Cpa. Moreover, notice that Q)11 € Syl,(H), and when
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C#3, Qi1 € Syl (G).

If ¢ = 3, let P denote the Sylow subgroup, which is 111 % Cs, or Cpa 1 C3, which
we can view inside Spy(q) ¢ S3 < G. Write Z := @3 and let R < GL§(q) be the
embedding of the symplectic-type group which is the central product of Z and an
extraspecial group E of order 27 with exponent 3, as in [6, (1A) and (1B)]. That is,
E = (xy,x) witha? = 1fori=1,2, [z1,12) = y,and {z € Z: 2* =1} = Z(E) = (y).
Moreover, the group of automorphisms of R which commute with Z is isomorphic to
Inn(E) x Spa(3). (See [6, (1.1)].)

Now suppose that ¢|(¢* + ¢*> + 1), and let € be so that £|(¢* + e¢q + 1). Write
QB := 0,(Z(GL5(¢?))). When £ # 3, Q® is a cyclic Sylow f-subgroup of G of order
(¢* 4+ eq+ 1),. When ¢ = 3, we have 3|(q — €) as well, and (¢* + eq + 1); = 3. In this
case, Q) is a cyclic group of order 39! where (q — ¢)3 = 3. When /£|(¢? + 1), write
Q) = 04(Z(GU,(¢?))) so that Q@ is a cyclic Sylow (-subgroup of G.

Let s := s3, 55 be a generator of Q®), Q)| respectively. Write N := Ng((s)) and
C := Cg((s)). From the description in [47] of semisimple classes of G, we see that
s is conjugate to s’ if and only if i € {=+q, ..., =¢’}, where j = 3,2 respectively, so
that N/C' = (7, B) is generated by 7: s — s71, 3: s — s%. Moreover, Cg(s3) = Cp_.
and Cg(s2) = Cr(ss) x Spa(q) = Cpgir x Spa(q), so No(Q®) = Cp_. : 6 and
Ne(Q®) = Nu(Q®) x Spa(q) = Cpyr = 2% x Spa(q).

Proposition 7.2.1. 1. Let G = Sps(q) with q even and let Q) be a nontrivial
(-radical subgroup of G for a prime € # 2 dividing |G|. Then:

o If34((¢* 1), then Q is G-conjugate to one of Qr, Qz, Qs, Q11 Qo or
Q1,1,1'

o If (= 3|(¢ — 1), then Q is G-conjugate to one of Q1,Q,Qs, Qr1, Q..
Q1,171,Q(3)>P or R.

o If3#/((q" +¢*+ 1), then Q is G-conjugate to Q©).
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o Ifl|(q? +1), then Q is G-conjugate to Q).

2. Let H = Spy(q) with q even (viewed as stabg(es, f3)) and let QQ be a nontrivial

(-radical subgroup of H for a prime { # 2 diwiding |H|. Then:

o Ifl(q*> — 1), then Q is H-conjugate to one of Q1,Qz, or Q1.
o Ifl|(q> +1), then Q is H-conjugate to Q.

Moreover, no two of the subgroups listed are G-conjugate.

To prove Proposition [7.2.1] we will make use of many arguments in [6], and we
present here some of the useful lemmas and arguments found there, specialized to our
situation.

As above, when € € {£1}, we abuse notation by using € to denote the appropriate

sign + as well, and GL*(q) denotes GU,(q) in case ¢ = — and GL,(q) in case ¢ = +.

Lemma 7.2.2 ((1A) of [6]). Let q be any prime power and let ¢ be a prime with
l(q — €) for € € {+1}. Let E be an extraspecial group of order (¥ and write
G = GL§,(q). Then G contains a unique conjugacy class of subgroups isomorphic to

E. Moreover, if £|(q — 1), then F, is a splitting field of E.

Lemma 7.2.3 ((1B) of [6]). Let q be any prime power and let £ be a prime with £|(g—e¢)
for e € {&1}. Let E be an extraspecial group of order (> and write G = GL,(q).
Let R = ZE be an (-subgroup of symplectic type of G, with Z = O Z(G)). Write
C = Cg(R) and N := Ng(R). Then C = Z(G) = Z(N) and if E has exponent
¢, then N/RC = Spy,({). In addition, if R is radical in G, then E has exponent
0. Moreover, each linear character of Z(N) acting trivially on Oy (Z(N)) has an

extension to N which is trivial on R.

As the reader may have inferred, the above lemmas will be primarily useful in the
case ¢ = 3, with R as described above (so v = 1), viewed through the embedding

of GL3(q) in Spg(q). However, we will formulate our discussion more generally for
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¢|(¢* —1). Given a semisimple s € G = Spa,(q), we will call s primary, as in [6],
if the characteristic polynomial for s acting on the natural module Fg” is of the
form f(t)* € F,[t], where § is either (¢t — 1), self-check, or the product g(t)g* (¢) of
a pair of non-self-check polynomials, as in Section . (Hence if s is primary, then
Cq(s) = Spi(q), GUr(q¥?), or GL(q¥?), respectively, where d = degf.) As usual,
when /£|(¢®> — 1), let ¢4 = (¢*> — 1),. The next lemma is [6, (1C)], adapted for our

purposes.

Lemma 7.2.4. Let G = Spa,(q) with n < 3 and q even, let {|(q — €) with € € {£1},
and let Z = (2) be cyclic of order (4t® for ot > 0. Let E be extraspecial of order
(2 and let R = ZE a symplectic-type group with Z(R) = Z. Suppose that™ and *
are two embeddings of R into G such that Z and Z are primary. Then n = mf**" for
somem > 1 and R and R are conjugate in G. (Observing the structure of the Sylow
C-subgroups, note that o = 0 unless { = 3 = n, in which case « =0 or 1.)

Identifying R with R, let C := Cq(R), N := Ng(R), and N° := {g € N: |9, Z] =
1}. Then C = GL:,(¢""). Further, if R is a radical subgroup of G, then E has
exponent { and N° = LC, where R L, LNC = Z(C) = Z(Cs(2)) = Z(L),
L/RZ(L) = Spay(¢), and [C, L] = 1. Moreover, each linear character of Z(L) acting
trivially on Oy(Z(L)) can be extended as a character of L which is trivial on R. Also,
N/N° 2= Ng(Z)/Cq(Z) is cyclic of order 20<.

Proof. We largely follow the proof of [6l (1C)]. Since z and Z are both primary
elements of G, they must be conjugate. (This can be seen, for example, from the
conjugacy class descriptions in [21] and [47].) Hence we may assume Z(R) = Z(R),
so E and E are subgroups of H := Cg(Z). Write §* for the characteristic polynomial
of Z, in the notation of the above discussion, so that H = GL{(¢*"). (Indeed, note
that if ¢|(¢ — 1), then a root of f is an element of F, and § is a product of non-self-

check polynomials, but if £|(¢+ 1), then a root of § is in F2 \ F,, and f is a self-check

polynomial.)
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Now, E and E can be viewed as embeddings of E into H, with Z(E) and Z(E)
generated by scalar multiples of the identity matrix I,. Hence E and E are conjugate
in H, and k = m{" for some m > 1, by Lemma [7.2.2] and [6, Remark (1) after (1A)].
Note that in our case n < 3, we have H = GL5(q), unless n =3 = ¢ and a = 1, in
which case H 2 GL{(¢*). (In particular, note that v = 0, unless possibly if n = ¢ = 3
and « = 0, in which case vy =0 or 1.)

This yields that, R and R are conjugate in G. Now, identify H with GLE . (q").
Then direct calculation and the discussion so far shows that C = Cy(R) = GLE,(¢).

Now, certainly if ¥ = 0, then R = Z, N = C and the remainder of the statement
follows trivially, with L := Z(C'). Henceforth, we may assume n =3 = ¢ and v = 1,
so that « =0, m =1 and C' = GL{(q).

Now, let E denote the embedding of F in GL§(q) given by Lemma , and
write L for the normalizer of E in GL§(q). Note that L = Ny (E). Then certainly
R <L < N°= Ny(R), since L normalizes F and centralizes Z. Moreover, Cy(L) =
Cuy(E)=C, and [C, L] = 1. (Indeed, from above, Cs(R) = Cy(R), which is Cy(E)
since H = Cg(Z). Then C = Cy(F) < Cy(L), since C = Z(H) and Cyx(L) < Cy(E)
since £ < L.)

Suppose R is a radical subgroup of G. We claim that R has exponent 3, so that
R is in fact the 3-group R as defined for Sps(q) at the beginning of this section.
By way of contradiction, assume R has exponent 9, so we may assume R = F, as
otherwise we can replace R by the central product of Z and an extraspecial group
of exponent 3. Now, from [6, Proof of (1B)], there is a 3-element x € L\ E which
induces an element of Z(Aut®(F)/Inn(E)), where Aut®(E) is the subgroup of auto-
morphisms which commute with Z, so we may view x as an element of L\E . Note that
Aut®(E)/Inn(E) = Cs, by [6, (1.1)]. Let Q := (z, E). Then Cy(E) = Cy(Q) = C,
from above.

Now, since N° < N, we see that E = O4(N), since [E, Z] = 1 and E = Os3(N)

as E is radical in G. Also, each element of N° induces an element of Aut®(E). We
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claim that @ < O3(N?), which contradicts that R has exponent 9.

Indeed, let h € N°, and by replacing with an appropriate element h - e for e € E,
we may assume h induces an element of Aut’(E)/Inn(E). Hence [h,z] is trivial on
E (as z induces an element of Z(Aut’(E)/Inn(FE))), so ¢ := [h,x] is an element of

h' = ¢z and x

the cyclic group C' = Z(H). Moreover, since C' = Cy(Q), we know x
commute and are both 3-elements, so c¢ is a 3-element. Hence ¢ € O3(Z(H)) < E, so
h normalizes Q. Therefore, Q < O3(N°) = E, contradicting that = ¢ E.

This yields that E has exponent 3. Identifying R with R, we see LC /C=L/(CN
L)=L/Z(L) = Aut’(E) = Aut°(R), and hence L/RZ(L) = Sp,(3) (see [0, Proof of
(1C) and discussion before (1.1)]). Moreover, NY/C induces a subgroup of Aut®(R),
so we see that N°/C < LC/C < N°/C, so N° = LC. Hence Z(H) < Z(N°) <
Z(L)-Z(C)=Z(L)-C, since C centralizes L. Also, Z(L) < C = Z(H), so Z(L) =
Z(H) = Z(C) = C = CnN L. (Recall here that C is cyclic.) Now, by Lemma
[7.2.3] since N° = Ny(R) and Z(N°) = Z(L) from above, each linear character of
Z(L)/O3(Z(L)) extends to L/R, as L < N°.

Finally, N¢(Z)/Cq(Z) is cyclic of order 2. Let g € Ng(Z) generate No(Z)/Ca(Z).
(Recall that C5(Z) = GL5(q), and that g induces the automorphism 7: A — TA™! on
GL5(q).) Then E and EY are subgroups of H = Cg(Z) = GL§(q), each extraspecial
of order 27, so must be conjugate in H, by Lemma . Hence E = E9" for some
h € H, and gh € N = Ng(R), since certainly gh € Ng(Z) and gh € Ng(E).
Hence we see that Ng(Z)/Cq(Z) can be embedded in N/N°. Moreover, N < Ng(Z)
and N° = NN Cg(Z), so we have N/N° = N/(NNCq(Z)) 2 NCq(Z2)/Ca(Z) <
Ng(Z)/Ca(Z), and we have N/N° = Ng(Z)/Cq(Z), completing the proof.

[

The next lemma is [6l (2A)], again adapted to our situation. As in [6], given
R < Span(q), by a nondegenerate or isotropic R-module, we mean an R-module

which is nondegenerate or isotropic as a subspace of the natural module V = Fg”
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with symplectic form (-, -), for Spa,(q).

Lemma 7.2.5. Let G = Spa,(q) with q even, and let QQ < G be an (-subgroup for a

prime £ # 2. Then the natural module V = Fg” for G has a QQ-module decomposition
V=VilVol . 1V, 1 (U & U, ,)L... LU, ®U,),

where V; is a nondegenerate simple QQ-module for 1 < i < v and U;, U] are totally
isotropic simple Q-modules for v + 1 < ¢ < w, with U; & U! nondegenerate and

containing no proper nondegenerate (Q-submodules.

Proof. The proof is exactly as in [5, (1B)], but we present it here for completion.

We induct on dim V. Let W be a simple ()-submodule of V' of minimal dimension.
Then {v € W: (v, W) = 0} is a submodule of W, so must be either trivial or all of
W. That is, either W is nondegenerate or totally isotropic.

If W is nondegenerate, we have V. = W LW+, where Wt = {v € V: (v, V) =
0} (see, for example, [37, Lemma 2.1.5(v)]). Then as W+ is a nondegenerate Q-
submodule, we see by induction that W+ has such a decomposition, so V also has
such a decomposition and the statement holds.

Now assume W is totally isotropic. Then W+ D W is an Q-submodule of V,
and dimV = dim W + dim W+ (see, for example, [37, Lemma 2.1.5(ii),(iv)]). Since
(2,¢) = 1, Maschke’s theorem yields that V' is a completely reducible @-module, so
we have V = W+ @ W', where W’ is a Q-submodule of V with dim W’ = dim V.
Moreover, W @& W’ is nondegenerate. (Indeed, if (w + w', W & W') = 0 for some
w € W,w' € W, then in particular, (w+w’, W) =0, so (w’, W) = 0 since W C W+,
so w' € W+, a contradiction unless w’ = 0. Now, as V is nondegenerate, there is
x € W' with (w,x) # 0, unless w = 0 as well.) Hence W’ is either a totally isotropic
or nondegenerate simple Q-submodule of V. If W’ is nondegenerate, we may use
the preceding paragraph, with W replaced with W', to see that V' has the desired

decomposition.



172

So, we may assume both W and W' are totally isotropic simple Q-modules. Sup-
pose that Y € W & W' is a proper nondegenerate (Q-submodule. Then Y must be
simple, and we may again appeal to the earlier case, with W replaced with Y, to
see that V has the desired decomposition. Hence we can assume that W & W’ has
no proper nondegenerate @-submodules and is of the desired form U; & U/ in the
statement. Then since V = (W & W') L(W @& W), we may apply the induction
hypothesis to (W & W’)* to see that V can be decomposed as claimed.

O

Let ¢|(¢* — 1) with €, as usual, such that ¢|(g — €) and ¢* = (¢ — €),. By a basic
(-subgroup of Spa,(g) with n < 3, we mean a group Ry, o~ as in [6]. That is, we
begin with the embedding R,, ., of the symplectic-type group Z, E.,, where Z, is cyclic
of order ™ and E, is extraspecial of order {*'  into Spya+(g) via the embedding
into GLg, (¢) with Z, = Oy(Z(GL§, (¢"))). Ru.a. is the m-fold diagonal embedding
of Ry~ into Spomea+v(q), and Ry, o, is the wreath product R, 4.0 Cre In Spoppats+e.
(Note that in our situation, the groups A, in [6] must be trivial, unless £ = n = 3, in
which case it can be Cj3, so we have simplified the notation here.)

The next lemma is [0, (2D)] in our situation.

Lemma 7.2.6. Let G = Spo,(q) with q even and n < 3, and let Q@ < G be an (-
radical subgroup for a prime £|(q> — 1). As usual, write |(q — €). Then the natural

module V = FZ” for G has a QQ-module decomposition
V=VLlWl...1V,
and () can be decomposed into a direct product
Q =Ry x Ry XX Ry,

where Ry is the trivial subgroup of Sp(Vy) and R; for 1 < i <t is a basic subgroup of

Sp(V;). Moreover, the extraspecial components of R; have exponent £.
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Proof. Again, we will follow the proof of [0, (2D)] very closely.

Write Vj := Cy (@) and let V. denote the set of vectors of V' which are moved by
@, sothat V =131V, and Q) = Ry x R, where Ry is the subgroup of elements trivial
on Vp and Ry < Sp(V4). Then Ng(Q) = Sp(Vo) X Ngpv,)(R4), and Ry must be
(-radical in Sp(V). Hence we may assume inductively that V' =V, and Cy(R) = 0.

Now, by Lemma [7.2.5] we can write V = m Vi LmoVol ... 1m,V,,, where each V;
is either a nondegenerate simple Z(Q)-submodule or the sum V; = U; & U], were U,
and U] are totally isotropic simple Z(Q))-submodules, and m; is the multiplicity of V;
in V for 1 <7 <w. (Note that Z(Q) = @ except possibly in the case n = 3 = £. Also,
note that as dimV; > 2 for each 1 < i < w, we must have w < n.) The commuting
algebra D; := Endygy(V;) of Z(Q) on V; is F i for some a; > 0, in the case V; is
nondegenerate, and D; := Endyzg)(U;) is F i for some o; > 0if V; = U; @ U/ is the
sum of totally isotropic spaces. In either case, we note that dim V; = 2/%:. Note that
we must have a; = 0, except possibly in the case £ = 3 = n, in which case a; = 0 or
1. In the latter situation, we have V = V;.

Write NY := {g € Ng(Q): [9,Z(Q)] = 1} and H := C5(Z(Q)), so N* = Ng(Q) N
H = Ny (Q). (Then N° = C;(Q) except in the case £ =3.) For h € H, 1 < i < w,
we have h(m;V;) = m;V;. (Indeed, for g € Z(Q), gh(m;V;) = hg(m;V;) = h(m;V;), so
h(m;V;) is a Z(Q)-submodule of V| but similarly, gh(V;) = h(V;), so h(V;) is either
trivial or a Z(Q)-submodule isomorphic to V; (by Schur’s lemma), and hence m;V; is
preserved by h.)

Let F; denote the representation of Z(Q) on V;. If V; is nondegenerate, then
since D is cyclic and F;(Z(Q)) < D}, we see that F;(Z(Q)) is cyclic, generated
by some g; € Sp(V;). Similarly, the representation of Z(Q) on U/ is (up to a field
automorphism) the contragredient of the representation of Z(Q) on U;, so we see
that F;(Z(Q)) is again cyclic generated by some g; € Sp(V;) in this case. Then V;
or U;, in the respective cases, is a simple (g;)-module. Hence the action of Z(Q)

on m;V; is generated by the m;-fold diagonal action of g;, which we will denote g;.
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In particular, by the description of conjugacy classes and centralizers of /-elements
elements in [47] (see also Section [2.4)), we see that H has a decomposition Hy x - - - H,,
where H; = GL, (¢"") < Sp(m;V;) for 1 <i < w.

Now, since @ is (-radical and N° <t N, we see that O,(N?) < Oy(Ng(Q)) = Q.
But also, @ <1 N, since N° = Ny (Q). Therefore Q < Oy(N?), and we see that in
fact, Q@ = Oy(N°) = Oy(Nx(Q)), so Q is f-radical in H.

First, suppose that n = ¢ = 3 and that o; = 1, so that V' = V;, and o = 1. Then
Z(Q) = (g) acts cyclicly on V and H = GL;(¢*). (In fact, we see that g belongs a
the class cog or c31 in the notation of [47], in the case e = 1 and —1, respectively.)
Here @Q = O3(H) = O3(Z(H)) = Cgar1 and @ = Z(Q) is cyclic and is certainly a
basic subgroup of Sp(V). (In fact, @ is conjugate to Q® in our notation.)

In the other cases, a; = 0 for each 7, so V is the orthogonal sum of m;V;, where
m; < 3, and V; are 2-dimensional spaces. For each i, let R; := (g;).

If each m; = 1, then as Q < H and each H; is cyclic, we see that () must
be abelian and @ = [[R;. If my = 2, we have H; = GL5(q) and (for n = 3)
Hy, =2 GLS(q). Again, we see that @) is abelian, since an ¢-subgroup of H is abelian,
and @ = Ry X Ry (or just Ry if n = 2). In either case, letting N; := Ny, (R;), we see
that certainly R; < Oy(NN;) for each i, and [[, Ox(N;) < O(Nu(Q)) = Q =[] R;,
so that R; = Oy(1V;), and R; = Cya for each i. Certainly in these cases, each R; is a
basic subgroup of Sp(V;). (Note that the case m; = 1 us Q11 for Sps(q) and Q11,1
for Spg(q) and the case my = 2 gives Q1 for Spe(q), or Q2 for Sps(q).)

If m; =3, (i.e. V=3V, and n = 3), then H = GL5(q), and since @ is radical in
H, we know by [4], (4A)] or [6, (2B)] that @ is a basic subgroup of H with extraspecial
part of exponent £. Now, GG has a basic subgroup @’ of the same form as (), with
extraspecial part having exponent ¢. Then Z(Q) and Z(Q') are both generated by
primary elements of order ¢¢ in G, and hence are conjugate in G. Then we may
suppose that Q' < H, so @ and @' are conjugate in H. Then (@ is a basic subgroup
of G, as desired. (We note that this case yields Q = Q3 when ¢ # 3, and Q = @3, P,
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or Rif { =3.)
[l

Proof of Proposition [7.2.1] First, it is clear from the description in [47] of the
semisimple classes of GG that the listed subgroups each lie in a different conjugacy
class of subgroups.

On the other hand, when £|(¢*> — 1), the remainder of the statement can be ex-
tracted from Lemma [7.2.6

When ¢ f(¢*> — 1), a Sylow (-subgroup is cyclic, say generated by the semisimple
element s. Then any power s’ of s has the same centralizer, which can be seen from
Theorem Moreover, this centralizer is a cyclic group containing (s), unless
l|(g*+1) for the group G = Sps(g). In the latter case, Ca(s) = Cyp2y1 X Spa(q), which
has automorphism group Aut(C,211) x Aut(Sp2(q)) since (¢* 4+ 1,]Sp2(q)]) = 1. So,
Ce(s) contains an Aut(Cg(s))-invariant cyclic direct factor C' containing (s). Hence
in either case, (s) is characteristic in the centralizer of any proper, nontrivial subgroup

(s') of the Sylow subgroup (s), so (s') cannot be (-radical.

7.3 Characters of Ng(Q)

Let G = Sps(q). In this section, we describe the characters of N (Q) that will be of in-
terest, and in particular the defect-zero characters of Ng(Q)/Q, for radical subgroups
Q of G. Recall that for £|(¢*> — 1), we have radical subgroups Q1, Q2, @3, Q1.1, Q2.1,
and (1,11, with the additional subgroups Q¥ P, and R when ¢ = 3. So, when refer-
ring to Q1, Q2, @3, Q1.1, @21, and Q1 1,1 we will assume £|(¢* — 1), without necessarily
assuming that ¢ # 3, unless otherwise stated. When referring to P or R, we assume
¢ = 3, when referring to Q®, we assume £|(¢* + ¢®> + 1) (with the possibility that
¢ = 3), and when referring to Q®, we assume £|(¢> 4+ 1). Throughout this section,
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we continue to let € € {1} be such that £|(¢*> — €), if such an € exists, and let d and
m be as in Section [Z.1l

Let @ be an f-radical subgroup, and write N := Ng(Q) and C := Cg(Q). The
characters of N that we are interested in are those which are defect-zero characters
of N/@ or height-zero characters of N with defect group Q). In either case, these
characters will be y € Irr(N) with x(1), = |N/Qls. So if Q@ = @Q1,Q, or Q3, we
have x (1), = 2, except in the case Q3 when ¢ = 3, in which case x(1); = 3%¢F1.
If Q = Q11 or Qa1, then x(1), = ¢%, and if @ is a Sylow subgroup, x(1), = 1. If
Q=Q111,Q® or Rwhen ¢ = 3|(¢—1), then x(1)3 = 3. In most cases, it will suffice
for our purposes to describe the constituents of y when restricted to C', and to keep
in mind the action of N/C on C and its characters.

In many of the groups we are concerned with, we have an extension of a subgroup
by Cs. Suppose that X =Y : 2, with the order-two automorphism on Y denoted by
7. By Clifford theory, a character x € Irr(X) satisfies x|y = 6 + 07 if an irreducible
constituent 6 of x|y is not invariant under the automorphism 7, and in this case,
x = 6% = (07)%. Since X/Y is cyclic, if a constituent @ is invariant under 7, then
Xly = 0. In this case, Gallagher’s theorem tells us that there are two such characters
X, namely y and x\ where X is the nonprincipal character of X/Y = (5. In particular,
X € Irr(X) has degree x(1) = 26(1) or §(1) for some 6 € Irr(Y). In general, when a
character 0 of Y << X extends to X, we will sometimes write 8%) for the character fv
of X with v € X/Y by Gallagher’s theorem.

We note that from the discussions below for Ng(@Q), it will also be easy to see the

characters of interest for Ny (Q) with H = Spy(q) by similar arguments.

7.3.1 Characters of Some Relevant Subgroups

From Section[7.2] we see that when ¢|(¢* — 1), the characters of the groups GL(q) : 2,
for r = 1,2,3, Sps(q), and SLs(q) = Spa(q) will play a large role for many of the
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radical subgroups, so we discuss the characters of these groups here. Recall that the
Cy extension of GL(q) acts on GLS(q) via 7: A TA™L.

First let £|(¢ — €) for € € {£1}. Let ¢; € Irr(C,—) = Irr(GL{(q)) denote the
linear character which maps ¢ — ¢, where (¢,¢) = ((1,G) or (&1,&), in the cases
e = 1 or —1, respectively. Then ¢] = ¢_;, so ¢; is invariant under 7 exactly when
(¢ — €)|i, i.e., when ¢; = 1. Hence an irreducible character of GL{(q) : 2 which is
nontrivial on GL{(q) can be identified by a constituent of its restriction to GL{(q),
and therefore can be labeled by ¢; for ¢ € I,_.. Moreover, there are two characters
of GL{(q) : 2 which are trivial on GL{(q), corresponding to the two characters {41}
of Cy, by Gallagher’s theorem, which we will sometimes denote by 1) and 11,

As 2 fq — €, we may write GL§(q) = Cy— X SLy(q) and note that 7 induces an
inner automorphism of SLs(q), so fixes all characters of SLy(q), and the action of
7 on C,_. is the same as above. So, we will write ¢ = (¢;,1) for the character of
GL5(q) = Cye x SLy(q), with ¢; as above, and ¥ € Irr(SLs(q)). Now, the only
series of characters of SLs(q) = Spa(q) with degree divisible by ¢ is x4(j) when e = 1
and x3(j) when e = —1, with degrees ¢ — € and indexing j € I, (see, for example,
the character table information in CHEVIE [26]). When the context is clear, we will
write x.(j) for the proper character x4(j) or x3(j) of SLa(q). (Also, when ¢|(¢* + 1),
note that no character of SLs(q) has degree divisible by /.)

Now consider GL§(q) : 2. The characters xs(i) of GL5(q) (in the notation of
CHEVIE [26]), indexed by 1 <i < ¢* — € with (¢*> + eq+ 1) fi and xs(i) = xs(qi) =
xs(¢*1), each have degree (¢ — €)*(q + €) and are the only characters of GL§(q) of
degree divisible by £2¢ when £|(¢*> — 1). Inspection of the character table in CHEVIE
reveals that xs(7)” = xs(—¢) and no character in this series is invariant under 7. So,
the characters we will be concerned with for this group are of the form xg(i) 4+ xs(—1%)
on GLg(q) and are indexed by ¢ € I5_..

Finally, when ¢|(q — €), the irreducible characters § of Sp4(q) with (1), = (*¢ are

those in the families (in the notation of CHEVIE) x5, x15(2), X19(4, j) when ¢ = 1 and
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X2, X15(%,7), x18(7) when € = —1. We note that x, and x5 are the Weil characters
p? and s, respectively, in the notation of [27] (see Table [4.2). Also, note that the

indexing for the families x15(¢, j) is (i, 7) € [gil,

for x15(2) is @ € I,241, and for x19(i, 7)
is i) € 121,

When @ € Syl,(G), all characters of Ng(Q) have defect group @ (see for example
[33, Corollary (15.39)]), since @ is an ¢—radical subgroup and @ € Syl,(Ng(Q)).

Hence in this case, Irrg(Ng(Q)|Q) = Irry (N (Q)).

7.3.2 Q = Ql

Let @ := @1 with ¢|(¢ —€). Then N := Ng(Q) = (Cy—c : 2) X Sps(q) and C :=
Ce(Q) = Cye x Spa(q) from Section . Note that a defect-zero character of N/Q
or a height-zero character of N with defect group @ will be of the form (¢, 0) €

Irr(Cy-c : 2) x Trr(Spa(q)) with (1)e0(1)e = [N/Qle = (¢ — €)7 = *°.
Now, with respect to the basis {ey, f1, ez, €3, f2, f3} we may identify Sps(q) with

I, 0O
Ar—>(0 A)

in G = Sps(q) and Cy_, : 2 with the subgroup

its image under the map

01
(diag(C,C_l,f4)>>4< 10 >
I

where ¢ = (; or é is a primitive (¢—e) root of unity in F 5. (Note that for e = —1, this
is an identification in the overgroup Spg(g?) rather than Sps(q).) By the discussion
in Section , we have i{l characters of C,_. : 2 of the form ¢;, with 7 € [,
which have degree 2, and 2 characters 1Y) and 1Y of degree 1. So, (1), = 1 for
any ¢ € Irr(C,_. : 2). Hence it must be that 6(1), = ¢*¢.

Therefore, if y is nontrivial on GL{(q), Clifford theory and the discussion in Sec-

tion yield that y is uniquely determined by a constituent (¢;, %) of x|¢, where
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i € I, and ¢ € Irr(Spa(q)) is one of the characters aw, x1s(i)(with ¢ € I24),
or xi9(4,j)(with 7,5 € IZ%)) when ¢ = 1 and p3, x15(4, ) (with (4,5) € I*,), or
x1s(2)(with ¢ € I 241) when e = —1. If x is trivial on GL{(¢) then x|c = (1, %) (with
1) again as above) is irreducible, and there are two choices (1), 4) and (1=, %)) for
x for each such choice of .

Now, to be a character of N/@Q, we require that ) be in the kernel. As Q =
O((GL{(q)), we see that this means dz(N/Q) is comprised of the two characters with
constituent (1,%) on C and the characters with constituent (¢;, %) on C with ¢ as

above and i € I, . such that ¢|i.

Let @ := Q2. Recall that N := Ng(Q) = (GL5(q) : 2) x Sp2(q), and that C' :=
Cq(Q) = GL5(q) x Spa(q). With respect to the basis {e1,es, f1, f2, €3, f3}, we can
identify GLS(q) x Sp2(q) as the subgroup of matrices of the form diag(A, A~7, B), with
A€ GL5(q) and B € Spa(q). (Note that again when € = —1, this is an identification
in Spe(q?).) We also identify the order-2 complement of GLS(q) in GLS(q) : 2 with

the group
0 I, 0
I, 0 0 |,
0 0 I

which induces the automorphism A — A~ on GLS(q). (Note that viewing GUs(q) <
Spe(q®), this is the automorphism (a;) = A — A = (al,).) Let 7 represent the
automorphism of C' which fixes Sps(¢) and yields the above action on GL§(gq). Recall
that we view GL§(q) as Cy— x SLs(q), so that 7 actually acts as inversion on C,_,
as in the case Q = @1 above, and fixes SLs(q) and Sps(q). (We remark, however,
that now C,_ is identified with the subgroup (diag(¢,¢,¢ 1, (1, I5)) as opposed to

(diag(¢, ¢, 1)) from the case Q = Q.)
Recall that by Clifford theory, x € Irr(N) has degree x(1) = 26(1) or 6(1) for some
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f € Irr(C), and recall that again in this case, a defect-zero character of N/Q or a
height-zero character of N with defect group @ will have degree satisfying (1), = ¢*.

The characters of N satisfying this condition therefore have constituents on C' of
the form ((¢s, x+(7)), x«(k)), with ¢; € Irr(C,—.) and x. € Irr(SLs(q)) = Irr(Sp2(q))
as in Section If x is nontrivial on C,_., then again it is uniquely determined
by a choice of i € I, and (5, k) € I,1c X I ;4. Here x|c = ((¢i, x«(4)), x«(k)) +
(i x«(4)), x«(k)). If x is trivial on C,_, then x|¢ is irreducible and there are again
two choices of x with x|c = ((1, x+()), x«(k)), which we may write (1, x,(5), x«(k))
and (1Y, x.(j), x«(k)).

This yields “<=1 characters of the form (10, x.(j), x.(j)) for each v = =£1;
w of the form (1), x, (), x«(k)) (with j # £k) for each v = %1; and
W which have constituent on C' of the form (p;, x«(j), x«(k)) (with the
possibility j = k). Note that as 2 (g 1), characters of the form (1%, x,(25), x«(k))
or (¢;, x«(27), x«(k)) have the same indexing and number of characters of each type
as above. (For example, the indexing and number of characters (11, y3(2i), x3(i)) is
the same as for characters of the form (1), x5(i), x3(4)).)

Now, to be a character of N/@Q, we require that @) be in the kernel. As Q =
Oy(Cy—c), we see that this means dz(NN/Q) is comprised of the two characters with con-
stituent ((1, x(j)), x(k)) on C' and the characters with constituent ((y;, x«(7)), x«(k))
on C with ¢%|i € I, . and (j,k) € I,1c X I 4.

734 Q=0

Let Q := Q3 with ¢|(¢ — €). Then Ng(Q) = GL§(q) : 2 = C(Q) : 2 from Section [7.2]
When € = 1, we identify the subgroup GLs3(q) with its image in G = Spg(q) given
by A — A0
Yy 0 A*T
GUs(q) is conjugate in the overgroup Sps(q?) to the subgroup given by the image

with respect to the basis {ey, es, €3, f1, fo, f3}. When € = —1,

under the same map. In both cases, we identify the extension by Cy with the group
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<( IO3 153 >>, which induces the automorphism 7: A — A~ on GL5(q) under the
above identification. (Note that viewing GU3(q) < Spe(q?), this is the automorphism
(ayj) = A A= (af)).)

As before, a character x € Irr(N) has x(1) = 26(1) or #(1) for some 6 € Irr(C).
Now, a defect-zero character of N/Q or a height-zero character of N with defect
group @Q will be a x € Irr(N) satisfying x (1), = |[N/Q|¢, which is (¢ — €)? = £?? when
{ # 3 and 3%*! when ¢ = 3. Using the character table in CHEVIE [26], we see that
when ¢ = 3, there are no such characters for GL§(q), (and hence there are no such
characters for V). Hence dz(N/Q) and Irro(N|Q) are empty in this case.

For the remainder of our discussion of Q = @3, we assume ¢ # 3 and y € Irr(N)
with x(1), = ¢**. Then x|c = xs(i) + xs(—i) with ¢ € Is_, from the discussion
in Section m To be a character of N/@Q, x must be trivial on @, which under
our identification is the subgroup O,(Z(C)), which consists of representatives of the
conjugacy classes C(k) for m|k of GL§(q) in the notation of CHEVIE. Now, on the
class C (k) of GLs(q), the character xg(i) takes the value (¢ — 1)?(q + 1)¢%, and on
the class Cy(k) of GUs(q), xs(i) takes the value (g + 1)*(q — 1)&*. (Recall that
and & are the (¢ — 1)st and (¢ + 1)st roots of unity exp (%) and exp (%ﬁ),
respectively.) Hence we see that @Q is in the kernel of (i) exactly when ¢?|i. So

dz(N/Q) is comprised of the @ characters of N with x|c = xs(i) + xs(—1),

i € Is_ with ¢]i.

7.3.5 Q - Q171

Let Q@ = Q11 with £|(¢ —€). Then N := Ng(Q) = (GL{(q) : 2) 1S3 x Spa(q) and
C = Cs(Q) = GL{(q) x GL{(q) x Sp2(q) from Section[7.2] With respect to the basis
{e1, f1, €2, fo, €3, f3}, we identify N with the image under the map

(A,B)»—><61 g),
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where A € (Cy_ : 2) 1Sy and B € Sps(q), again extending to the group Sps(¢?) in
the case €e = —1. The two copies of C,,_. : 2 are viewed as in the case () = )1, namely

the subgroups

01
<diag(<,<‘1,l4)>>4< Lo >
1y

and
I
: _ 01
<d1&g([2,<,< 1712)> X < 1 0 >7
I
where ( is a primitive (¢ — €) root of unity in Fj;. The S, factor is generated by
0 I

the matrix | Io 0 . Let L := (GL{(q) : 2) x (GL{(q) : 2) x Spa(q) and let

I

w denote the action of Sy on L, which fixes Sps(q) and switches the two copies of
GL5(q) : 2 = Cye : 2, so that diag(¢, ¢, ¢, (¢))71, X) € C is mapped under w
to diag(¢’, (¢)71, ¢, ¢ X). Note that a character (¢,¢',0) € Irr(L) = Irr(Cy. :
2) x Irr(Cy—c = 2) x Irr(Sp2(q)) is invariant under w if and only if ¢ = ¢'. So, the

irreducible characters of N may be described as follows:

(pispj,0); i# %7€ l_e; degree 80(1)
(01,00, (1, 00,0) Vs i€,  degree 46(1)

(i, 10.0), (g, 10Y.0); e I,—; degree 46(1)
(1(1)’ 1(1),9)(1)7 (1(1)’ 1(1),9)(—1), (1(—1)7 1(—1)’9)(1)’ (1(—1)7 1(—1),9)(—1); degree 6(1)
(1W,16Y 9):  degree 26(1)

where in each case, 6 € Irr(Sps(q)), a character (¢, @', 0) with ¢ # ¢’ is (¢, ¢, 0)+
(¢',,0) on L, we have abused notation to denote by ¢; the character of Cy_, : 2
which restricts to C,_. as o; + ¢4, and (p, p,0)") for v € {£1} represent the two
extensions of (¢, p,0) € Irr(L) to N.



183

Now, a defect-zero character of N/Q or a height-zero character of N with defect
group Q will be a x € Irr(N) satisfying x(1), = |N/Q|s, which is (¢ — €), = £,
which means that (1), = ¢¢. As established above, this means that 6 = x. (k) where
X« = X4 When ¢ = 1 and y, = x3 for ¢ = —1. Hence the characters xy of N with
x (1), = €% can be described as follows.

There is a unique such character of N whose restriction to C' contains the con-
stituent (s, ¢, x«(k)) for ¢ # j € I,_,k € I, and two whose restriction to C
contains the constituent (v;, ¢;, x«(k)) or (@i, 1, x«(k)) for i € I,_., k € I,.. Fi-
nally, there are five such characters which have constituent (1,1, x.(k)) for each
k € 4., so are trivial on GL{(q) X GL{(q). (These correspond to the five characters
of C51 .Sy, which we will later write as (11, 16D (1), 10)N) "and (1D 1Dy
where A € {£1} = Irr(Cy).)

Since Q = O, ((GL5(q))?), to be trivial on @, the characters as listed above must,

satisfy that in addition, ¢¢|i for all of the o; occurring in the restriction to C.

7.3.6 Q = Q2,1

When @ = @21, we have N := Ng(Q) = (GL5(q) : 2) x (GL{(q) : 2) and C' =
Ce(Q) = GLS(q) x GLS(q). With respect to the basis {ey, ea, f1, f2, €3, f3}, the identi-
fication of GL5(q) : 2 in G is the same as in the case Q = Q2, and GL{(q) : 2 = Cy_ : 2
is identified like in the case Q) = @)1, with

I
que 12= <diag(147C>C71)> A < 0 1 > :
10

Here characters of N/Q of defect zero or height-zero characters of N with defect
group Q will have x(1), = ¢?. Hence y must be of the form ((¢, x«(j)),¢’) where
(p,x«(j)) € Irr(GLS(q) : 2) is as in the case Q = @ and ¢’ is any member of
Irr(Cy—c @ 2) as described in Section [7.3.1] This yields w characters of

the form ((p;, x«(7)), vx) (with the possibility i = k), w of each form
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((0i, x+(4)), 1) and ((1“), x.(4), ¢:) for each v € {£1} (where we have again abused
notation by writing ¢; for the character of C,_. : 2 which restricts to C,_. as p;+¢_;),
and ==L of the form (1%, x,(j), 1%) for each (v, ) € {1} x {£1}.

To be trivial on @, we again only further require ¢¢|i for any ¢; occurring in the

restriction to C.

7.3.7 Q = Q1,171

Let @ := Q1.11, with £|(g—€), 80 N := Ng(Q) = (GL{(¢q) : 2)1S; and C := Cx(Q) =
(GLS(q))*. Also, write L := (GL(q) : 2)° to denote the normal subgroup of N with
quotient S3. With respect to the basis {eq, fi, s, fo, €3, f3}, we identify C' with the
subgroup of elements of the form diag(ai,a;’,az,ay ", a3,a3") with a; € C,_, and

the order-two automorphisms on each C, . acts as before, sending a + a™'.

Here
the S3 acts on L via diag(A;, Az, A3)” = diag(As-101), As-1(2), As—1(3)) for o € S5 and
A€ Cye i 2.

Let 6 = (¢, ¢, ¢") € Irr(L) = Irr(C,_ : 2)® be a constituent of x € Irr(N) when
restricted to L. Then 6 is invariant under the S5 action if and only if it is invariant
under the Az action, if and only if ¢ = ¢’ = ¢”. In this case, 0 extends to a character
of N and we get three such characters, corresponding to the three characters of the
quotient N/L = S;, by Gallagher’s theorem, with degrees 0(1),0(1), and 26(1). (This
extension can be seen, for example, using [33, (11.31) and (6.20)].)

Moreover, 6 has a stabilizer T':= Ny in N with |T'/L| = 2 precisely when exactly
two of ¢, ', and ¢ are the same. In this case, we get two extensions to 7', and the
character y of N is determined by a constituent on 7" by Clifford correspondence [33,
(6.11)]. Let w denote a 3-cycle in S5. Then the two characters of N with constituent
0 on L have restriction to L as 6 4+ 6 + 0" and have degree 30(1).

Finally, if ¢ # ¢’ # ¢”, then the irreducible character 6 = (¢, ¢’, ¢”) of L has

stabilizer Ny = L. Hence such a character is uniquely determined by a constituent 6
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on L, restricts to L as Y g 07, and has degree 66(1).

From here, the number and indexing of each type of character can be seen easily
from the description of characters of C_. : 2.

The degree x(1) of a defect-zero character of N/Q or hight-zero character of N
with defect group @ must satisfy x (1), = |N/Q|¢, which is 1 when ¢ # 3 and 3 when
¢ = 3. Since the characters of C,_, : 2 have degree 1 and 2, we see by the above
discussion that if ¢ # 3, then all characters of N satisfy this condition. If ¢ = 3, all
except those characters whose restriction | to L has a constituent (¢, p, @) satisfy
this condition. Now, to be trivial on (), we again just need to further require that

¢4)i for any ; appearing in the restriction to a copy of C,_, : 2.

738 Q=P

Now suppose @) := P with ¢ = 3|(¢ —€). Write N := Ng(Q) and C := Cg(Q).
Note that since P € Syls(G), all characters of Ng(P) have defect group P and
Irrg(Ng(P)|P) = Irry (N (P)).

Write Pp := @111, and note that P = P, x C5. Then C < Cg(Py) = (C,_.)?,
and since C' must commute with the Cs-action, we see that in fact C' = C,_. is the
subgroup consisting of (z,z,z) € (C,_.)* for x € C_..

Now, by [I, Theorem 2|, P; is the unique maximal normal abelian subgroup in P.
Hence, N must normalize P;, so N < Ng(P;) = (GL{(q) : 2)1Ss.

Denote an element of Ng(Py) by (X,Y,Z)-hfor X,Y,Z € Cy,_ : 2 < Spy(q) and
h € S3. Here as an element of G, (X,Y, Z) is given by diag(X,Y, 7), and we view

S3 < G with generators

0 I, 0O 0 I, 0
pP1 = 0 0 IQ s and P2 = .[2 0 0
I, 0 O 0 0 I

Note that P/P; is also generated by p;. We wish to determine the conditions on
(X,Y,Z) - h which ensure that it is an element of N. That is, we must decide what
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conditions ensure that (X,Y, Z)-h sends p; to another element of P. Now, observing

that

(X,Y,Z) - hpth™ - (XY L2 Y =(2,Y,2) - pr- (XYL 27

0 XYl o0
= 0 0o vz |,
ZXt 0 0

we see that this is an element of P if and only if X, Y, and Z all belong to the same
coset of Cy_; : 2 module Csa.

Hence, we see that N is as in [6, Formula (2.5)] and can be written as a semidirect
product K x S3, where K < (Cy_: 2)3 is comprised of elements (X,Y,Z) where
X,Y.Z € Cp_c : 2 belong to the same coset modulo Csi. Let ¢ € Irrg(N|P) =
Irry (V). Since P; is normal in N, we know by Clifford theory that ¢|p, is the sum of
N-conjugates of some (uf, i/, u¥), with u the character of Csa that sends a generator
to a fixed primitive 3¢ root of unity in C and 0 < 4,5,k < 3¢ — 1. If the 4, j, k are
not all the same, then the S3 action will cause the number of distinct conjugates in
this decomposition to be a multiple of 3, and hence ¢ will have degree divisible by 3,
contradicting the fact that ¢ has height zero. Hence an irreducible constituent of the
restriction of ¢ to Py is of the form 6; := (u, i, ') for some 0 <14 < 3¢ — 1.

Now, we can write K = (P, x C,,) : 2 (here C,,, < C), and let J := P; x C,, be the
index-2 subgroup. The extensions of 6; to J are of the form 6;¢ where ¢ € Irr(C,,),
and each ;¢ is invariant under the S3 action, so extends to J x S3. (This can be
seen, for example, from [33] (11.31) and (6.20)].)

Further, 6;¢ restricts to C' as ¢; for some 0 < j < ¢ — € — 1, and this restriction
uniquely determines ¢ and ¢ (indeed, ¢; = p'¢). From here, we see that if ¢|c
contains a nontrivial constituent, then |k is uniquely determined by a constituent
@, for j € I,_. of the restriction to C, and for each such choice of j there are 3
characters ¢ of N, by Gallagher’s theorem. (By an abuse of notation, we will write

¢ = ;3 for these characters of N, with § € Irr(S3).) Moreover, there are 6 characters
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¢ € Irg(N|P) with C' < ker ¢, also by Gallagher’s theorem. (These we will denote
by 13 and 193 for 8 € Irr(Ss).)

Moreover, since Ng,(As)/As = S3/A3 = Cs, the fact that [6] Formula (2.5)] holds
for @ yields N/@Q = (C,, : 2) x Cy. Certainly, any character of N/Q has defect zero

since P is a Sylow 3-subgroup of G. We can view C,, : 2 as a quotient of

Cype 2= (ding(a,a,a,aa b a ) (0 5)))
I; 0

with respect to the basis {e1, es, €3, f1, f2, f3}, and as such, the characters of C,, : 2
are of the form 1M 1=V and Indggjzgoi, where 3%|i, as before. For the C, factor,

let (\) = Irr(Cy).

739 Q=R

Let £ = 3|(q — ¢) with (¢ — €)3 = m,(q —€)3 = 3% and let Q = R be the
group Z - Ey; < GL§(q) viewed as a subgroup of G as in Section . Then by
Lemma [7.2.4] we see N := Ng(R) has an index two subgroup N° satisfying N/N° =
Ne(2)/Ca(Z) = Cy. Further, R < N°, and we have N/R = (N°/R).2, with the
order-2 automorphism given by the action of the map 7: A — (AT)™! on GL§(q).
Also, Sp2(3) = N°/(RZ(N°)) = (N°/R)/(RZ(N°)/R), so N°/R contains a quo-
tient group isomorphic to Sps(3). Moreover, each linear character of RZ(N°)/R =
Z(N°)/(RN Z(N°)) = Z(N°)/O3(Z(N°)) = C,, is extendable to a character of
N°/R (again by Lemma [7.2.4). Hence by Gallagher’s theorem, the characters of
N°/R are exactly the characters 63 with 6§ € Irr(RZ(N°)/R) = Irr(C,,) and €
Irr(N°/(RZ(N°®)) = Irr(Spa(3)).

Since |N/R| = 2m/|Sp2(3)|, we have that a defect-zero character of N/R will have
x(1); = 3. Since N°/R has index 2 in N/R, the constituents of the restriction of x
to N°/R must satisfy this degree condition as well, so we require that 5 have degree
divisible by 3. Since Spy(3) has exactly one such character (namely, the Steinberg

character, of degree 3), we will henceforth use § to denote this Steinberg character.
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Note that (3 is invariant under the action of 7, and that as before, the principal
character is the only character of (), invariant under 7.

This yields 5+ + 2 defect-zero characters of N/R, which we will denote by
103198 and ¢;8 for i € I, . with 3%i, where by an abuse of notation, ¢;83
represents the defect-zero character whose restriction to RZ(N°)/R = C,, contains

¢; as a constituent and 103, 1V 3 are the two extensions to N/R of defect-zero

characters of N°/R trivial on RZ(N°)/R.

7.3.10 Q=Q®

Let Q = Q¥ with ¢|(¢> + eq + 1). Writing N := Ng(Q) and C = Cg(Q), we
have N = C : 6, and C = Cp_.. Viewing @) as a subgroup of GL§(q) with the
inclusion A +— diag(A, A~T) in Spe(q), with respect to the standard basis, C' is also
the centralizer of @) in GL§(q). Let 7: s — s71 B: s +— s so that N/C = (1, 3)
by Section . Let ¢; € TIrr(C) for 0 < i < ¢3 — € denote the character which maps
Z|—> ¢, where gis a fixed generator of C' and ( = exp (22%?) Let x € Irr(N)
and let ¢; be a constituent of x|c. Note that ¢; is invariant under the action of 3
if and only if (¢*> + eq + 1)|i. (Indeed, if (¢*> + €g + 1)]z, then ¢; is a character of
Cy—e = Z(GL5(q)), so is invariant under 3. Conversely, if ¢; is invariant under the
action of 3, then ¢* = ¢ = ¢¢" and hence (' is a (¢ — €)th root of unity, meaning
that (¢* + eq+ 1)]i.)

Now, since ¢; # ¢_; for any i # 0, it follows that if (¢*> + eq + 1) /i, then ¢; has
stabilizer C'in N, and x is uniquely determined by a constituent ¢; on C for i € I s_,
yielding q(¢*> —1)/6 characters of this form. (This character restricts to C' as the sum
Gi+ Gi + i + Dgi + g2i + P_g2i-)

Ifi # 0 and (¢>+eq+1)|i, then ¢; has [N : staby(¢;)] = 2, and [staby(¢;) : C] = 3.
In this case, there are three choices of y that restrict to C' as the sum ¢;+¢_;. That is,

we obtain three characters x for each choice of constituent ¢, for i € I,_.. (Note that
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q—e—1

there are 5

such choices of 7.) Finally, there are six characters y with C' < ker x.

When ¢ # 3, @Q is a Sylow ¢-subgroup of G and every character of N has degree
prime to ¢, and hence Irro(N|Q) = Irry (N) = Irr(N).

When ¢ = 3, recall that a defect-zero character of N/Q or a height-zero character
of N with defect group @ will have x(1); = |[N/Q|s = 3. Let x be such a character,
with constituent ¢; on C. Then [staby(¢;)| cannot be divisible by 3, so ¢; must not
be stabilized by 3 and we see (¢*> + eq + 1) Ji. Hence the characters with y(1)3 = 3
are exactly those with constituent ¢; on C' with (¢* + eq + 1) Ji. To be trivial on Q,

we just further require that 3¢7}i, which yields m(n — 1)/6 defect-zero characters of

N/Q, where n = (¢*> + eq + 1)3.

7311 Q=Q®

Now let £|(¢>+1) and let @ := Q® be a Sylow f-subgroup of G. Write C := Cg(Q) =
Cpri1 % Sp2(q) and N := Ng(Q). Then again all characters of NV have defect group
@, so Irrg(N|Q) is exactly the set of characters of N with degree relatively prime to
(. However, N = (Cj211 : 22) X Spa(q), so every character of N satisfies this condition
and Irro(N|Q) = Irr(N).

Fix a generator SNQ of Cp2qq and let ¥; denote the character of Cpyq so that
191(52) = &, where & = exp (%}‘ﬁ) Then since & # & or €7 for i # 0, we see
that staby(9;) = C. (Recall that N/C' is generated by 7: s — s! and 3: s — s? as

in Section [7.2])

Hence if x € Irr(N) is nontrivial on Cpyq, then x is of the form ¥ x 6 where

¥ € Irr(Cpyy @ 2%) with 19|Cq2+1 =0, +9_; + 9y +V_ for some i € Iz, and
0 € Trr(Sp2(q)). (Note that there are ¢?/4 such 99.) That is, x is uniquely determined
by a constituent 9; x 0 of x|, for i € I 21, and 0 € Irr(Sp2(q)). For each choice of

6 € Irr(Sp2(q)), we also have 4 characters of N whose restriction to Cjp2,q is trivial.



190

7.4 The Maps

In this section, we describe maps which later will be used to show that Spg(2%)
and Spy(2%) are “good” for the McKay, Alperin-McKay, Alperin weight, and block-
wise Alperin weight conjectures. In Section [7.4.1] for radical subgroups @ with nor-
malizer N := Ng(Q), we describe disjoint sets Irrg(G|Q) and Irrg(N|Q) and bi-
jections Qgq: Irrg(G|Q) + Irrg(N|Q). In Section below, we show that in fact
Irro(GQ) = Irrg(G|Q) and Irro(N|Q) = Irrg(N|Q), and that these are the required
maps for the reduction of the Alperin-McKay conjecture in [69]. In Section m
we also define maps *¢g: IBry(G|Q) — dz(Ng(Q)/Q), which we show in Section
are the required maps for the reduction of the (B)AWC in [70]. (We define the sets
IBr,(G|Q), Irro(G|Q), and Irrg(N|Q) to be the sets of characters involved in the maps
described here.) Also, in most cases, the characters for N here will be given by the
description of an irreducible constituent on the centralizer C' := C(Q). That is, the
maps we describe will be from a given set of characters of GG to the set of characters of
N with a given restriction to C'. In these situations, the choice of bijection between
these two sets does not matter, as long as the choice of image for a given family of
characters is consistent throughout the choices of indexes J. In Section [7.4.3], we give
similar maps for Sp4(q).

We note that we only define maps for /-radical subgroups of positive defect. In the
case @) := {1}, it is clear that the maps €(;; and *y1; sending defect-zero characters

of G (or their restriction to G°) to themselves will be the desired bijections.

7.4.1 The maps (g

As usual, N will denote Ng(Q) for the ¢-radical subgroup @ when the group @

we are discussing is evident, and e is such that ¢|(¢> — ¢). Below are the maps

Qq: It (G|Q) <+ Irrg(N|Q) for each f-radical conjugacy class representative Q.
First, let £](¢* — 1). The bijections Qq, : Irrg(G|Q1) <> Irrg(N|Q1) are as follows:
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{ {xs,x11} — (L) €e=1
{X4,X9} = (1,p3) e=-1
{ x17(21) = (i, 0) €=1 icl,.
X20(1 <pz,p2) e=—1
523 Z ] 1 )(19(Z J)) e=1 ( ) 72
Er(iyg) 1 ,X15(4,7)) e=—1 ate
Ea(i) — (1, Xlg( )) (fore=1or —1), i€lpy

Eas(is g, k) = (pisx19(d, k) e=1 , , ,
) ’ ) cl e 7]{/, cl *6
{ Ea6(J, k1)) = (pi, x15(J, k) €= —1 i€y, (5,k) € 1t
Es0(1, ) , W oe=1 .
{ 533(]-7 Z) —> ((1017X18(j)) € = _1 1€ ]q—€7.] € Iq2+1-

We note that our notation means that every character lying in a Lusztig series
indexed by a semisimple element of G* in any of the families go3, go4, gos, g30 in the
case {|(q¢ — 1) and gi7, g, G26, 933 in the case £(q + 1) lies in Irro(G|Q1).

The bijection Qq, : Irrg(G|Q2) > Irrg(N|Q-2) is as follows:

Ha: {28&281 = (1 X (20), x+(2)) ;:71 i€ Ipse
{(&68 v v T e,
{228;; (0201, X+(2i2), X< (5)) 66_: 11 i=i1(q+e)j+€iz}§i—e)qug_l,

Here recall that x, = x4 in the case ¢|(¢ — 1) and y3 in the case ¢|(q + 1). The
exceptions of xa9(i) € E(7) of degree q(q¢ —1)3(¢*> + g+ 1)(¢*> + 1) when £|(g — 1) and
xa6(1) € Es(i) of degree q(q+ 1)%(¢*> — g+ 1)(¢* + 1) when /|(q + 1) are necessary, as
they have defect zero. (Note that this leaves 2 elements of £y(i), E (i) to map to the
two characters of N with constituent (1, x.(2i), x«(7)) on C.) All members of Lusztig
series indexed by elements in the families go2, gag when £|(¢ — 1) and gi6, g27 When

(g + 1) lie in Trrg (G| Q).
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When @ = @3, there are no blocks with defect group @ when ¢ = 3|(¢*> — 1),
but we have the additional radical subgroup Q) in this case, which does appear as
a defect group. So, letting ¢ # 3, the bijection Qg, : Irro(G|Q3) <> Irrg(N|Q3) is as

follows:

Qqg, | Es1(i) ; e=1 ; i
(¢#3) " {534(i) — Xs(7) _ 1 €lps_.

€
When £ = 3, the map Qg is as follows:

QQ(3) _ Es1(i) €= )
(f:?)) : {534(2.) r—>¢z = —1 2€[q3_€

We note that when £|(¢*> — 1), &31(7) and &34(7) contain only one character, as
Ca(931(i)) = Cpa—y and Cg+(g3a(i)) = Cys 1.
The bijection Qg , : Irrg(G|Q1,1) <> Irrg(N|Q1,1) is as follows:

o {28&128{ = (1,1, X.(4)) ::_11 i€l
{ S0 s ) T ielaiel,
{ 2?8;; = (i i x:(7)) _11 i €1, 7 € Iy
{ ZZ((Z?@’,IX = (i, 05, X«(F)) :_: 11 (i,5) € Ik € Iy

Recall that x. = x4 when ¢|(¢ — 1) and x3 when ¢|(g + 1). Also, note that x23(%)
has defect zero when ¢|(q¢ — 1), and x14(¢) has defect zero when ¢|(g+ 1), so they have

been excluded here.

The bijection Qg, , : Irrg(G|Q2,1) < Irrg(N[Q2,1) is as follows:
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e=1
e=—1

813(1') e=1
Q2. { E11(4) = LX)y € g
E21(%,7) . ) e=1 . .
{ 518 17‘7) H(LX*(ZZ)’S%) e=—1 Ze[q%»ev.]eque
E19(i) = (p2iy,x+(2i2),1)  (fore=1or —1), i=i1(g+¢) +i2(g—e) € [2_4
J

Ear(t, ] . . . . .
{ Ezggi,jg = (P21 Xx(202), ¢5) i=1d1(q+e) +iz(g—¢€) €l2_1,] € Ig—

Again in this case, recall that x, = x4 when ¢|(¢ — 1) and 3 when £|(q + 1).
Now, when ) = 11,1, we must again distinguish between the cases ¢ # 3 and

¢ = 3. First, suppose £ # 3 so that Q11,1 € Syl,(G). The map Qg, ,, in this case is:

e et sy 2
SOV bt oy Y ien
{28 = (i i, 04) 66:_11 UNS PR
(80 ey T4 ien
{ZM S eeenl) T Ga)elr,
{228?3 = (pnvnyy) _ o i) el
{Ziﬁiiii S (pnpne) L Gak ey,

Here recall that & is the set of unipotent characters and that the excluded characters

{xs5,x11, x17(¢)} when £|(¢ — 1) and {x4, X9, X20(¢)} when £|(¢ + 1) lie in Irro(G|Q1).
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Now suppose that £ = 3. The map {1g, ,, in this case is:

QQ1,1,1 . 56(2) \ {X17(i)} . e=1 . -
{ () \ {x20(7)} = (i, 1,1) c— —1 €ly_c,m [

(C=3) "\ &
511 Z) e=1 . .
E13(7) = (@i pir 1) e=—-1 " € ly—e;m fi
517 1, € = 1 .. 2% | L o
I — (()02, Pj, 1) ¢ 1 (Z,j) S Iq_e,mdoes not divide one of ¢, j

e=1 o ) )
= (@i, iy ©;5) c— 1 (1,7) € Ig_e;z % +j5 mod m
e=1 (i,4,k) € I>*;

q—e

Esa(i, j, k) = (Piiee) i#+j#+k#+i modm

Again, recall that x;7(i) € E(7) and x20(2) € E7(i) are in the sets Irr(G|Q1) in the
respective cases € = 1, —1. In the case that ¢ = 3, we have excluded the cases when
m divides all indices, since then the &;(.J) given above actually lie in the principal
block, so have defect group P. Similarly, if m divides ¢, then ¢; maps a ¢ — € root of
unity to an ¢ root, so if m divides all indices, then the image wj in EX of the central
character for the character 6 of IV is the same as that for the principal character 1y.
Hence they lie in the same block and 6 has defect group P, which is also a Sylow
(-subgroup of N.

Moreover, in the cases of E14(7, j), E25(1, 7, k) (resp. Ex(i, ), Es2(1, 5, k)) (for 3|(q—
1), respectively 3|(¢ + 1)), we must also exclude any case where the indices are all
equivalent (but nonzero) modulo m, as then these series lie in the block Bg(k) (re-
spectively By(k)) for some k € I, . with 3?|k, which also has defect group P.

Now, when ¢ = 3, let P € Syl;(G). Then C = Cg(P) = C,_ is the subgroup
Z(GL5(q)) viewed as a subgroup of G in the usual way. Hence the notation for the
constituents of a character of N restricted to C' are 1 and ¢; as before. The map Q2p

is as follows:
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Op: { {X1, X35 X45 X9, X10, X12} - (1) e_: 1
{X1: X25 X5, X8, X11, X12} e=-—1

gg(l) e=1 .
{ gg(l) = (()031) e=—1 " 1€ Iq—e

We will see that the 3-radical subgroup R when ¢ = 3|(¢> — 1) does not appear as
a defect group for any block of G, which is why we have no map Qg. (See part (2) of
the proof of Proposition [7.5.4])

Suppose now that 3 # £|(¢* + ¢* + 1) so that Q® € Syl,(G) is the unique (up to

conjugacy) radical subgroup. Let £|(¢* + €q 4+ 1). The map Qg in this case is:

QQ(3) . { {X1, X35 X4 X9, X105 X12} — (1) e=1
(5 7"é 3) {X1,X2,X57X8>X11,X12} =

Es(e e=1 .
{ gzg; — ¢(q2+eq+1)i € — _1 1 E que

1

531(2) ) e=1 . )
{ 534(1.) — O c— 1 ZE[qs_E

Now let £](¢*> +1). Then Q := Q® € Syl,(G) and Irro(G|Q) = Irry(G). Let by
and b; be the unipotent ¢-blocks of G, as in [76], and let U(b) denote the unipotent

characters in the block 0. The map g is as follows:
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Qg U(bo) = (1,1)
U(br) — (1, x2)
E6(1) \ {xus (1), xa6(i)} = (Lxs(d)) 1€ Lg
Er(0) \{x21(i), x22(8)} = (L, xa(i)) i € Lgn

X55 Z) —> (79“ 1) 1 € Iq2+1

(

Xs6(1) = (Vi x2) 1€ L

Xo2(J, ) = (03, x3(7)) i€ Lpyrs J € I
(

Xo5(4, ) = (U4, xa(4)) 1€ lpi; 7€ Ign

We remark that here we have used the notation of CHEVIE [26] for the characters of
Spa(q).

We also remark that the fact that in all of the above maps, the number of charac-
ters of NV with the same constituents on C¢(Q)) matches the number of y € Irr(G) that
we have mapped to them, follows from the discussion in Section [7.3|and the Bonnafé-
Rouquier correspondence together with the knowledge of Cg«(s) and its unipotent
blocks for semisimple s € G*. The indexing sets for the &(J) are evident from [47]
- note that they match the indexing sets for the images under €1, as described in

Section

7.4.2 The maps *q

Let ¢|(¢* — 1). We now define bijections #¢g: IBr,(G|Q) < dz(N/Q) for each (-
radical @ of G = Spg(q). (We will see in Section that when ¢ /(¢? — 1), it is
not necessary to define a bijection here.) In this section, we will abuse notation by
denoting by simply B the irreducible ¢-Brauer characters IBr,(B) in a block B of G.
The bijections *¢, : IBry(G|Q1) <> dz(N/Q1) are as follows:
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{ (Lp%) e=-1
(2)(1) — (gOi,OQ) e=1 . di -
{ Bi)) s (pinpl) e=—1 Tt
{ i,5) = (1,x10(, ) e=1
Za]) — (17X15(7/7.7)) €= -1
Boy(i) = (1,x18(7)) (fore=1or —1) i€ Iz
Bos(i,j, k) = (i, x10(J, k)  €e=1 - d:. - 2%
{ 326(j7k7i)) = (%‘,Xw(]} k)) e=—1 'e Iq_e,é lZ’ (j’@ © Iq+€

L 2%
(17]) € ]que

Bao (4, 5) ' . e=1 . e
{ Bss(4,4) = (i xas(d) e—_1 '€ Ty, %5 j € Ippyq.
The bijection *g,: IBr/(G|Q2) <> dz(N/Q2) is as follows:
. BQ(i)(O) 1 92 . e=1 .
*Qo BS(Z)(O) — ( 7X*( Z),X*(Z)) e 1 = e
Baa(i, 7) , o e=1 o
{ BIG(@]) ~ (1’X*(22)7X*(])) e=—-1" 1#7] € Iq+e
Bag(i, ) A . oe=1 i=i1(qg+e) +izlg—e) € Ip_q,
{ Byrlisg) 7 Prox-ZR) ) )i € Type

Recall that when Q = @3, there are no defect-zero characters of N/Q when ¢ =
3l(¢* —1). So, letting ¢ # 3, the bijection *q, : IBr,(G|Q3) +> dz(N/Q3) is as follows:
* B3 (i . e=1 . .
0y {3 oo Y i€ lp i
When ¢ = 3, we have the additional cyclic 3-radical subgroup Q®. The map *Q)

is as follows:

*(3) Basy (i e=1 ) .
(613) : { Biglg — O 1 ZEIq3_€,3d+1|Z

The bijection *q, , : IBry(G|Q1,1) ++ dz(N/Q1,1) is as follows:
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. . e=1 e 1.
By(i)© = (LLx-() _ | i€l
*Qu1t B (i)(o) ¢ )
’ ’ . . € 7 € ]q—eagd”; J € IQ+€
{ Buo(ij) (i Lxa(1) __ 4
Bl ) Tl el i jely.
{ B18(%]§ — ((p“(pl,X*(]» € = —1
By (1,7 B o 2 0l 5 k€ L.
3,5 0 Tl G e g kel
B26(Z’]_’ L= (94,05, X e=—1
Bogs(k, i, j)

is as follows:
The bijection *g, , : IBr/(G|Qa1) <+ dz(N/Q21) i

' N ; XD P
. Bl3(l) (17X*(22), 1) c— 1 1 q+
>I<QQ,1 . 1()

Bl 1 1 ) . . e I _67€d‘j

{ BQI(Z:J:) = (1 (20), 05) e=—1 P e q i9(q—¢€) €1 2_1>€d‘i
BlS(ZJ) . (for e=1or _1)7 7= il(q + 6) —l— Zg(q . q |

Bl9<i) = (@22’1?)(*(212)? 1) o . il(q N 6) N Z2(q B 6) . o
Baling) -, (201, Xx(212), ;)

{ BZ9(iaj)

€ =

1 jEI—e; (4,5
€= —
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Suppose £ # 3 so that Q1,11 € Syl,(G). The map *q, ,, in this case is:

"Quil By s (1,1,1)

(¢#3)
{§i§§§§§§ = (o 1,1) S 11 i€ Lo, i
{gzgg = (@i, ir i) ::_11 i€ Iy o, 0%
(B0 o) T senae
{%28;; = (950 1) ::_11 (i,5) € 1% 0%i, j
{giiiﬁ N R (%) R=¥ AL
{gzzgjg = (2005 01) ::_11 (i,j,k) € I 0,k

Now suppose that ¢ = 3. In this case, we will distribute By between the three
sets IBr3(G|Q11.1), IBr3(G|P), and IBrs(G|R). Of the 10 Brauer characters in By,
we require that four of these belong to IBrs3(G|Q111) (to map to the characters
(100, 10, 1=D)0) (1), 1) 1D)ED ) (1), 1D, 1ED)D and (10, 16D, 1Dy
of Ng(Q111)/Q1.1,1), another four belong to IBr3(G|P) (to map to the characters
(1M, 1), 11 1), (1MW, X), and (1Y, X) of Ng(P)/P), and the final two belong to
IBr3(G|R) (to map to the characters 103 and 1713 of Ng(R)/R).

In fact, the choice of this partition is arbitrary, as long as the number of characters
assigned to each subgroup is correct, so we will simply write By = By((Q1,1.1)UBo(P)U
Bo(R) for an appropriate partition. Similarly, of the three Brauer characters of the
block Bg(i) with 3%|i (resp. Bg(i)) when ¢|(¢ — 1) (resp. £|(q + 1)), we require that
two of these are members of IBr3(G|P) and the other is a member of IBr3(G|R).
Again, the partition is arbitrary, and we will write Bg(i) = Bg(i, P) U Bg(i, R) (resp.
By (i) = By(i, P)UBy(i, R)) for an appropriate partition. Below are the corresponding

maps.
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*
(gQ;’gi) : Bp(Qu1,1) — (1%, 100,100y p £ e {£1}

Bg(i)© e=1 .
{ GE ;(O) = (g, 1,1) i€, 3%
s (pnenl) T el 3%
’L) Pis Pis e=—1 g—e>
€ 1 .o 2% dy- -
= (Qpiagpjv 1) e=—1 (Zaj) S Iq7573 ’17]

e=1 o o
= (90“902790]) e=—1 (Z7]> S 137673(1‘1?]

— ——= =
T O I I I

=1 o . .
; = (Qpi790j790k) EEZ -1 (Zajak) € Igfev 3d|Z7]7k

Note that for the image of By((Q)1,1,1), we have used the notation for the constituent
when restricted to L rather than C. To describe the maps *p and *xp, we use the

notation of characters of N described in Section [7.3l

P By(P) e {10, N v e {£1})

BS(E,P) VAR e=1 . di -
{ Boli. P) = { (@3, A¥): € {£1}} c— 1 i€l c,3%i

R Bo(R) e {18 pe {£1}}

(0=3)
{ Bg(i, R)

e=1 . d -
Bg(’i, R) = 90316 = —1 (S [qfea 3 ‘Z
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7.4.3 The Maps for Sp,(2%)

Here we will use the notation of [75] for blocks of H = Spy4(q), with ¢ even. As in the
case of Spg(q), we will use maps *¢ for the (B)AWC and maps Qg for the (Alperin-
)McKay reductions. The images are again given by a constituent on the centralizer
Cu(Q). We will also write simply B for the irreducible Brauer characters IBry(B) in
a block B of H when defining our maps *g.

First let £|(¢*> — 1). The maps x( are as follows:

o { ) 0@ [T e,
J

B
Bir() N, 0. =1 ] L dy ;
{ B17<’i,j) = (X*(Z);(P]) P 1€ Iq+€, jE [q—e,g ‘]

: €= _
= (x(2i),1) 1 € Ipe

: e=1 . . .
— (X*(Qll), (,02@) c— 1 1= 21((] — 6) + Zg(q + 6) € qu_l,gd‘l

Recall that Ng(Q1) = (GL{(q) : 2) x Spa(q) and Np(Q2) = GLS(q) : 2 =
(SL5(q) x Cy—e) : 2 with [Ng(Q) : Cu(Q)] = 2 in either case, and that y. €
Irr(SLa(q)) is xa and x3 in the cases € = 1 and —1, respectively. Also, recall that
Nu(Qu1) = (GLi(q) : 2) 182 and Cy(Q1a1) = (GL5(q))*.
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1
B7('L) , e=1 . dl -
{ BQ(Z) = (9017 1) € = _1 (S queag |Z

By (i o1 |
(5ald o T venae
BlS(i’j) . . e=1 .. 2% di - -
{ Blg(ivj) ~ ((;017(,0]) e=—1 (Z,]) € [qfevg |’l,j

Continuing to let £](¢? — 1), the maps Qg are as follows:

(@) xa0(0)} , = .
Har { {x7(2), xs(2)} = 00, 1) e——1 €1
(i et (TN ek e
) xas(i), xaa(9) } ‘ e=1 ,
. { {x11(4), x12(9) } = (- (20), 1) e=—-1 "' € Lot
{ QZEES = (X (201), 02i,) ::_11 i=ii(q—€) +is(g+e) € Lo,

Qo..: {x1, X3, Xas X5, X6} — (1,1)

{X7(i)7 XS(Z)} . e=1 ;

{ {xo(i), x10(0)} (i, 1) _ | i€l
O (i), xa2(4) } =1

{ {x13(4), x14(2) } = (v 41) e— —1 €l

e=1
roa = iy Vg i, ] €I2i
X19(7,7) (1, ¢5) e=—1 (i,7) € 1"

{ X15(%: )
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Now let £|(¢> +1), s0 Q@ = Q® € Syl,(H) and Ny(Q) = Cyeyy : 22 with Cy(Q) =
C

2+1- In this case we only define a map (2q:

Q@+ {x1, X2 X5, X6} > (1)

xi8(i) = (Ui) i€ lpn

7.5 Spg(2%) and Spy(2*) are Good for the Conjectures

In this section, we prove Theorem [[.2.1] We begin with a discussion regarding the
automorphisms of G = Spg(2*) and H = Sp4(2?) before proving a few propositions,
which describe some properties of the maps and sets defined in Section 7.4

Let @ be an f-radical subgroup of G = Sps(2%), where ¢ # 2 is a divisor of |G].
Let o5 be the field automorphism of G induced by the Frobenius map Fy: x +— 22
That is, (a;;)7 = (a7;) for (a;;) some matrix in G. Then Aut(G) = (G, 03). Let @ be
an (-radical subgroup of G. If @ is generated by diagonal matrices and matrices with
entries in Fy, then )72 = (), and we will write o := g5. Otherwise, () is conjugate
in G := Sps(F,) to a group D of this form. Moreover, the G-conjugacy class of @
is determined by D. If @ = (x) is cyclic, then z is conjugate in G to a generator,
y for D. But y is also conjugate in G to y?2, so z is conjugate to x?? in G. But
since two semisimple elements of G are conjugate whenever they are conjugate in G
(see, for example, the description in [47] of conjugacy classes of ), we see that @ is
conjugate in G to Q?2. If @ is abelian but not cyclic, we can view () as a subgroup
of the product of lower-rank symplectic groups (e.g. Q21 < Spa(q) x Sp2(q)), and a
similar argument on the direct factors shows that ) is G-conjugate to 2. Finally,
if () is nonabelian, then ¢ = 3 and () must be either R or P, in which case ()72 must
be G-conjugate to @) since @ is the unique (up to G-conjugacy) ¢-radical subgroup of

its isomorphism type.
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Hence in any case, we know that there is some o € Aut(G) (obtained by mul-
tiplying oy by an inner automorphism) so that Q7 = @ and Aut(G) = (G, o). For
the remainder of this section, given the f-radical subgroup ), o will denote this
automorphism.

Now let H = Sp4(2%). Then Out(H) is still cyclic, generated by a graph automor-
phism 7,. Now, the action of ~, switches the fundamental roots of the root system
of type Bz, and the action on the elements of H can be seen from [I5, Proposition
12.3.3]. We see that v, satisfies 72 = 5. We may then replace v, with some ~ which
fixes a Sylow /-subgroup and satisfies 72 = o.

Our first two propositions show that the maps defined in Section [7.4] commute

with the automorphism groups of G and H.

Proposition 7.5.1. Let G = Sps(q), with ¢ = 2%, ¢ # 2 a prime dwiding |G|, and
Q < G a nontrivial ¢-radical subgroup. Then the maps Qg and *q (for £|(¢*> — 1))
described in Section are Aut(G)-equivariant.

Proof. Let x € Irrg(G|Q) (resp. x € IBr/(G|Q)) as defined in Section Since
Out(G) = Aut(G)/G = C, is cyclic, it suffices to show that (29(x))” = Qo(x7)
(resp. (x*@)? = (x?)*@) for a generator, o, of Out(G). In particular, let o be the
automorphism of G described above and note that we can write ¢ = yoy for some
y e G.

As usual, let N := Ng(Q) and C := Cg(Q) denote the normalizer and centralizer
of the (-radical subgroup Q.

(1) Note that o fixes the unipotent classes of G. Now, a semisimple class of G is
determined by its eigenvalues (possibly in an extension field of F,) on the action of the
natural module (eq, 9, €3, f1, f2, fs)r, of G. Hence, as the action of o on semisimple
classes of GG is to square the eigenvalues, we see that o sends the class C;(j1, jo, J3)
of G (in the notation of CHEVIE [26], with the possibility of some of the indices jj

being null) to the class C;(241, 272, 2j3) (which we mention is also equal to the class
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Ci(—2j1, =272, —273)).-

Let # € Irr(G). Then 67(g) = 0(¢° ') for ¢ € G. From the observations in
the above paragraph and careful inspection of the character values for irreducible
characters of G in CHEVIE and [47], we see that the character x;(j1, j2, j3) (again in
the notation of CHEVIE) is mapped under o to x;(2j1, 272, 273). That is, o preserves
the family of a character, and in the notation of Section [7.4] &(.J)7 = &;(2.J), where
2J = (241, .., 2jx) for an indexing set J = (j1, ..., ji)-

Now, as discussed in Section [7.1] the set &(J) forms a basic set for the block
Bi(J), so by writing ¢ € B;(J) as a linear combination of the 8 for 6 € Ei(J), we see
that B;(J)? = B;(2J), with the character families preserved. Also, note that both
Brauer and ordinary characters of unipotent blocks of GG are fixed under o.

(2) Now, by similar argument to part (1), the action of o on the irreducible
ordinary characters of Sps(q), SLy(q), and GL3(q) that we require in the descrip-
tions of dz(N/Q) and Irrg(N|@) is analogous to the action on Irr(G). That is, these
characters are indexed in a similar fashion {x;(ji,Jj2,j3)} in CHEVIE, and we have
Xi(J1, J2, 33)7 = Xi(2J1: 2]2, 2J3)-

(3) From the description of the action of o on semisimple and unipotent classes of
G, we see that o squares the elements of GL{(q) and commutes with 7. (Recall that
7 is the involutory automorphism ¢ + ¢~ on GL{(q) = C,_..) Hence when it occurs
in N, the character of GL{(q) : 2 with ¢; as a constituent on GL{(q) is mapped under
o to the character with @o; as a constituent. (When ¢ = 0, the choice £1 of extension
is fixed as well. That is, o fixes 1) and 1(?).)

Similarly, the action of o on Irr(Cps_. : 6) (vesp. Irr(Cpzyy @ 2%)) is to send the
character with ¢; (resp. ;) as a constituent on Cys_; (resp. Cpzy1) to the one with
¢o9; (resp. U9;) as a constituent and fix the characters with i = 0, since o squares

elements of Cys_,

or Cpyq and commutes with the action of the generators of the
order-6 or 4 complement.

(4) The observations in (1) — (3) imply that (Qg(x))” = Qo(x7) (resp. (x*?)7 =



206

(x?)*@) for our choice of generator o, except possibly when () = P or R and { =
3[(¢* = 1).

Now, when @ = P, the discussion on height-zero characters of Ng(P), combined
with (3) and the fact that o commutes with the action of the Ss-subgroup of N yields
that the character ;5 of N (in the notation from Section is mapped to ¢q;3
under o. Hence again in this case, the maps are equivariant.

Finally, let Q = R. Since Qg is trivial, we need only consider the map *g, and
therefore the members of dz(Ng(R)/R). By Section[7.3.9 this set is comprised of the
characters ;3 with 3|i, where 3 € Irr(Sp,(3)) is the Steinberg character and (recall
the abuse of notation) ¢; = ¢_; is the character whose restriction to C,_. contains ¢;
as a constituent. Now, 8, 11, and 17V are fixed by o, and @7 = @y as before, so

we see that *p is again equivariant. 0

Proposition 7.5.2. Let H = Spy(q), with ¢ = 2%, { # 2 a prime dividing |H|, and
Q < H a nontrivial {-radical subgroup. Then the maps Qg and *¢g (for {|(¢* — 1))
described in Section are Aut(H )-equivariant.

Proof. Again, it suffices to show that *g and gy commute with the generator ~
of Out(H). We will use the notation of classes and characters from CHEVIE, [26].
From comparing notation of CHEVIE, [21], and [15], we deduce that the action of
~ on the unipotent classes of H is to switch Cy and C3 and fix the other unipotent
classes. Moreover, C7(i)Y = Cy1(i) and Cy1(2)? = C7(2¢). Similarly, Cy(i)” = C3(7)
and C13(7)" = Co(2i). Hence ~y switches Q1 and Q3. Also, Cy5(7, )" = Ci5(i+j,1—j),
Cho(i, 7)Y = Cho(i+j,i—j), and Q1 is stabilized by 7. Moreover, Ci7(7, j) = Ci6(i(q+
1)4+j(qg—1)), Ci(i)” = C17(i mod (¢g—1),7 mod (g+1)), and Ci5(i)” = Cis((g+1)i).

From this, using the character table for H in CHEVIE [20], we can see the action
of v on the relevant characters (and blocks) of H. Namely, B7(i)" = B11(i), B11(i)” =
Br(2i), By(i)" = Bis(i), Bis(i)" = By(2i), Bu5(i,))" = Bis(i + j,i — j), Buo(i, j)" =
Big(i+ 7,1 —j), and x15(7)” = x1s((¢ + 1)i). Also, By is fixed, except that y3 and x4
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are switched.

Let ¢; for ¢« € I,_. be as usual. Considering the action of v on elements of
Ny (Q1) and Ny (Q2), we see that the characters (¢;, x.(j)) of Cy(Q1) are mapped
under 7 to the corresponding character (;, x«(j)) in Cy(Q2). Applying v again
yields (ai, X«(27)) in Cx(Q1). Moreover, for v € {£1}, (1®),x.(5)) € Irr(Nz(Q1))
is mapped to the corresponding character (1), y,(5)) € Irr(Ng(Q2)), which is then
mapped to (1), x,(25)) € Trr(Nu(Q1)).

Inspecting the values of the characters of Ny(Q11)/Cr(Q11) = Cy 152, we see
that they are fixed under +, aside from (10, 1) and (11, 1CD)D | which are
switched. So, choosing {xs, x4} = {(10,1M)ED (16D 1DV we see that this
is consistent with our maps.

Also, the characters 6 of Ny ((Q1,1) which are nontrivial on Cy (@4 1) satisfy that if
(@i, ;) is a constituent of 0]c,, (g, ,), then (¢iy;, pi—;) is a constituent of 67|c,, (g, .),
where 4,5 € I, U {0}, and ¢g := 1¢,_.. Moreover, in the case i = 0, the action on
(1S, yields that the choice of extension is fixed under 7 (i.e. (@5, 1) = (;, ;)@
where v € {£1}).

Finally, 9; € Irr(Ce(Q®) is mapped under v to ¥(441);, and when i = 0 the choice
of extension to Ng(Q®?) is fixed by 7.

Altogether, these discussions yield that (x*@)” = (x7)*@ for each x € IBr,(H|Q),
as desired, and similar for Q.

]

We now show that our maps send a block in G to its Brauer correspondent in

Ne(Q).

Proposition 7.5.3. Let G = Spg(2*) or Sps(2%), ¢ an odd prime dividing |G|, and
Q a nontrivial (-radical subgroup of G. Let the sets Irrg(G|Q), Irrg(Ne(Q)|Q), and
IBry(G|Q) and the maps g, *¢g be as described in Section|7.4l Then

o If x € Irrg(G|Q) with B € BI(G|x) and b € B(Ng(Q)|Q0(x)), then b“ = B
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o If x € IBry(G|Q) with B € BI(G|x) and b € BI(Ng(Q)|x*?), then b = B.

Proof. Let N := Ng(Q) and C := Cg(Q). As b € Bl(Ng(Q)), b¢ is defined and
bY = B if and only if Ag(KT) = X, (K N C)*) for all conjugacy classes K of G (see,
for example, [33, Lemma 15.44]). Let x € Irr(G|B). The central character w, for G
can be computed in CHEVIE, and the values of ¢ € Irr(N|b) on C' can be computed
by their descriptions and using the character tables for Sp4(q), SLa(q), and GLF (q)
available in CHEVIE. Hence it remains only to determine the fusion of classes of C'
into G in order to compute w, (KN C)*") = ﬁ > ccx P(9)|C], where g € C and the
sum is taken over classes C of C' which lie in K, and compare the image of this under
* with w, ()"

We present here the complete discussion for xz when G = Spg(q), ¢ = 3|(qg — €).
The other situations are similar, though quite tedious.

When @ = R, we have C = C,—. = Z(GL5(q)), embedded in G in the usual way.
The set IBrs(G|R) consists of two Brauer characters in a unipotent block and one
Brauer character in each set Bg(i) if € = 1 or By(i) if e = —1 with ¢ € I,_. divisible
by 3¢. Choosing x = 1¢ for B = By, x = x27(i) for B the block containing Bg(i), and
X = Xs0(?) for B the block containing By (i), we have wi,(KT)* = 0 = w,,.)(K1)*
when € = 1 for every nontrivial conjugacy class K # Cy5(j) of G (in the notation of
CHEVIE) for any j € I,—; and wi,(K")* = 0 = wy,) (KT)* when e = —1 for every
nontrivial conjugacy class IC # Cas(j) for any j € 1,41

Now, let ¢ generate C' = C,_, so (" is identified in G with the semisimple element
with eigenvalues ¢ and ¢!, each of multiplicity 3, where  is a fixed primitive (q—e€)
root of unity in F, . Then {¢?,(~"} = Cos(i)NC if e = 1 and = Cys(i) N C if € = —1.

Let ¢ = exp (2”‘/:) in C* and let x := x27(2) or x30(i) and K = Cas(j) or
Css(7), in the cases € = 1, —1, respectively. Then w, (K)* = (C +C 3”) from
CHEVIE, since (¢ — €)* = 3* = 0. But the value of ¢ := 3,8 on (7 is Zgij, SO

31]

w,(KNC)T) = (CL = ( —1—( . Hence we have b“ = B in this case.
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Moreover, wy,(K)* = 2, so b = B in this case as well, since if p = 13 for

v € {£1}, then w,(K N C)T) = 2, completing the proof for @ = R. ]

The next proposition shows that the sets defined in Section are in fact the

height-zero characters of Spg(2).

Proposition 7.5.4. Let G = Spg(2*) or Sps(2*) and Q < G a nontrivial (-radical
subgroup with € an odd prime dividing |G|. The sets Irrg(G|Q) and Irro(Ng(Q)|Q)
defined in Section[7.] are exactly the sets Irrg(G|Q) and Irrg(Ng(Q)|Q) of height-zero
characters of G and Ng(Q), respectively, with defect group Q.

Proof. (1) Let N := Ng(Q), ¢ € Irrg(N|Q), and x € Irr(G|Q) such that Qg(x) = .
Let b € BI(N|yp), so that b¢ is the block B containing y, by Proposition[7.5.3] Let D,
and Dpg denote defect groups for b and B, respectively, so we may assume D, < Dpg.
Then as @ is ¢-radical, we know that Q < D, < Dp (see, for example, [33, Corollary
15.39]). Now, since |G|¢/|Dp| must be the highest power of ¢ dividing the degree of
every member of Irr(B), inspection of the character degrees in B yields that |Dp| =
|Q|, so in fact Q = D, = Dp. Hence by inspection of the degrees of characters in our
constructed sets, we see that Irr(G|Q) C Irrg(G|Q) and Irrg(N|Q) C Irrg(N|Q).

(2) Moreover, we have constructed the set Irrg(G|Q) to contain all characters
X' € Irr(B) whose degrees satisfy x'(1), = [G : @], (That is to say, given any
block in BI(G), if we included in Irrg(G|Q) one irreducible ordinary character of the
block whose degree satisfies this condition, then we included all such members of the
block.) Further, every block B’ € BI(G) of positive defect intersects the set Irro(G|Q’)
for some /(-radical subgroup @, so we see that in fact Irro(G|Q) = Irro(G|Q). Note
that when ¢ = 3, this means R does not occur as a defect group for any block of
G = Spe(22).

(3) Now, except in the case G = Spg(q) with ¢ = 3 and @ = Q11 or P, from
the discussion in Section [7.3| we see that in fact every character 6 of N with (1), =
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|N|¢/|Q| has been included in Irrg(N|Q), so Irrg(N|Q) = Irrg(N|Q). Hence we are
left with the case ¢ = 3 and Q = @11, or P. However, by the discussion after
the description of the map Qg, ,, in the case { = 3, we see that Irrg(N|Q11,1) =
Irrg(N|Q11.1) in this case as well. Finally, for Q = P, we have already described
Irrg(N|P) in Section [7.3.8]

[

We note that Proposition is consistent with Brauer’s height-zero conjecture,
which says that an f-block B of a finite group has an abelian defect group if and
only if every irreducible ordinary character in B has height zero. It is also consistent
with a consequence of [36, Theorem 7.14], which implies that the defect group for a
block which is not quasi-isolated (i.e. satisfies the conditions for Bonnafé-Rouquier’s
theorem) is isomorphic to the defect group of its Bonnafé-Rouquier correspondent.

We are now prepared to show that Sps(q) and Sps(q) are (B)AWC-good.

Theorem 7.5.5. Let G = Spg(2%) with a > 1 or Spy(2*) with a > 2. Then G is

“good” for the Alperin weight and blockwise Alperin weight conjectures for all primes

042,

Proof. 1) Let ¢ # 2 be a prime dividing |G|. Since Out(G) is cyclic, we know G
is BAWC-good for any prime ¢ such that a Sylow ¢-subgroup of G is cyclic, by [70,
Proposition 6.2]. Hence, G is BAWC-good for ¢ as long as ¢ /(¢*> — 1). Moreover,
considerations in GAP show that the statement is true for ¢ = 3 when G = Sps(2).
(The main tools here were the PrimeBlocks command, the Brauer character table for
the double cover 2.5pg(2) in the Character Table Library [I1], as well as the faithful
permutation representation of 2.5pg(2) on 240 points given in the online ATLAS [77].)
Henceforth, we shall assume ¢|(¢*> — 1) and a > 2.

2) As a > 2, the Schur multiplier of G is trivial, so G is its own Schur cover, so

in the notation of [53, Section 3|, we may assume S is just G itself. Furthermore,



211

[70, Lemma 6.1] implies that it suffices to show that G is AWC-good for ¢ in the
sense of [53] and that the maps used satisfy condition 4.1(ii)(3) of [70]. For the
trivial group @ = {1}, the map *py: {X|x € dz(G)} — dz(G), X — x sending
the restriction of defect-zero characters to GG° to the original defect-zero character
satisfies the conditions trivially. Hence, it suffices to show that our sets IBr,(G|Q)
and maps *¢ defined in Section satisfy the conditions of [53], Section 3] and that
for y € IBr,(G|Q), x is a member of the induced block b%, where b € BI(Ng(Q)[x*?).
By Proposition [7.5.3] the latter condition is satisfied.

3) Since Z(G) = 1 and our sets IBry(G|Q) depend only on the conjugacy class of @,
we know that our sets satisfy [53, Condition 3.1.a]. Our sets IBr,(G|Q) are certainly
disjoint, since distinct Lusztig series or blocks are disjoint, and the union of all of these
with the set {X|x € dz(G)} is all of IBry(G), by Chapter 4] and the results of [76] and
[75], so our sets also satisfy [53, Condition 3.1.b]. Moreover, by Propositions
and [7.5.2] our maps and sets also satisfy the final partition condition and bijection
condition, [53, Conditions 3.1.c, 3.2.a].

4) Let @ be an ¢-radical subgroup, and fix § € IBry(G|Q). Identify G with Inn(G),
so that we can write G < Aut(G). Write X := Aut(G)y and let B := Xg be the
subgroup of Aut(G) stabilizing both @ and 6. Then certainly, G < X, Z(G) < Z(X),
0 is X-invariant, and B is exactly the set of automorphisms of G induced by the
conjugation action of Nx(Q) on G. Moreover, C'x(G) is trivial and since X /G is cyclic,
so is the Schur multiplier H2(X/G,F,). Hence the normally embedded conditions

[53, Conditions 3.3.a-d] are trivially satisfied, completing the proof. O]

Before proving the corresponding statement for the (Alperin-)McKay conjecture,

we need the following lemma.

Lemma 7.5.6. Let { be a prime, S be a simple group with universal {' covering
group G, and Q) be an (-radical subgroup satisfying Conditions (i) and (ii) of [09,
Definition 7.2] with Mg = Ng(Q). Let x € Irro(G|Q) be such that Aut(S),/S is
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cyclic and let n € Aut(G), with Aut(S), = (S,n). Then there are x € Irr(A(x)) and

—_—

Qo(x) € Ir(Na(Q)), where A(x) := (G, n), such that:

1. X|la =x

2. Qo(X)Ine@) = Qo(X)

—~——

3. b = B, where b is the block of Ny, (Q) containing QQ(X)‘NAZ/(Q)f B is the
block of Ay containing X|a,, and G < Ap < A(x) so that Ay /G is the Hall
0'-subgroup of A(x)/G.

Proof. First, note that x extends to A(x) since A(x)/G is cyclic and x is invariant
under A(x). Let ¢ := Qg(x). Since the map g is Aut(G)g-equivariant, we have
o = Qp(x*) = ¢ for any a € Ny)(Q), so ¢ is invariant under Ny (@) and
therefore extends to some ¢ € Irt (N (Q)) since Na(Q)/Na(Q) is cyclic. Let b
be the block of N4, (Q) containing the restriction |y A, and let B be the block of
G containing . Then b* is defined, by [33, Lemma 15.44], and we claim that bAe
covers B, so that by [52 Theorem 9.4], we can choose an extension x of x to A(x)
so that X|a, is contained in b

To prove the claim, first note that by [52, Theorem 9.5], b4 covers B if and only if
the central functions satisfy A\za, (K*) = Ag(K™) for all classes K of Ay contained in
G. Let b be the block of Ng(Q) containing ¢, so that b = B by Condition (ii) of [69
Definition 7.2] and \A; covers A, by [62, Theorem 9.2]. Let Ky, ..., ) be the classes
of G so that K = |J, K;. Notice that K; NNy, (Q) = K; N Ng(Q) can be viewed as a
union of classes of Ny, (@) contained in Ng(Q) and [ J,(K; NNy, (Q)) = KN N4, (Q),

SO

(K1) = D As(KF) =D N () = 3% (KN Na(@)))

= D78 (K31 Na, (@) = % (K 0 Ny (Q))) = g (),

which proves the claim. O
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Theorem 7.5.7. Let G = Spg(2%) or Sps(2%) with a > 2. Then G is “good” for the
McKay and Alperin-McKay conjectures for all primes { # 2.

Proof. 1) Again, notice that G is its own Schur cover, so G = S in the notation
of either [69, Definition 7.2] or [34, Section 10]. Also, note that reasoning similar
to part (4) of the proof of Theorem implies that G satisfies conditions (5)-(8)
of the definition of McKay-good in [34, Section 10]. Hence, if G is “good” for the
Alperin-McKay conjecture (i.e. satisfies the inductive-AM-condition described in [69,
Definition 7.2]), then G satisfies conditions (1)-(4) of the definition of McKay-good,
so is also “good” for the McKay conjecture. (Indeed, in the case @ is a Sylow (-
subgroup of G, the set Irry (G) is exactly the set of height-zero characters of G with
defect group @).) Again, when @@ = {1}, the map sending defect-zero characters to
themselves satisfies the conditions trivially.

2) Let @ # 1 be an f-radical subgroup of G which occurs as a defect group for some
¢-block of GG. Hence by replacing with a conjugate subgroup, we may assume that @)
is one of the groups described in Section aside from R. The group Mg := Ng(Q)
satisfies condition (i) of [69, Definition 7.2]). Moreover, Propositions [7.5.1] [7.5.2]
[7.5.3 and [7.5.4]imply that the map Q¢ from Section [7.4]satisfies condition (ii) of [69)
Definition 7.2]. (Again note that Z(G) is trivial.)

3) Now, let A := Aut(G) and let x € Irrg(G|Q). Write A, := staba(x) and write
Ag, for the subgroup Ny (Q) of elements of A which stabilize both ¢ and x. Write

X = Qo(x) and let ¥ and Y be the extensions of Y to A, and x' to Ag, as in
Lemma since A/G is cyclic. Say P and P’ respectively, are the representations
affording these extensions. Then certainly, these representations satisfy the first three
subconditions of condition (iii) of [69 Definition 7.2] and it suffices to show that they
satisfy the final subcondition. (Note that here rep: S — G is simply the identity
map. )

4) Let x be an (-regular element of MqgAg, = Ag, with @ € Syl,(Ce(x)). If
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x € Mg, we are done by [69, Proposition 7.4]. So, suppose that z ¢ Mg. That is,
7 € Ny (Q)\ Na(Q). Since z is an {"-element, we see that in fact z € Ny, (Q), where
G < Ap < Ay is as in Lemma [7.5.6] Let K be the conjugacy class of  in Ay. Since
Q € Syl,(Ce (7)), we also have @ € Syl,(Cy,, (x)), since [Ap : G] is prime to £. Hence
KNCy, (Q) is the class of Ny, (Q), containing = (see, for example, [52, Lemma 4.16]).
Let B and b be the blocks of Ay and Ny ,(Q) containing X and ;Z' , respectively, so
that b = B. Then we have \5(K*) = X; (KN Ca,(Q))T), which implies that

( A () )*_ [N, @ () \
[Ca @)X(D) Cna, @@ )

Moreover, except possibly in the case G = Spy(q) and @ = Q1 or @, we can choose

n as in Lemma to stabilize @), by the discussion preceding Proposition [7.5.1]
and therefore [Ay @ G] = [Na,(Q) : No(Q)] and [Cy, (z) : Cg(z)] = [CNAZ,(Q)("T) ;
Cng(o)(x)]. However, note that if @ = Q1 or Q2 when G' = Sp4(q), then v € A, (see
the proof of Proposition , but 72 = o fixes (), so the same is true in this case.

This yields
( GIX (=) ) _ ( IN(Q)IX'(x) )
|Co()Ix (1) [Cna@) (@)X (1)
Now, since y € Irro(G|Q) and X' € Irro(Ng(Q)|Q), we see [G : Qe = x(1), and
[Ne(Q) : Qle = X'(1)e, so

( GloR(x) )*: Na(@QleX'(2) )
|Ca()|ex(1)e ICrne@@)]ex' L) |

(16 : Ne(@Iex W) = (ICa(x) : Ongi@eX (@)x(1)e)
Now, note that Cxu@) (%) = Ca(@) N Na(Q) = Neww (@), so by Sylow’s theorems,
Ca(a) : Ongiay (@)l = [Cola) : Cngiy(@)) = 1 mod £, and hence €x(1); (@) =
([G - No(Q)ox(2)x' (1)e)* = (;/(x)x(m,)*, where €, is as in [69, Definition 7.2],
and finally ¢;Tr(P(z))* = Tr(P'(x))*, as desired.

and

[]
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To finish the proof of Theorem [1.2.1, we need to prove that when ¢ = 2, the
groups Spg(2) and Spy(2)" are AM-good.

Theorem 7.5.8. Let S = Spg(2) or Spa(2) = Ag. Then S is “good” for the Alperin-

McKay conjecture for all primes.

Proof. Let G := 6.Ag be the universal covering group of S := Ag and ¢ a prime
dividing |Ag|. We can construct G in GAP using the generators given in the online
ATLAS [77] for the faithful permutation representation of G on 432 letters. Using the
PrimeBlocks function to calculate the sizes of the defect groups and calculating the
Sylow subgroups of centralizers of #'-elements, we see that the only noncentral defect
group of G are Sylow (-subgroups. Fix P € Syl,(G). Again using the PrimeBlocks
function, the knowledge of the action of the outer automorphism group of Ag on the
conjugacy classes of Ag, and the character information for 6.A44,6.A44.21, and 6.A4¢.25
in the GAP Character Table Library [11], we see that we can construct bijections
satisfying conditions (i) and (ii) of the Inductive AM-condition [69, Definition 7.2],
with Mp := Ng(P). Further, by [69, Proposition 4.2], for x € Irrg(G|P), there exist
P, P’ satisfying the first three requirements of condition (iii), so it remains to show
that they fulfill the final requirement, [69, (7.4)].

Now, if £ = 3 or 2, then calculating with the automorphism group in GAP yields
that the centralizer Caws)(PZ(G)/Z(G)) is an {-group, so this final requirement is
satisfied by [69, Proposition 7.4].

If £ =5, then |Caus)(PZ(G)/Z(G))| = 10 and this centralizer is cyclic. Let
g be the order-2 element in Cauys)(PZ(G)/Z(G)). Now, (S, g) has order 720, and
comparing the character table with those of Ag.21, Ag.29, and Ag.23, we see that
(S,9) = Ag.22. Moreover, the height-zero characters (in the notation of the GAP
Character Table Library) of G = 6.Ag which are fixed under g are x1, X4, X5, X6, X105
and yp; of degrees 1,8,8,9,8, and 8, respectively, and hence all other characters

satisfy the final condition again by [69, Proposition 7.4].
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Our constructed bijections map these characters to characters of Ng(P) with
degree 1,2,2,1,2, and 2, respectively, and we see that for these characters, ¢, = —1
mod 5, except in the case x = x1 = lg, in which case €;, = 1. (Here €, is as defined
following [69, (7.4)].) Further, Aut(S), = Aut(S) for x = x1 or xs and Aut(S), =
(S, g) for the four characters of degree 8 under consideration. Also, x1, x4, X5, and
X6 lie in the principal block of G, and can be viewed as characters of S = G/Z(G).
Similarly, the characters of Ng(P) that they map to lie in the principal block of
N¢(P) and can be viewed as characters of Ng(P)/Z(G). Considering the character
tables for Aut(S), and Aut(S)p,, we see that these characters lift to characters of
Aut(S), and (N¢(P)/Z(G)) Aut(S) p,, satisfying the final condition of [69] Definition
7.2].

The remaining two characters of G and Ng(P) under consideration are trivial
on the elements of Z(G) of order 3 and are nontrivial on the element z € Z(G) of
order 2. Moreover, the values of x4 and 19 are identical on 2’-elements and satisfy
X4(x) = —x10(x) when 2 divides |z|. The same is true for x5 compared with x11, and
similarly for the corresponding pairs of characters of Ng(P). Hence if rep: S — G
is the Z(G)-section used for condition (iii) of [69, Definition 7.2] for the character

X = Xa, respectively x5, then replacing rep with

rep(y) if 2 fly|
rep(y) -z if 2|[y|

rep’: y — {
yields that condition (iii) of [69, Definition 7.2] is satisfied when x = x10, respectively
X11, using the same extensions as in the case xy = x4, respectively xs.

Now let G := 2.Spg(2) be the universal covering group of S := Sps(2) and let
¢ be a prime dividing |G|. Then Aut(G) = Aut(S) = S, and in this case, the
inductive AM-condition [69, Definition 7.2] is satisfied as long as the usual Alperin-
McKay conjecture is satisfied. The following considerations in GAP similar to the

case Ag above and the situation for the BAWC yield that we can construct the desired

bijections.
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Let P € Syl,(G). Using the PrimeBlocks function to calculate the sizes of the
defect groups and calculating the Sylow subgroups of centralizers of ¢’-elements, we
see that the only noncentral defect group of G are Sylow ¢-subgroups when ¢ # 3.

For ¢ = 7, each of Ng(P) and G have 2 blocks with defect group P, and in each
case, both blocks have 7 height-zero characters. For ¢ = 2, each of Ng(P) and G have
one bock with defect group P, and these blocks have 16 characters. This verifies the
Alperin-McKay conjecture in these cases.

When ¢ = 5, Ng(P) and G both have 5 blocks with defect group P. In each
case, all but one of these blocks has 5 height-zero characters, and the last has 4. The
blocks with 4 characters are both nontrivial on Z(G). For each of G and Ng(P), one
of the blocks with 5 height-zero characters is nontrivial on Z(G), and the height-zero
characters of the remaining blocks with defect group P are trivial on Z(G). Inspection
of the central character values available yields that the blocks with 4 height-zero
characters are in Brauer correspondence, so the Alperin-McKay is satisfied in this
case.

In the case ¢ = 3, calculating the sizes of the defect groups and studying the defects
of the blocks of the normalizers of the Sylow subgroups of centralizers of ¢'-elements
yields that we have two noncentral defect groups, namely the Sylow subgroup P and
a cyclic defect group @) of size 3. (Indeed, for the other Sylow subgroups D for
centralizers of (’-elements, Ng(D) has no defect group D, but Brauer’s first main
gives a bijection between Bl(Ng(D)|D) and BI(G|D).)

Now, G and N¢(P) both have two blocks with defect group P, and each block in
each case has 9 height-zero characters. Ng(Q1) and G have two blocks with defect
group (1, and in each case, each block as 3 height-zero characters, and the Alperin-
McKay conjecture is satisfied.

O

Theorems|[7.5.5] [7.5.7, and [7.5.8| complete the proof of the main theorem, Theorem
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