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Abstract

In this thesis, we investigate various problems in the representation theory of finite

groups of Lie type. In Chapter 2, we hope to make sense of the last statement - we

will introduce some background and notation that will be useful for the remainder

of the thesis. In Chapter 3, we find bounds for the largest irreducible representation

degree of a finite unitary group, along the lines of [42]. In Chapter 4, we describe the

block distribution and Brauer characters in cross characteristic for Sp6(2a) in terms

of the irreducible ordinary characters. This will be useful in Chapter 5 and Chapter

7, which focus primarily on the group Sp6(2a) and contain the main results of this

thesis, which we now summarize.

Given a subgroup H ≤ G and a representation V for G, we obtain the restriction

V |H of V to H by viewing V as an FH-module. However, even if V is an irreducible

representation of G, the restriction V |H may (and usually does) fail to remain irre-

ducible as a representation of H. In Chapter 5, we classify all pairs (V,H), where H

is a proper subgroup of G = Sp6(q) or Sp4(q) with q even, and V is an `-modular

representation of G for ` 6= 2 which is absolutely irreducible as a representation of H.

This problem is motivated by the Aschbacher-Scott program on classifying maximal

subgroups of finite classical groups.

The local-global philosophy plays an important role in many areas of mathematics.

In the representation theory of finite groups, the so-called “local-global” conjectures

would relate the representation theory of G to that of certain proper subgroups, such

as the normalizer NG(P ) of a Sylow subgroup. One might hope that these conjectures

could be proven by showing that they are true for all simple groups. Though this

turns out not quite to be the case, some of these conjectures have been reduced to

showing that a finite set of stronger conditions hold for all finite simple groups. In

Chapter 7, we show that Sp6(q) and Sp4(q), q even, are “good” for these reductions.
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Chapter 1

Introduction

The study of group theory was motivated by the desire to understand the symmetry

of an object, whether it be in nature, art, communication networks, or any other

place that symmetry might play a role. Representation theory is a tool used to

better understand the structure of a group and the symmetries it represents. Roughly

speaking, representations provide a way to view, in some sense, an abstract group as

a group of matrices whose structure is often easier to understand. In particular, we

are interested in irreducible representations, which are in a sense the building blocks

of all representations.

It is well-known that any finite group G has a composition series, i.e. a subnormal

series 1 ≤ N1CN2C ..CNkCG in which each factor Ni/Ni−1 is simple. The factors of

this series are called the composition factors, and the Jordan-Hölder Theorem states

that any finite group has a unique set of composition factors (up to isomorphism and

reordering). This suggests that many questions about finite groups can be reduced to

questions about finite simple groups or groups closely related to simple groups, such

as almost simple groups (groups satisfying G0CG ≤ Aut(G0) for a finite simple group

G0) and quasisimple groups (perfect groups for which G/Z(G) is simple). Hence, for

several decades, the main goal of many group theorists was to completely classify all

finite simple groups.

In 2004, the Classification of Finite Simple Groups was completed, and is seen

by many as the most important result in finite group theory. The completion of the

Classification has opened the door to many interesting questions in group theory by

giving us a hope of reducing to the case of simple groups and using the Classification

to finish the proof. This is precisely the idea behind recent reductions to various
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local-global conjectures in representation theory, which will be of interest in Chapter

7. The Classification states that every nonabelian finite simple group falls into one

of the following three categories:

• the alternating groups An, n ≥ 5

• the finite groups of Lie type

• one of 26 sporadic groups

The finite groups of Lie type are sometimes called finite reductive groups, and are

analogues of Lie groups over finite fields. The Classification of Finite Simple Groups

tells us that “most” finite non-abelian simple groups are groups of Lie type, which is

why they are of such interest, and the focus of this thesis. This class of groups can be

further divided into the finite classical groups and the so-called exceptional groups.

In the remainder of this thesis, we look at various problems concerning the cross-

characteristic representations of finite classical groups, with a particular emphasis

on the symplectic group Sp6(2a) and the unitary groups GUn(q). In Chapter 2, we

introduce some background and notation that will be useful for the remainder of the

thesis.

One problem of interest in the representation theory of finite groups is to find the

largest dimension of an irreducible representation of a given group. Though an explicit

formula is often very difficult to achieve, it is sometimes possible to find bounds for

this number, and the question often turns into finding the “correct” asymptotic. In

Chapter 3, we find bounds for the largest dimension of an irreducible representation

for a finite unitary group defined over a field Fq of characteristic p. Our bounds show

that this number divided by the p-part of the group order grows like a polynomial in

logq of the rank, as we vary the rank of the group.

In Chapter 4, we describe the block distribution and Brauer characters in cross

characteristic for Sp6(2a) in terms of the irreducible ordinary characters. In particular,
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we classify the low-dimensional irreducible `-modular representations of this group.

This information will be crucial in Chapter 5 and Chapter 7, which focus primarily

on the group Sp6(2a) and contain the main results of this thesis.

The first of the main problems dealt with in this thesis is concerned with the

restrictions of representations to proper subgroups. Given a subgroup H ≤ G and

an FG-module V , we obtain the restriction V |H of V to H by viewing V as an FH-

module. However, even if V is an irreducible representation of G, the restriction V |H
may (and usually does) fail to remain irreducible as a representation of H. In Chapter

5, we classify all pairs (V,H), where H is a proper subgroup of G = Sp6(q) or Sp4(q)

with q even, and V is an `-modular representation of G for ` 6= 2 which is absolutely

irreducible as a representation of H. We note that these results can also be found

in a more concise form in [62], which is available on the ArXiv (arXiv:1204.5514v1).

In Chapter 6, we also discuss this problem for complex representations of the uni-

tary groups GUn(q) with n < 10. This “restriction problem” is motivated by the

Aschbacher-Scott program on classifying maximal subgroups of finite classical groups.

In Section 1.1, we describe in more detail the motivation behind this problem and

state our main results regarding the problem.

The other main problem we are concerned with in this thesis involves local-global

conjectures in representation theory. The local-global philosophy plays an important

role in many areas of mathematics, and in the representation theory of finite groups,

the so-called “local-global” conjectures relate the representation theory of G to that

of certain proper subgroups, such as the normalizer NG(P ) of a Sylow p-subgroup.

One might hope that these conjectures could be proven by showing that they are true

for all simple groups. Though this turns out not quite to be the case, some of these

conjectures have been reduced to showing that a finite set of stronger conditions hold

for all finite simple groups. In Chapter 7, we show that G = Sp6(q) and Sp4(q), q

even, are “good” for these reductions. That is, we show that these groups satisfy

each condition in these lists. A more concise version of these results was submitted
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for publication in 2012 and is available on ArXiv (arXiv:1212.5622v1). In Section 1.2,

we discuss the specific conjectures that we will be concerned with and state our main

result.

1.1 The Aschbacher-Scott Program and the Irreducible Re-
striction Problem

In this section, we provide a brief overview and motivation for the Aschbacher-Scott

program and the restriction problem discussed in Chapters 5 and 6.

The main motivation for the Aschbacher-Scott program and the classification of

maximal subgroups is to understand the finite primitive permutation groups, which

have been a topic of interest going back to the time of Galois and have applications

to many areas of mathematics, including number theory, algebraic geometry, graph

theory, and combinatorics. Since a transitive permutation group X ≤ Sym(Ω) is

primitive if and only if any point stabilizer H = stabX(α), for α ∈ Ω, is a maximal

subgroup, we can view the study of primitive permutation groups as equivalent to

studying maximal subgroups. Thanks to the Aschbacher-O’Nan-Scott Theorem [7],

the problem can be reduced to the case of almost quasi-simple groups (that is, central

extensions of almost simple groups), and the results of Liebeck-Praeger-Saxl [44] and

Liebeck-Seitz [45] allow us to further reduce to the case that X is a classical group.

In this case, Aschbacher has described all possible choices for the maximal sub-

group H (see [8]). Namely, he has described 8 collections C1, ..., C8 of subgroups

obtained in natural ways (for example, stabilizers of certain subspaces of the natural

module for X), and has shown that if H is not contained in one of these subgroups,

then H lies in a collection S of almost quasi-simple groups which act absolutely ir-

reducibly on the natural module, V , for X. The question of whether a subgroup H

in
⋃8
i=1 Ci is in fact maximal has been answered by Kleidman and Liebeck (see [37])

in the case that dimV ≥ 13. The case that V has smaller dimension is considered
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in [10], as well as in the early work on the problem in [19] and [51] for the cases of

SL2(q) and SL3(q). When H ∈ S, we want to decide whether there is some maximal

subgroup G such that H < G < X, that is, if H is not maximal. The most challeng-

ing case is when G also lies in the collection S. This suggests the following problem,

which is the motivation for Chapters 5 and 6.

Problem 1. Let F be an algebraically closed field of characteristic ` ≥ 0. Classify

all triples (G, V,H) where G is a finite group with G/Z(G) almost simple, V is an

FG−module of dimension greater than 1, and H is a proper subgroup of G such that

the restriction V |H is irreducible.

Although the motivation may suggest that we fix the group H and try to find all

pairs (G, V ) which create a triple as in Problem 1, in practice it is more practical to

fix G and find all pairs (V,H). In [13], [38], and [39], Brundan, Kleshchev, Sheth, and

Tiep have solved Problem 1 for ` > 3 when G/Z(G) is an alternating or symmetric

group. Liebeck, Seitz, and Testerman have obtained results for groups of Lie type in

defining characteristic in [43], [63], and [65].

Assume now that G is a finite group of Lie type defined in characteristic p 6= `,

with q a power of p. In [57], Nguyen and Tiep show that when G = 3D4(q), the

restrictions of irreducible representations are reducible over every proper subgroup,

and in [28], Himstedt, Nguyen, and Tiep prove that this is the case for G = 2F4(q) as

well. Nguyen shows in [55] that when G = G2(q), 2G2(q), or 2B2(q), there are examples

of triples as in Problem 1 and finds all such examples.

Gary Seitz [64] has made a huge breakthrough in the Aschbacher-Scott program

by providing a list of possibilities for (H,G) as in Problem 1 in the case that H is

a finite group of Lie type and G is a finite classical group, both defined in the same

characteristic. In Seitz’s main theorem restated below, the notationH = H(pa) means

a group of Lie type defined over the field Fpa , with corresponding simple algebraic

group H over an algebraically closed field of characteristic p.
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Theorem (Seitz: Main Theorem of [64]). Let X be a classical group with natural

module V = F`c where ` 6= p. Assume (i) H = H(pa) with pa > 3, G = G(pb), and

G is of classical type; (ii) H < G < X; and (iii) H is not a subgroup of a group

in C(X). Then there is a quasisimple group A with H ≤ A ≤ G such that the pair

(A/Z(A), G/Z(G)) is one of the following:

(i) (PSp2n(q), PSL±2n(q));

(ii) (PΩn−1(q), PΩn(q));

(iii) (PSp2n(qs), PSp2ns(q));

(iv) (G2(q), PΩ7(q)) or (G2(q), PSp6(q)) (if p = 2);

(v) (PSUn−1(q), PSUn(q)), with (q + 1)|n.

Another important breakthrough to this problem in the case that G is a finite

group of Lie type was achieved in [40], where Kleshchev and Tiep solve Problem 1 in

the case that SLn(q) ≤ G ≤ GLn(q), which resolves the pair (PSp2n(q), PSL2n(q))

of (i) in Seitz’ list.

For the remaining pairs in Seitz’ list, the question of whether (H,G) indeed gives

rise to triples as in Problem 1 remains open, and for some of these pairs, the reso-

lution of the question would require major advancements in the cross-characteristic

representation theory of finite groups of Lie type. Our goal here is more modest -

we solve Problem 1 in the case that G = Sp2n(q) for n = 2, 3 with q even, and H is

a proper subgroup. This will resolve one of the cases in Seitz’ list, namely the pair

(G2(2a), Sp6(2a)).

Note that in order to restrict irreducibly to a proper subgroup, a representation

must have sufficiently small degree. Hence, in considering this problem, it will be

useful to understand the low-dimensional `-modular representations of Sp6(q). In

Section 4.2 of Chapter 4 below, we prove the following theorem, which describes

these representations. In the theorem, let

δ1 :=

{
1G, `|(q2 + q + 1),
0, otherwise,

δ2 :=

{
1G, `|(q + 1),
0, otherwise,
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and

δ3 :=

{
1G, `|(q3 + 1),
0, otherwise.

Moreover, let α3, β3, ρ
1
3, ρ

2
3, τ

i
3, and ζ i3 denote the complex Weil characters of Sp6(q),

as in [27] (see Table 4.2), and let χj, 1 ≤ j ≤ 35 be as in the notation of [76].

Theorem 1.1.1. Let G = Sp6(q), with q ≥ 4 even, and let ` 6= 2 be a prime dividing

|G|. Suppose χ ∈ IBr`(G). Then:

A) If χ lies in a unipotent `-block, then either

1. χ ∈
{

1G, α̂3, ρ̂
1
3 − δ1, β̂3 − δ2, ρ̂

2
3 − δ3

}
,

2. χ is as in the following table:

Condition on ` χ Degree χ(1)
`|(q3 − 1) or

3 6= `|(q2 − q + 1) χ̂6 q2(q4 + q2 + 1)
`|(q2 + 1) χ̂6 − 1G q2(q4 + q2 + 1)− 1

χ̂28

`|(q + 1) = χ̂6 − χ̂3 − χ̂2 + 1G (q2 + q + 1)(q − 1)2(q2 + 1)

,

3. χ is as in the following table:

Condition on ` χ Degree χ(1)
`|(q3 − 1) or

3 6= `|(q2 − q + 1) χ̂7 q3(q4 + q2 + 1)
`|(q2 + 1) χ̂7 − χ̂4 q3(q4 + q2 + 1)− q(q + 1)(q3 + 1)/2

χ̂35 − χ̂5

`|(q + 1) = χ̂7 − χ̂6 + χ̂3 − χ̂1 (q − 1)(q2 + 1)(q4 + q2 + 1)− q(q − 1)(q3 − 1)/2

,

or

4. χ(1) ≥ D, where D is as in the table:

Condition on ` D

`|(q3 − 1)(q2 + 1) 1
2
q4(q − 1)2(q2 + q + 1)

`|(q + 1),
(q + 1)` 6= 3 1

2
q(q3 − 2)(q2 + 1)(q2 − q + 1)− 1

2
q(q − 1)(q3 − 1) + 1

`|(q + 1),
(q + 1)` = 3 1

2
q(q3 − 2)(q2 + 1)(q2 − q + 1) + 1

3 6= `|(q2 − q + 1) 1
2
q4(q − 1)2(q2 + q + 1)− 1

2
q(q − 1)2(q2 + q + 1) = 1

2
q(q3 − 1)2(q − 1)

B) If χ does not lie in a unipotent block, then either

1. χ ∈ {τ̂ i3, ζ̂
j
3}1≤i≤((q−1)`′−1)/2,1≤j≤((q+1)`′−1)/2,
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2. χ(1) = (q2 + 1)(q − 1)2(q2 + q + 1) or (q2 + 1)(q + 1)2(q2 − q + 1) (here χ is

the restriction to `-regular elements of the semisimple character indexed by a

semisimple `′ - class in the family c6,0 or c5,0 respectively, in the notation of [47]

- see Table 4.1),

3. χ(1) = (q − 1)(q2 + 1)(q4 + q2 + 1) or (q + 1)(q2 + 1)(q4 + q2 + 1) (here χ is

the restriction to `-regular elements of the semisimple character indexed by a

semisimple `′ - class in the family c10,0 or c8,0 respectively, in the notation of

[47] - see Table 4.1), or

4. χ(1) ≥ q(q4 + q2 + 1)(q − 1)3/2.

Note that in the case n = 3, Theorem 1.1.1 generalizes [27, Theorem 6.1], which

gives the corresponding bounds for ordinary representations of Sp2n(q) with q even.

Our main result in Chapter 5 is the following complete classification of triples

(G, V,H) as in Problem 1 in the case G = Sp6(q) with q ≥ 4 even.

Theorem 1.1.2. Let q be a power of 2 larger than 2, and let (G, V,H) be a triple as

in Problem 1, with ` 6= 2, G = Sp6(q), and H < G a proper subgroup. Then:

1. P ′3 ≤ H ≤ P3, the stabilizer of a totally singular 3-dimensional subspace of the

natural module F6
q, and the Brauer character afforded by V is the Weil character

α̂3; or

2. H = G2(q), and the Brauer character afforded by V is one of the Weil characters

• ρ̂1
3 −

{
1, `| q3−1

q−1
,

0, otherwise,
degree q(q + 1)(q3 + 1)/2−

{
1
0

• τ̂ i3, 1 ≤ i ≤ ((q − 1)`′ − 1)/2, degree (q6 − 1)/(q − 1)

• α̂3, degree q(q − 1)(q3 − 1)/2

• ζ̂ i3, 1 ≤ i ≤ ((q + 1)`′ − 1)/2, degree (q6 − 1)/(q + 1).



18

as in the notation of [27] (see Table 4.2).

Moreover, each of the above situations indeed gives rise to such a triple (G, V,H).

Note that Theorem 1.1.2 tells us that pair (ii) in the main theorem of [64] does

not occur for the case n = 7, q even, and that pair (iv) does occur.

We also prove the following complete classifications of triples as in Problem 1 when

H is a maximal subgroup of G = Sp4(q), q ≥ 4 even, G = Sp6(2), and G = Sp4(2).

Theorem 1.1.3. Let q be a power of 2 larger than 2, ` 6= 2, G = Sp4(q), and H < G

a maximal subgroup. Then (G, V,H) is a triple as in Problem 1 if and only if H = P2,

the stabilizer of a totally singular 2-dimensional subspace of the natural module F4
q,

and the Brauer character afforded by V is the Weil character α̂2.

Theorem 1.1.4. Let (G, V,H) be a triple as in Problem 1, with ` 6= 2, G = Sp4(2) ∼=

S6, and H < G a maximal subgroup. Then one of the following situations holds:

1. H = A6,

2. H = A5.2 = S5,

3. H = O−4 (2) ∼= S5 = A6.21M3 in the notation of [11].

Moreover, each of the above situations indeed gives rise to such a triple (G, V,H).

Theorem 1.1.5. Let (G, V,H) be a triple as in Problem 1, with ` 6= 2, G = Sp6(2),

and H < G a maximal subgroup. Then one of the following situations holds:

1. H = G2(2) = U3(3).2, and

• ` = 0, 5, 7 and V affords the Brauer character α̂3, ζ̂1
3 , ρ̂1

3−
{

1, ` = 7
0, otherwise,

or χ̂9, where χ9 is the unique irreducible complex character of Sp6(2) of

degree 56.

• ` = 3 and V affords the Brauer character α̂3 or ρ̂3
1.
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2. H = O−6 (2) ∼= U4(2).2, and the Brauer character afforded by V is the Weil

character β̂3.

3. H = O+
6 (2) ∼= L4(2).2 ∼= A8.2, and the Brauer character afforded by V is

either the Weil character α̂3, the character χ̂7 where χ7 is the unique irreducible

character of degree 35 which is not equal to ρ2
3, or the character χ̂4 where χ4 is

the unique irreducible character of degree 21 which is not equal to ζ1
3 .

4. H = 26 : L3(2), and the Brauer character afforded by V is α̂3 or χ̂4 where χ4 is

the unique irreducible character of G of degree 21 which is not equal to ζ1
3 .

5. H = L2(8).3, and V affords one of the Brauer characters:

• α̂3,

• ζ̂1
3 , ` 6= 3,

• ρ̂1
3, ` 6= 7, or

• χ̂4 where χ4 is the unique irreducible complex character of Sp6(2) of degree

21 which is not equal to ζ1
3 , ` 6= 3.

Moreover, each of the above situations indeed gives rise to such a triple (G, V,H).

We note that unlike the case q ≥ 4, we do not discuss the descent to non-maximal

proper subgroups of Sp6(2) in Theorem 1.1.5, as there are many examples of such

triples in this case.

In Chapter 6, we also begin a discussion of pair (v) of Seitz’ list as stated above.

There, we show that this pair yields no triples for n < 8 in the case that V is defined

in characteristic 0.

1.2 Local-Global Conjectures

Much of the representation theory of finite groups is dedicated to showing the validity

of various conjectures which relate certain invariants of a finite group with those of
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certain subgroups. Often, these have to do with the number of characters of the group

of a given type. One of the first of these “local-global” or “counting” conjectures was

proposed by McKay [50] in 1972. Though the original conjecture was more restricted,

the following is the McKay conjecture as it is known today.

McKay Conjecture. Let G be a finite group, `||G| a prime, and P ∈ Syl`(G). Then

|Irr`′(G)| = |Irr`′(NG(P ))|.

Here, Irr`′(G) represents the set of irreducible characters of G with degree prime

to `. Though there is much evidence for the validity of the McKay conjecture, it

is still open, and the question of why it should be true remains unclear. Many

refinements to the conjecture have been proposed, and a reduction theorem has been

proved, with the hope of providing not only a method by which to prove it, but

also a better understanding of the deeper underlying reason behind it. For example,

Alperin [2] later extended the McKay conjecture to include the role of blocks. The

new conjecture, known as the Alperin-McKay conjecture, uses Brauer’s First Main

Theorem, which says that block induction b 7→ bG gives a bijection between blocks B

of G with defect group D and blocks b of NG(D) with defect group D. Recall that a

character χ in the block B has height zero if its degree satisfies χ(1)` = |G|`/|D|`.

Alperin-McKay Conjecture. Let G be a finite group, B an `-block of G with

defect group D, and b the block of NG(D) with bG = B. Then the number of height

zero characters of B and b coincide.

In [34], Isaacs, Malle, and Navarro prove a reduction theorem for the McKay

conjecture. They describe a list of conditions that a simple group must satisfy in

order to be “good” for the McKay conjecture for a prime `. The reduction says that

if every finite simple group is “good” for the McKay conjecture for `, then every

finite group satisfies the McKay conjecture for the prime `. In [69], Späth provides

a reduction for the Alperin-McKay conjecture along the same lines, providing a list
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of conditions for a group to be “good”, and proving that if every finite simple group

is good for a prime `, then all finite groups satisfy the Alperin-McKay conjecture for

that prime.

The other conjectures that we will be concerned with in this thesis involve `-

weights of a finite group. An `-weight of G is a pair (Q, µ), where Q is an `-radical

subgroup (i.e. an `-subgroup with Q = O`(NG(Q))) and µ is a defect-zero character

of NG(Q)/Q, that is, an irreducible character with µ(1)` = |NG(Q)/Q|`. In 1986,

Alperin [3] made the following conjecture:

Alperin Weight Conjecture (AWC). Let G be a finite group and ` a prime. Then

the number of irreducible Brauer characters of G equals the number of G-conjugacy

classes of `-weights of G.

The AWC aims to provide an analogue for finite groups to the situation of `-

modular representations of algebraic groups, where the representations are in bijection

with the dominant weights of the algebraic group. This is the motivation for referring

to the collection of such pairs (Q, µ) as weights for the finite group G.

More generally, a weight for a block B of G is a weight (Q, µ) as before, where

µ lies in a block b of NG(Q) for which the induced block bG is B. Again, we have

an extension of this conjecture to one which involves the role of blocks of the group,

giving the conjecture more structure:

Blockwise Alperin Weight Conjecture (BAWC). Let G be a finite group, ` a

prime, and B an `-block of G. Then the number of irreducible Brauer characters

belonging to B equals the number of G-conjugacy classes of `-weights of B.

In [53], Navarro and Tiep prove a reduction for the Alperin weight conjecture

in the same spirit as those for the McKay and Alperin-McKay conjectures, and in

[70], Späth extends this reduction to the blockwise version of the Alperin weight

conjecture.
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The reductions for these conjectures give us hope of proving them by appealing

to the classification of finite simple groups. It has been shown that under certain

conditions, a simple group of Lie type is “good” for the various conjectures, but it

still needs to be shown in general. For example, it is known (see [53], [70]) that a

simple group of Lie type defined in characteristic p is “good” for the Alperin weight

and blockwise Alperin weight conjectures for the prime ` = p, but the question is still

open when ` 6= p. Similarly, for ` = p ≥ 5, Späth has shown in [69, Proposition 8.4]

that a simple group of Lie type defined in characteristic p is “good” for the Alperin-

McKay conjecture (and therefore also the McKay conjecture) for the prime ` = p. It

is worth noting that for q ≥ 4 a power of 2, the same argument shows that indeed,

Sp6(q) and Sp4(q) are good for the Alperin-McKay conjecture for the prime 2, as the

Schur multiplier is non-exceptional in these cases.

In [14], Cabanes shows that Sp4(2a) is “good” for the McKay conjecture for all

primes ` 6= 2. According to the discussion preceding [70, Theorem A], G. Malle

has shown that alternating groups, and therefore Sp4(2)′ ∼= A6, are “good” for the

blockwise Alperin weight conjecture. The main theorem of Chapter 7 is the following

statement, which therefore implies that Sp6(2a) and Sp4(2a) are “good” for each of

these conjectures for every prime:

Theorem 1.2.1. The simple groups Sp6(q) with q even and Sp4(q) with q ≥ 4 even

are “good” for the McKay, Alperin-McKay, Alperin weight, and blockwise Alperin

weight conjectures for all primes ` 6= 2. Moreover, the simple group Sp4(2)′ is “good”

for the Alperin-McKay conjecture for all primes ` (including ` = 2) and Sp6(2) is

“good” for the Alperin-McKay conjecture for the prime ` = 2.

Though our proof is rather specialized, we hope that it will lead us to find a more

general underlying pattern which will give us an idea of how to extend these results

to higher rank symplectic groups.
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Chapter 2

Preliminaries

In this chapter, we introduce some notation and background that will be useful in the

subsequent chapters, in an effort to make this thesis somewhat self-contained, though

some of the notation will be reiterated in later chapters. As our focus will be on the

finite classical groups, we describe a number of ways to construct them in Section

2.2. In Section 2.3, we discuss some basic information on representations before

specializing to the representations of finite classical groups. In later chapters, we will

be paying particular attention to the groups GUn(q) and Sp2n(2a), so in Section 2.4,

we discuss the structure of centralizers of semisimple elements in these groups.

2.1 Groups of Lie Type

A group of Lie type G can be identified with the fixed points of a connected reductive

algebraic group G under a Frobenius map F . (For this reason, groups of Lie type

are sometimes referred to as finite reductive groups.) If G is a finite group of Lie

type over Fq, let k = Fq and let G be regarded as a subgroup of some GLn(k). A

map F : (aij)→ (aqij) which maps G→ G is called a standard Frobenius map. More

generally, a Frobenius map from G to G is a morphism such that some power is a

standard Frobenius map. Given a Frobenius map F , the group G = GF = {g ∈

G|F (g) = g} is the set of fixed points under F . The untwisted groups are obtained

from standard Frobenius maps, whereas the twisted groups arise from other Frobenius

maps.

Simple groups of Lie type can also be thought of as the Chevalley groups L(q)

for simple Lie algebras L over the field Fq and their twisted counterparts resulting

from symmetries of the Dynkin diagram, as in the notation of [15]. L(q) is the group
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of automorphisms of L generated by the elements xr(t) := exp(tader), following the

notation of Carter [15], where t ∈ Fq, r is a root, and er is a root vector in a Chevalley

basis for L.

2.1.1 Exceptional Groups of Lie Type

By an exceptional group of Lie type, we mean the fixed points under a Frobenius

morphism of a simple algebraic group or the finite analogue of the Lie group (and

their twisted counterparts) corresponding to one of the exceptional simple Lie algebras

L = G2, F4, E6, E7, or E8, whose root systems are shown below.

G2 :

F4 :

E6 :

E7 :

E8 :

These can come in one of two forms. First, G could be the Chevalley group L(q)

corresponding to the simple Lie algebras L over a finite field Fq, omitting the case

q = 2 when L = B2, G2. (See [15].)

Second, G can be a twisted group obtained by a nontrivial graph automorphism

(an automorphism induced from a nontrivial symmetry of the Dynkin diagram) of

the Chevalley group L(q) in the cases where L is E6 (for q a square), B2 (for q =

22m+1 > 2), D4 (an order-3 symmetry, for q a cube), F4 (for q = 22m+1 > 2), or G2 (for
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q = 32m+1 > 3). These twisted exceptional groups are denoted 2E6(q2), 2B2(22m+1) :=

Sz(q), 3D4(q3), 2G2(32m+1), and 2F4(22m+1). The latter two are sometimes called

the Ree groups, Sz(q) is called a Suzuki group, and 3D4(q3) are sometimes called

Steinberg triality groups. While the groups 2B2(2), 2F4(2), and 2G2(3) are not simple,

the commutator subgroups 2F4(2)′ and 2G2(3)′ are simple.

2.2 The Finite Classical Groups

There are various ways to construct the groups of Lie type, but unlike the exceptional

groups, the classical groups can be realized nicely as certain groups of matrices over

finite fields. They essentially fall into the classes of finite linear, unitary, symplectic,

and orthogonal groups. There are many ways in which to view these groups. For

example, we can view them as matrix groups or groups of transformations. We can

also view them as certain groups of Lie type, or as a set of fixed points of a simple

algebraic group with respect to a Frobenius endomorphism.

2.2.1 The Classical Groups as Matrix Groups

Let V = Fnq be an n-dimensional vector space over the finite field Fq. The general

linear group GL(V ) of V is the set of non-singular Fq-linear transformations of V .

Choosing a basis, we get GL(V ) ∼= GLn(q), the set of n × n matrices over Fq with

nonzero determinant. Taking the subgroup of GLn(q) of elements with determinant

1, we obtain the special linear group SLn(q) ∼= SL(V ). Since SLn(q) is the kernel

of the determinant map onto F×q , it is clear that SLn(q) C GLn(q) with index q −

1. The set {λ · I|λ ∈ F×q } forms the center Z(GLn(q)) of GLn(q), and taking the

intersection Z(GLn(q))∩SLn(q) gives the center of SLn(q). We obtain the projective

general linear group and projective special linear group as the quotients PGLn(q) :=

GLn(q)/Z(GLn(q)) and PSLn(q) := SLn(q)/Z(SLn(q)), respectively. The groups

PSLn(q) are simple as long as (n, q) 6∈ {(2, 2), (2, 3)}. Hence, when referring to the
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finite simple groups, PSLn(q) is the one we mean. Note also that PGLn(q) is almost

simple, and SLn(q) is quasi-simple, aside from the above exceptions.

The other classical groups are subgroups of the linear groups, and can be defined

as certain isometry groups for particular forms. A bilinear form f : V × V → Fq is

symmetric if f(v, w) = f(w, v) for all w, v ∈ V and is skew-symmetric if f(v, w) =

−f(w, v) for all v, w ∈ V . A non-degenerate skew-symmetric bilinear form satisfying

f(v, v) = 0 for all v ∈ V is called a symplectic form. If Fq has a field automorphism

λ 7→ λ of order two, then a non-degenerate left-linear form satisfying f(v, w) = f(w, v)

is called a Hermitian or unitary form. Notice that in this case, q must be a square.

The symplectic groups Sp(V, f) and general unitary groups GU(V, f) are the

subgroups of GL(V ) preserving a symplectic form or unitary form, f , respectively.

That is, elements g of these subgroups are those satisfying f(gv, gv) = f(v, v) for all

v ∈ V . We note that n-dimensional symplectic forms (resp. unitary forms) over Fq
(resp. Fq2) are unique up to similarity, and hence the corresponding groups Sp(V, f)

(resp. GU(V, f)) are unique up to isomorphism. With a proper choice of basis, we

can identify these groups with the matrix groups

Spn(q) = {g ∈ GLn(q)|TgJg = J}

,

GUn(q) = {g ∈ GLn(q2)|Tgg = I}

where J is the n× n matrix

J :=

(
0 In/2
−In/2 0

)
and g is the matrix obtained from g by taking the qth power of each entry. Note that

for the symplectic groups, n must be even and it turns out that Spn(q) ≤ SLn(q).

We obtain the special unitary group SUn(q) as the subgroup of GUn(q) of matrices

with determinant 1.
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From these groups, we obtain the projective symplectic, projective general unitary,

and projective special unitary groups by taking the quotient of the corresponding

group by its center:

PSpn(q) := Spn(q)/Z(Spn(q)), PGUn(q) := GUn(q)/Z(GUn(q)),

PSUn(q) := SUn(q)/Z(SUn(q)).

For most (n, q), the groups PSpn(q) and PSUn(q) are simple.

The last type of finite classical group consists of the orthogonal groups. These are

the transformations preserving a non-degenerate quadratic form. A quadratic form

is a map Q : V → V such that Q(λv) = λ2Q(v) for λ ∈ Fq, v ∈ V and the map

fQ : V × V → V given by fQ(v, w) = Q(v + w)−Q(v)−Q(w) is a bilinear form. Q

is called non-degenerate if fQ is non-degenerate. If n = 2m + 1 is odd, there is one

non-degenerate quadratic form in dimension n over Fq, up to similarity. When q is

odd, the group O(V,Q) of isometries of the form Q is unique up to isomorphism and

can be identified, after choosing a suitable basis, with the matrix group

O2m+1(q) = {g ∈ GL2m+1(q)|TgMg = M},

where

M :=

 0 Im 0
Im 0 0
0 0 1

 .

When q is even, O2m+1(q) ∼= Sp2m(q), so we usually assume that if q is even, then so

is n.

If n = 2m is even, there are two isometry classes of non-degenerate quadratic

forms. Choosing a standard basis, we see that the isometry groups O(V,Q) of these

two forms are isomorphic to a subgroup of one of the following matrix groups:

O+
2m(q) ≤ {g ∈ GL2m(q)|TgKg = K}

O−2m(q) ≤ {g ∈ GL2m(q)|TgLg = L}
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with

K :=

(
0 Im
Im 0

)
and

L :=


0 Im−1 0

Im−1 0 0

0 0

(
2 1
1 2ζ

)
 ,

where x2 + x + ζ is irreducible over Fq. When q is odd, the quadratic form Q is

determined by its associated bilinear form fQ, and hence the above are actually

equalities. When q is even, the bilinear form is symplectic, so O±2m(q) ≤ Sp2m(q) is

the subgroup of g ∈ Sp2m(q) such that Q(gv) = Q(v) for all v in the chosen basis.

As before, we obtain the special orthogonal groups SOε
n(q) (for ε = ±, or null)

as the subgroup of Oε
n(q) of matrices with determinant 1. Taking the quotient by

the center, we obtain the projective special orthogonal groups PSOε
n(q) as before.

However, in the case of orthogonal groups, this group is not in general simple. Except

for the case SO+
4 (2), SOε

n(q) contains a unique subgroup of index 2, which is denoted

by Ωε
n(q). The projective group PΩε

n(q), which is the quotient of Ωε
n(q) by scalar

matrices, is the group which is usually simple in the orthogonal group case.

We will sometimes denote by I(V, f) or I(V,Q) the group of isometries of a bilinear

or Hermitian form f or quadratic form Q, making the convention that f is the zero

map in the case of linear groups.

Example 1. Consider the group G = PSp2n(q) when q is even. (This group, par-

ticularly when n = 3, will be the group we are primarily interested in in Chapter 5

and Chapter 7.) In general, we have Z(Sp2n(q)) = {±I}, so since the characteristic

of our field is 2, we have Z(Sp2n(q)) = I. Hence PSp2n(q) = Sp2n(q) when q is even,

and this group is simple for (n, q) 6= (2, 2), (1, 2). We note that although Sp4(2) is not

simple, the commutator Sp4(2)′ is simple and is isomorphic to the alternating group

A6.
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If f is the skew-symmetric bilinear form defining G (that is, G = I(V, f)), we

have f(v, w) = −f(w, v) = f(w, v) since the characteristic is 2. Thus f is actually a

symmetric bilinear form, and G contains O±2n(q) as a subgroup.

We can find a standard symplectic basis {e1, ..., en, f1, ..., fn} for V = F2n
q such

that f(ei, ej) = 0 = f(fi, fj) for all i, j and f(ei, fj) = δij. Therefore, the Gram

matrix of f is the matrix

J = K =

(
0 In
In 0

)
defined above.

(Note that in the case q is odd, the standard symplectic basis is defined the same

way, but then the Gram matrix has −In in the lower left.)

2.2.2 The Classical Groups as Groups of Lie Type

We can also identify the finite classical group G with the fixed points of a connected

reductive algebraic group G under a Frobenius map F . For example, for G = GLn(q),

we can take G = GLn(k) and F to be the standard Frobenius map

F : (aij) 7→ (aqij)

mapping each matrix entry to its qth power. Similarly,

SLn(k)F = SLn(q), Sp2n(k)F = Sp2n(q),

O2n+1(k)F = O2n+1(q), SO2n+1(k)F = SO2n+1(q),

O2n(k)F = O+
2n(q), and SO2n(k)F = SO+

2n(q),

with the Gram matrices of the forms as above.

If instead we take F ′ to be the inverse-transpose map composed with F , i.e.

F ′ : (aij) 7→ (T (aqij))
−1, then

GLn(k)F
′
= GUn(q) and SLn(k)F

′
= SUn(q).
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Table 2.1: Identifications of Finite Chevalley Groups with Finite Classical Groups

Chevalley Group L(q) Simple Classical Group Dynkin diagram for L
A`(q) PSL`+1(q)

2A`(q
2) PSU`+1(q) ...

B`(q) PΩ2`+1(q), q odd

C`(q) PSp2`(q)
D`(q) PΩ+

2`(q)

2D`(q
2) PΩ−2`(q)

· · ·

Note here that (F ′)2 : (aij) 7→ (aq
2

ij ) is the standard Frobenius with respect to Fq2 .

To obtain SO−2n(q) in this way, we let F ′′ be the composition of F with conjugation

by the matrix

t :=

 I2n−2 0 0
0 0 1
0 1 0

 .

Since t ∈ O2n(k) normalizes SO2n(k), the map F ′′ : (aij) 7→ t−1(aqij)t sends SO2n(k)

to itself. Then

SO2n(k)F
′′

= SO−2n(q).

Note that the map F ′′ also squares to the standard Frobenius with respect to Fq2 .

The finite simple classical groups can also be thought of as the Chevalley groups

L(q) for the simple Lie algebras L = A`, B`, C`, D` over the field Fq and their twisted

counterparts resulting from symmetries of the Dynkin diagram, as in the notation of

[15]. The Dynkin diagrams for the root systems and the identifications of the groups

L(q) as finite classical groups for each of these Lie algebras are shown in Table 2.1.

For the diagrams of Bn and Cn, we have made the convention that the long root is

on the right.
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2.3 Representations

Given a finite group G and a field F, an F-representation of G is a homomorphism

X : G → GL(V ) for some F-vectorspace V . Equivalently, if dimV = n, we can

fix a basis for V to obtain X : G → GLn(F). Given any FG-module V which has

dimension n as a vector space, we obtain a representation defined by X(g)v := g · v

for g ∈ G, v ∈ V . Conversely, given a representation X : G → GLn(F), we obtain

an FG-module by taking V to be the column space Fn and defining the action of

g ∈ G by g · v := X(g)v. Hence F-representations of G can be identified with

the FG-modules which afford them, and we call a representation irreducible if it is

afforded by an irreducible FG-module V , and reducible otherwise. If a representation

X remains irreducible when viewed over any extension field E of F, we say that X is

absolutely irreducible. In particular, if F is algebraically closed, then any irreducible

F-representation is also absolutely irreducible.

Any FG-module V has a composition series

0 = V0 ≤ V1 ≤ ... ≤ Vk−1 ≤ Vk = V

with each factor Vi/Vi−1 irreducible. In this sense, the irreducible representations of

G form the building blocks of all representations.

Now, when F is an algebraically closed field of characteristic ` relatively prime

to |G|, we say that X (or V ) is an ordinary representation, and the representation

theory is the same as in the case F = C. In this case, Maschke’s theorem tells us that

in fact V is a direct sum of its irreducible composition factors. When ` divides |G|,

the situation is more complicated, and we call V an `-modular representation.

We will denote by d`(G) the smallest degree of an absolutely irreducible represen-

tation of G of degree larger than 1 in characteristic `. Similarly, m`(G) denotes the

largest such degree. When ` = 0, we write b(G) = m0(G) =: mC(G), or sometimes

simply m(G). In particular, we have m`(G) ≤ m(G) = b(G) for all ` ≥ 0.



32

2.3.1 Characters and Blocks of Finite Groups

Given a representation X : G→ GLn(F), we obtain the character χ := Tr◦X : G→ F

afforded by X by taking the traces of the images X(g) for g ∈ G. The character

χ is called irreducible if the representation X is irreducible. We denote the set of

irreducible ordinary characters of G by Irr(G). Given an arbitrary ordinary character

ψ of G, we can write ψ uniquely as a linear combination

ψ =
∑

χ∈Irr(G)

aχχ,

where 0 ≤ aχ ∈ Z.

If X is an `-modular representation over an algebraically closed field F, we gen-

eralize the notion of characters as follows. Let G◦ := {g ∈ G : ` 6 ||g|} denote the

set of `-regular elements of G (that is, `′- elements). If g ∈ G◦, then the eigenval-

ues λ1, ..., λn ∈ F× of X(g) are |g|th roots of unity in F×. Fixing an isomorphism

∗ between |G|`′th roots of unity in F× and |G|`′th roots of unity in C, we obtain

the `-Brauer character ϕ : G◦ → C by taking ϕ(g) :=
∑n

i=1 λ
∗
i . (Here we use n`′ to

denote the `′-part of the integer n. We will also use n` to denote the `-part of n.)

We again call ϕ irreducible if X is afforded by an irreducible FG-module, and the set

of irreducible `- Brauer characters of G is denoted IBr`(G). As in the case of the

ordinary characters, we can write an arbitrary `-Brauer character θ as a unique sum

θ =
∑

ϕ∈IBr`(G)

bϕϕ,

where 0 ≤ bϕ ∈ Z.

In particular, taking the restriction of χ ∈ Irr(G) to G◦ yields a (possibly re-

ducible) Brauer character, which we will denote χ̂, and we can write

χ̂ =
∑

ϕ∈IBr`(G)

dχ,ϕϕ

for nonnegative integers dχ,ϕ. The numbers dχ,ϕ are called the decomposition numbers,

and the matrix (dχ,ϕ) is called the decomposition matrix for G.
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The set IBr`(G) ∪ Irr(G) is partitioned into sets called `-blocks of G. The blocks

satisfy that χ, χ′ ∈ Irr(G) are in the same block if and only if there exist χ =

χ1, χ2, ..., χm = χ′ ∈ Irr(G) and ϕ1, ..., ϕm−1 ∈ IBr`(G) such that dχi,ϕi and dχi+1,ϕi

are both nonzero for each i. Moreover, dχ,ϕ 6= 0 if and only if χ, ϕ are in the same

block. Hence, by reordering Irr(G) and IBr`(G), the decomposition matrix can be put

into block-diagonal form, with the blocks of the matrix corresponding to the `-blocks

of G. (It is worthwhile to note that the decomposition matrix is dependent on the

choice of isomorphism ∗ fixed above.) When the prime ` is fixed, we will denote by

Bl(G) the set of ` - blocks of G. Further, if χ ∈ Irr(G)∪ IBr`(G), Bl(G|χ) will denote

the block of the group G containing χ. We will use IBr`(B) := B ∩ IBr`(G) to denote

the irreducible Brauer characters in the block B and Irr(B) := B ∩ Irr(G) for the

irreducible ordinary characters in B.

Usually, blocks are defined using central characters. (For a more complete discus-

sion, we refer the reader to [33, Chapter 15].) Given χ ∈ Irr(G), we will denote the

central character associated to χ by ωχ : Z(CG) → C. This function is defined by

ωχ(K+) = |K|χ(g)
χ(1)

, where K is the conjugacy class of G containing g and given a set S,

we define S+ to be the sum
∑

x∈S x. We set λB := ω∗χ : Z(FG)→ F for B = Bl(G|χ),

as in [33, Chapter 15]. If Y ≤ G is a subgroup, and b ∈ Bl(Y ), then the induced

block bG is the unique block B so that λGb (K+) = λB(K+) for all conjugacy classes

K of G, if such a B exists. (In this situation, bG is said to be defined.) Recall that

λGb (K+) is given by λb ((K ∩ Y )+) .

To each ` - block B of G, there is associated an `-radical subgroup D called the

defect group of the block, which is unique up to G-conjugacy. If P ∈ Syl`(G), then

the defect of the block (or of any character in the block) is d(B), where |D| = `d(B).

If |P | = `r, then `r−d(B) is the largest power of ` which divides χ(1) for all χ ∈ Irr(B),

and the height of χ ∈ Irr(B) is the integer h such that χ(1)` = `r−d(B)+h. In particular,

if χ(1)` = |G|`, then χ is said to have defect zero (in this case Bl(G|χ) is comprised

exactly of χ and χ̂) and if D ∈ Syl`(G), then B is said to have maximal defect. We
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will denote by Irr0(G|D) the set of height-zero characters of G which lie in any block

with defect group D and by dz(G) the set of defect-zero characters of G.

2.3.2 Representations of Finite Classical Groups

Suppose now that G is a finite classical group in characteristic p. Then the p-modular

representation theory differs significantly from the `-modular representation theory

for ` 6= p. For this reason, we distinguish between the two cases, and say that X is

a natural - (or defining-) characteristic representation when ` = p and a cross- (or

non-defining-) characteristic representation when ` 6= p.

The representations of the finite classical groups in natural characteristic are

closely related to the representations of the corresponding simple algebraic group.

In particular, if G is a finite classical group and G = GF where G is a simply con-

nected, simple algebraic group over the algebraic closure F = Fq and F is the corre-

sponding Frobenius endomorphism, then the irreducible FG-modules are exactly the

restrictions of a particular set of irreducible FG-modules. To be more precise, these

irreducible FG-modules are of the form M(λ), the unique irreducible FG-module with

highest weight λ (under the ordering µ � λ if and only if λ − µ is a sum of positive

roots), where λ =
∑

i ciλi, 0 ≤ ci ≤ q − 1, {λi} is the basis of R ⊗Z X(T ) dual to

{α∗i } = {2αi/(αi, αi)} where Π = {αi} is the set of fundamental roots. Here X(T ) is

the set of characters of a maximal torus T of G. The set of roots Φ is obtained as the

set of weights of the Lie algebra of G under the natural action. (Weights are those

µ ∈ X(T ) such that there is some nonzero v in the module (here the Lie algebra)

such that tv = µ(t)v for all t ∈ T .)

However, these representations can still be quite difficult to find. In [48], Lübeck

finds low-dimensional irreducible representations in natural characteristic for Cheval-

ley groups of small rank. However, for each type, he designates a degree bound and

is only able to find all such representations up to this degree. (Lübeck’s results im-
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prove upon the results of Liebeck (see [37, Theorem 5.4.11]) which do this for classical

groups, up to a smaller bound on the degree.)

For the purposes of this thesis, we will focus primarily on cross-characteristic

representations.

Example 2. Consider the group Sp6(q) with q even. Although this group is of

small rank, it is still actually quite difficult to find the character tables. In [76],

Donald White makes significant progress in the cross characteristic case by finding the

decomposition numbers of the unipotent blocks of the cross characteristic `-modular

characters, but even here there were, until recently, a few unknowns in the case

`|(q + 1). These unknowns have been found in recent work by Olivier Dudas using

the `-adic cohomology of Deligne-Lusztig varieties.

2.3.3 Some Deligne-Lusztig Theory

We now present a short overview of some Deligne-Lusztig theory. Deligne-Lusztig

theory can be thought of as a way to define a “Jordan decomposition” for irreducible

characters into a “unipotent part” and a “semisimple part”, in analogue to the Jordan

decompositions of Lie groups and Lie algebras.

Let G = GF for a connected reductive algebraic group G, defined in characteristic

p 6= `, and Frobenius map F , and write G∗ = (G∗)F
∗
, where (G∗, F ∗) is dual to (G,F ).

We can write Irr(G) as a disjoint union
⊔
E(G, (s)) of Lusztig series corresponding to

G∗− conjugacy classes of semisimple (i.e. p′-) elements s ∈ G∗. In the case that the

centralizer CG∗(s) is connected (in particular, this is the case if Z(G) is connected),

apart from a few exceptional cases, the Lusztig series E(G, (s)) contains a unique

character with p′-degree, and this character is called a semisimple character. Charac-

ters in the series E(G, (1)) are called the unipotent characters, and there is a bijection

E(G, (s))↔ E(CG∗(s), (1)) such that if χ 7→ ψ, then χ(1) = [G∗ : CG∗(s)]p′ψ(1). Note

that the semisimple character in E(G, (s)) has degree [G∗ : CG∗(s)]p′ .
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Let χ ∈ Irr(G) and assume χ belongs to the Lusztig series E(G, (s)) and that t is

the `′-part of the semisimple element s ∈ G∗. Then χ ∈ E`(G, (t)) :=
⋃
E(G, (ut)),

where the union is taken over all `-elements u in CG∗(t). By a fundamental result of

Broué and Michel [12], E`(G, (t)) is actually a union of `-blocks. Hence, we may view

E`(G, (t)) as a collection of `-Brauer characters as well as a set of ordinary characters.

Moreover, it follows (see, for example [31, Proposition 1]) that the degree of any

irreducible Brauer character θ ∈ E`(G, (t)) is divisible by [G∗ : CG∗(t)]p′ . Hence, if

χ ∈ E`(G, (t))∩ Irr(G) and χ(1) = [G∗ : CG∗(t)]p′ , then χ̂ is irreducible. Furthermore,

if H is a subgroup of G such that the restriction θ|H to H is irreducible, and [G∗ :

CG∗(t)]p′ > m`(H), then θ cannot be a member of E`(G, (t)). Also, any irreducible

Brauer character in E`(G, (t)) appears as a constituent of the restriction χ̂ to G◦ for

some ordinary character χ in E(G, (t)) (see [30, Theorem 3.1]), so E`(G, (1)) is a union

of unipotent blocks. In particular, if θ|H is irreducible and [G∗ : CG∗(t)]p′ > m`(H)

for all nonidentity semisimple `′- elements t of G∗, then θ must belong to a unipotent

block.

In [9], Bonnafé and Rouquier show that when CG∗(t) is contained in an F ∗-stable

Levi subgroup, L∗, of G∗, then Deligne-Lusztig induction RG
L yields a Morita equiva-

lence between E`(G, (t)) and E`(L, (t)), where L = (L)F and (L, F ) is dual to (L∗, F ∗).

This fact will be very important in what follows.

Remark. As this thesis is primarily concerned with the groups GUn(q) and Sp2n(q),

we make a few remarks about these cases. We note that in the case of G = GLn(Fq),

the dual group G∗ is actually isomorphic to G, and G = GF is also isomorphic to

the dual G∗ = (G∗)F
∗
. Therefore, in this situation we can simplify things by making

the substitution G∗ = G in the above discussion. In this case, we also have that the

center of G is connected, and therefore so is CG∗(s) for any semisimple s ∈ G∗.

Also, for G = Sp2n(q) with q even, the dual G∗ is isomorphic to G. This follows

from the fact that the duality switches the root systems of types Bn and Cn, but these
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are the same when our field has characteristic 2. Hence in this case as well, we can

make the substitution G∗ = G in the above discussion. Moreover, when G = Sp6(q),

q even, with G = GF and (G∗, F ∗) in duality with (G,F ), each semisimple conjugacy

class (s) of G∗ = (G∗)F
∗

satisfies that |s| is odd. Hence by [20, Lemma 13.14(iii)],

the centralizer CG∗(s) is connected.

2.4 Centralizers of Semisimple Elements of Unitary and Sym-
plectic Groups

We present here some well-known results pertaining to the structure of centralizers

of semisimple elements of the finite unitary groups (over fields with arbitrary order)

and finite symplectic groups over fields with even order, as these will be useful in

later chapters. Similar calculations can be found in various papers. For example, in

[56], Nguyen uses analogous calculations to describe the centralizers of semisimple

elements of the orthogonal groups.

We begin by introducing some notation. Let f be an irreducible polynomial of

degree d over a field of size q. If α is one root of f in some extension field of Fq, then

the set of all roots of f is {α, αq, αq2 , ..., αq(d−1)}. Note that when the field is size q2,

the roots are α, αq
2
, ..., αq

2(d−1)
, and the map J1 : α 7→ α−q may or may not keep the

set of roots fixed. Thus J1 induces an action on the set of irreducible polynomials,

and when viewed as such is an involution. Similarly, the map J2 : α 7→ α−1 may or

may not keep the set of roots fixed when the field is of size q, and J2 induces an

involutory action on the set of irreducible polynomials.

We define J := J1 in the case of the unitary groups and J := J2 in the case of

the symplectic groups. Let fX := J(f) denote the irreducible polynomial of degree

d with roots α−q, α−q
3
, ..., α−q

2(d−1)+1
or α−1, α−q, ..., α−q

d−1
in the case J = J1 or J2,

respectively. We say that a polynomial f over Fq2 (respectively, Fq) is self-check if

f = fX and is not self-check otherwise.
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2.4.1 Centralizers of Semisimple Elements of GUn(q)

Note that for an irreducible polynomial f over Fq2 , to be self-check, the degree d of f

must necessarily be odd, and the roots must satisfy αq
d+1 = 1. Moreover, these two

conditions are sufficient to ensure that f is self-check.

Theorem 2.4.1. Let G = GUn(q), with natural module V = Fnq2, and let s be a

semisimple element of G. Decompose the characteristic polynomial P (t) ∈ Fq2 [t] of s

acting on V in the form

P (t) =
∏̀
i=1

fi(t)
ki

m∏
j=`+1

(gj(t)gj(t)
X)rj

where each fi, gj is an irreducible polynomial over Fq2 and

• fi = fX
i , and deg fi = di

• gj 6= gXj and deg gj = deg gXj = dj

•
∑`

j=1 kjdj + 2
∑m

j=`+1 rjdj = n.

Then

CG(s) ∼=
∏̀
j=1

GUkj(q
dj)×

m∏
j=`+1

GLrj(q
2dj).

Proof. Let

Vi =

[
P (t)

fi(t)ki

]
t=s

(V ),

and

Wj =

[
P (t)

(gj(t)gXj (t))rj

]
t=s

(V ).

Then V =
⊕

i Vi⊕
⊕

jWj is an orthogonal decomposition of nondegenerate subspaces

and s =
∏

i s|Vi ·
∏

j s|Wj
is a product of semisimple elements acting on these subspaces.

Note that since C := CG(s) commutes with s, it fixes each of Vi,Wj for all i, j. Then

letting CW := CSp(W )(s|W ) for W = Vi or Wj, we have C =
∏

iCVi ×
∏

j CWj
.
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Claim 1. CVi
∼= GUki(q

di).

Write W := Vi, d := di, k := ki, and f := fi. Then the characteristic polynomial

of s on W is f(t)k. Let λ ∈ Fq2d be an eigenvalue of the action of s on W . That is,

λ is a root of f in Fq. If d = 1, then the claim is clear, as W = ker(s − λ). So let

d ≥ 2. In this case, the claim follows from the argument in part (B1) of [73, Proof of

Theorem 4.1].

Claim 2. CWj
∼= GLrj(q

2dj).

Now let W := Wj, m := rj, d := dj, and g := gj. The characteristic polyno-

mial of s acting on W is (g(t)gX(t))m. Let λ ∈ Fq2d be a root of g(t), so λ is an

eigenvalue of s acting on W . Then λ, λq
2
, λq

4
, ..., λq

2(d−1)
are all of the roots of g(t)

and λ−q, λ−q
3
, ..., λ−q

2(d−1)+1
are the roots of gX(t). Let W̃ := W ⊗q2 Fq2d , choose a

basis e1, ..., e2md for W , and define σ to be a Frobenius endomorphism on W̃ given by

σ :
∑
xiei 7→

∑
xq

2

i ei, where xi ∈ Fq2d .

Now we can decompose W̃ as

W̃ ∼= W̃1 ⊕ ...⊕ W̃k ⊕ W̃ ′
1 ⊕ ...⊕ W̃ ′

k

where W̃j := ker(s − λq2(j−1)
) and W̃ ′

j := ker(s − λ−q2(j−1)+1
). Since s is semisimple,

we know that each W̃j and W̃ ′
j has dimension m. Also, σ permutes the W̃j and W̃ ′

j

cyclically: σ(W̃j) = W̃j+1;σ(W̃ ′
j) = W̃ ′

j+1. Further, CW fixes each W̃j and W̃ ′
j , and

h ∈ CW commutes with σ. Thus the action of h on W̃ is completely determined by

its action on W̃1 ⊕ W̃ ′
1. Hence, CW ↪→ GL2m(q2d).

Let (·, ·) denote the nondegenerate Hermitian form on V , which we may view as

a form on W and extend to a nondegenerate Hermitian form on W̃ . If w ∈ W̃j and

u ∈ W̃1 for 1 ≤ j ≤ k, then

(w, u) = (sw, su) = (λq
2(j−1)

w, λu) = λq
2(j−1) · λq(w, u)
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so that either (w, u) = 0 or λq
2(j−1)

= λ−q. Since g 6= gX, the latter gives a contradic-

tion, yielding

W̃⊥
1 ⊃

⊕
j

W̃j.

If w′ ∈ W̃ ′
j , then

(w′, u) = (sw′, su) = (λ−q
2(j−1)+1

w′, λu) = λ−q
2(j−1)+1 · λq(w′, u)

so that either (w′, u) = 0 or λ−q = λ−q
2(j−1)+1

. The latter case would mean that j = 1,

so we have

W̃⊥
1 ⊃

⊕
j≥2

W̃ ′
j .

Then we have

W̃⊥
1 ⊃

⊕
i

W̃i ⊕
⊕
j≥2

W̃ ′
j . (2.4.1)

Choose a basis w1, ..., wm for W̃1 and a basis w′1, ..., w
′
m for W̃ ′

1 and suppose that

with respect to these bases, h ∈ GL(W̃1 ⊕ W̃ ′
1) acts via the matrix A = (ak`) on W̃1

and via B = (bk`) on W̃ ′
1. From (2.4.1), we see that h ∈ GL(W̃1 ⊕ W̃ ′

1) is in CW if

and only if

(wj, w
′
i) = (hwj, hw

′
i) =

(∑
k

akjwk,
∑
`

b`iw
′
`

)
=
∑
k,`

akib
q
`j(wk, w

′
`)

for all i, j. Since (·, ·) is nondegenerate, we see that B is completely determined by

A, so CW ∼= GLm(qk), as claimed.

2.4.2 Centralizers of Semisimple Elements of Sp2n(q), q even

Recall that in this case, an irreducible polynomial f of degree d over Fq is self-check

if and only if for every root α of f in the extension field Fqd , the element α−1 is also

a root of f . Let V = F2n
q be the usual module for G = Sp2n(q) with nondegenerate
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symplectic form (·, ·). Fix a basis for V and let J denote the corresponding Gram

matrix for (·, ·).

Theorem 2.4.2. Let G = Sp2n(q) with q even, and let s be a semisimple element

of G. Decompose the characteristic polynomial P (t) ∈ Fq[t] of s acting on V in the

form

P (t) = (t− 1)m0 ·
∏
i

fi(t)
mi ·

∏
j

gj(t)
njgXj (t)nj

where each fi, gj is an irreducible polynomial over Fq and

• fi = fX
i , 1 is not a root of fi, and deg fi = di

• gj 6= gXj and deg gj = deg gXj = kj

• 2n = m0 +
∑

i dimi + 2
∑

j kjnj.

Then

CG(s) ∼= Spm0(q)⊕
⊕
i

GUmi(q
di/2)⊕

⊕
j

GLnj(q
kj).

Proof. If we let

U = ker(s− 1),

Vi =

[
P (t)

fi(t)mi

]
t=s

(V ),

and

Wj =

[
P (t)

(gj(t)gXj (t))nj

]
t=s

(V ),

then V = U ⊕
⊕

i Vi ⊕
⊕

jWj is an orthogonal decomposition of nondegenerate

subspaces. Note that since C := CG(s) commutes with s, it fixes each of U, Vi,Wj for

all i, j. As in the case of unitary groups above, let CW := CSp(W )(s|W ) for W = U, Vi,

or Wj, so that C = CU ×
∏

iCVi ×
∏

j CWj
.

Claim 3. CU ∼= Spm0(q).
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First note that m0 is even, since each di must be even (as 1 is not a root of fi, so

the roots come in pairs λ, λ−1) and 2n = m0 +
∑

i dimi + 2
∑

j kjnj. Now, U is the

set of fixed points in V under s and has dimension m0. That is, CU = CSp(U)(s|U) =

CSp(U)(1U). Therefore, we see that CU ∼= Sp(U) = Spm0(q).

Claim 4. CVi
∼= GUmi(q

di/2).

Write W := Vi, d := di, m := mi, and f := fi. Then the characteristic polynomial

of s on W is f(t)m. Let λ ∈ Fqd be an eigenvalue of the action of s on W . That is,

λ is a root of f in Fq. Then the roots of f are λ, λq, λq
2
, ..., λq

d−1
and since λ−1 is a

root of f and 1 is not, we have λ−1 = λq
r

for some 1 ≤ r ≤ d − 1. But this means

λq
d

= λ = λ−q
r

= λq
2r

and therefore r = d/2. So λ−1 = λq
d/2

.

Now define W̃ := W ⊗q Fqd and fix a basis e1, ..., emd of W . Define a Frobenius

endomorphism on W̃ by

σ :
md∑
i=1

xiei 7→
md∑
i=1

xqi ei

where xi ∈ Fqd . Because s is semisimple, we know that its minimal polynomial

has distinct roots, so (t − λqj−1
) is the largest elementary divisor which is divisible

by (t − λq
j−1

), and the eigenspace ker(s − λq
j−1

) has dimension m. Thus we can

decompose W̃ :

W̃ = W̃1 ⊕ ...⊕ W̃d

where W̃j = ker(s − λqj−1
) and dim W̃j = m for j = 1, ..., d. Note that σ permutes

the W̃js cyclically: σ(W̃j) = W̃j+1, where we define W̃d+1 := W̃1.

Further, σ commutes with g ∈ CW , since

gσ
(∑

xiei

)
= g

(∑
xqi ei

)
=
∑

xqi g(ei) = σ
(∑

xig(ei)
)

= σg
(∑

xiei

)
and g fixes each W̃j, since

(s−λqj−1

)(gw) = sg(w)−λqj−1

g(w) = gs(w)−gλqj−1

(w) = g(s−λqj−1

)(w) = g(0) = 0
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for w ∈ W̃j.

Thus the action of g on W̃ is determined by the action of g on W̃1, as

g(σjw) = σj(gw)

for w ∈ W̃1. Therefore, CW ↪→ GL(W̃1) = GLm(qd).

Now, if u ∈ W̃i and v ∈ W̃j with 1 ≤ i, j ≤ d, then (u, v) = (su, sv) =

λq
i−1+qj−1

(u, v), which means either (u, v) = 0 or λq
i−1+qj−1

= 1. Letting i = 1,

the latter case would imply that λ−1 = λq
j−1

, so j = d/2 + 1. Similarly, if i = 1 +d/2,

then either (u, v) = 0 or j = 1. This and the nondegeneracy of (·, ·) implies that

W̃⊥
1 =

⊕
j 6=d/2+1

W̃j and W̃1+d/2 ∩ W̃⊥
1 = 0. (2.4.2)

Choosing a basis {w1, ..., wm} for W̃1 gives a basis {vi = σd/2(wi)} for W̃1+d/2, and

we have

(σwi, σvj) = (wi, vj)
q,

so

(vi, wj) = (σd/2wi, σ
d/2vj) = (wi, vj)

qd/2 .

Because of this and (2.4.2), we see that (·, ·) determines a nondegenerate hermitian

space of dimension m over Fq2(d/2) = Fqd .

Then h ∈ CW if and only if (wi, vj) = (hwi, hvj) = (
∑

k akiwk,
∑

` a
qd/2

`j v`) =∑
aki

∑
aq

d/2

`j (wk, v`) where h acts by the matrix A = (aij) with respect to the basis

(wi) and as (aq
d/2

ij ) with respect to the basis (vi). That is, h ∈ CW if and only if

h ∈ GUm(qd/2), which proves the claim.

Claim 5. CWj
∼= GLnj(q

kj).

Now let W := Wj, m := nj, k := kj, and g := gj. The characteristic polyno-

mial of s acting on W is (g(t)gX(t))m. Let λ ∈ Fqk be a root of g(t), so λ is an

eigenvalue of s acting on W . Then λ, λq, λq
2
, ..., λq

k−1
are all of the roots of g(t) and
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λ−1, λ−q, ..., λ−q
k−1

are the roots of gX(t). As before, let W̃ := W ⊗q Fqk , choose a

basis e1, ..., e2mk for W , and define σ to be a Frobenius endomorphism on W̃ given

by σ :
∑
xiei 7→

∑
xqi ei, where xi ∈ Fqk .

Now we can decompose W̃ as

W̃ ∼= W̃1 ⊕ ...⊕ W̃k ⊕ W̃ ′
1 ⊕ ...⊕ W̃ ′

k

where W̃j := ker(s−λqj−1
) and W̃ ′

j := ker(s−λ−qj−1
). As before, since s is semisimple,

we know that each W̃j and W̃ ′
j has dimension m. Also, σ permutes the W̃j and W̃ ′

j

cyclically: σ(W̃j) = W̃j+1;σ(W̃ ′
j) = W̃ ′

j+1. Again, CW fixes each W̃j and W̃ ′
j , and

h ∈ CW commutes with σ. Thus in this case, the action of h on W̃ is completely

determined by its action on W̃1 ⊕ W̃ ′
1. Hence, CW ↪→ GL2m(qk).

Moreover, if w ∈ W̃1 and u ∈ W̃j for 1 ≤ j ≤ k, then

(w, u) = (sw, su) = (λw, λq
j−1

u) = λ · λqj−1

(w, u)

so that either (w, u) = 0 or λq
j−1

= λ−1. Since g 6= gX, the latter gives a contradiction,

so we have

W̃⊥
1 ⊃

⊕
j

W̃j.

If u′ ∈ W̃ ′
j , then

(w, u′) = (sw, su′) = (λw, λ−q
j−1

u′) = λ · λ−qj−1

(w, u′)

so that either (w, u′) = 0 or λ = λq
j−1

. The latter case would mean that j = 1, so we

have

W̃⊥
1 ⊃

⊕
j≥2

W̃ ′
j .

Then since (·, ·) is nondegenerate, we have

W̃⊥
1 ∩ W̃ ′

1 = 0 and W̃⊥
1 =

⊕
i

W̃i ⊕
⊕
j≥2

W̃ ′
j . (2.4.3)
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Now we choose a basis w1, ..., wm for W̃1 and a basis w′1, ..., w
′
m for W̃ ′

1. Suppose h

acts by the matrix A = (ak`) on W̃1 and by the matrix B = (bk`) on W̃ ′
1 with respect

to these bases. From (2.4.3), we see that h ∈ GL(W̃1 ⊕ W̃ ′
1) is in CW if and only if

(wj, w
′
i) = (hwj, hw

′
i) =

(∑
k

akjwk,
∑
`

b`iw
′
`

)
=
∑
k,`

akib`j(wk, w
′
`)

for all i, j. Since (·, ·) is nondegenerate, this means that B is completely determined

by A, so CW ∼= GLm(qk), which completes the proof of the claim, and therefore of

the theorem.
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Chapter 3

Bounds for Character Degrees of Unitary

Groups

Given a finite group G, let b(G) := max{χ(1)|χ ∈ Irr(G)} denote the largest irre-

ducible complex character degree of G. (Note that b(G) is also an upper bound for

the largest absolutely irreducible degree in characteristic ` 6= 0.) One problem of in-

terest in the representation theory of finite groups is to determine information about

b(G). We may ask whether we can find an explicit formula for this number, or if we

can bound it somehow. Of course, nothing can be said in general, so we restrict our

attention to the case of simple groups and groups closely related to simple groups. It

remains an open question to determine b(G) explicitly for many nonabelian simple

groups.

Certainly we know that b(G) ≤
√
|G| and that b(Cn) = 1 for a cyclic group

Cn, and we can use the Atlas [18] to obtain information about the character degrees

for sporadic groups. It is well-known that the irreducible complex representations

of Sn are labeled by partitions λ ` n of n, and that the degree of the character χλ

corresponding to the partition λ is given by the hook-length formula. However, it is

still a difficult question to determine from this formula which partition actually yields

the largest degree. The best result regarding this problem is due to Vershik-Kerov

[74] and Logan-Shepp [46], and says that there are universal constants 0 < A < B so

that

exp(−B
√
n)
√
n! < b(Sn) < exp(−A

√
n)
√
n!.

The question we are concerned with is how b(G) can be bounded for G a simple

group of Lie type. For exceptional groups of Lie type, F. Lübeck [49] has computed

all character degrees, so we are interested in the case of finite classical groups. G.
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Seitz [64] has shown that for groups of Lie type defined over a field of characteristic

p with q elements, b(G) ≤ |G|p′/|T0|, where T0 is a maximal torus of minimal order.

Moreover, he has shown that for q sufficiently large, this is actually an equality. For

this reason, we are particularly interested in the case that q is small. For example, if

G = SLn(2), then T0 = 1, so in this case, Seitz’ bound gives us no more information

than the trivial bound
√
|G|.

Now, viewed as polynomials in q, Seitz’ bound has the same degree as |G|p = St(1),

where St is the Steinberg character for G, which suggests that we consider the ratio

b(G)
|G|p = b(G)

St(1)
. Note that this ratio is always at least 1. Fixing q, we may ask whether

there is some universal constant C such that b(G)
St(1)

< C for any n. It turns out that

the answer to this question is no. In fact, the main goal of this chapter is to prove

the following theorem:

Theorem 3.0.3. Let G be a finite unitary group (i.e. G = GUn(q), PGUn(q), SUn(q),
or PSUn(q)). Then

max

{
1,

1

4

(
logq((n− 1)(1− q−2) + q4)

)2/5}
<

b(G)

qn(n−1)/2
< 2

(
logq(n(q2 − 1) + q2)

)1.27
.

Note that in the case of finite unitary groups, St(1) = q(n(n−1)/2. We also note

that similar bounds are found for the other groups of Lie type in [42]. This shows

that if we fix q, then as n grows infinitely large, so does the ratio b(G)
St(1)

.

In the remainder of the chapter, we prove Theorem 3.0.3, beginning by showing

that the degree of the Steinberg character of G is larger than that of any other

unipotent character.

3.1 The Largest Degree of a Unipotent Character in Finite
Unitary Groups

Let q be a power of p and let G be GUn(q), SUn(q), PUn(q), or PSUn(q). The unipo-

tent characters of G are in one-to-one correspondence with partitions α of n of the

form α = (α1, ..., αm) with 1 ≤ α1 ≤ α2 ≤ ... ≤ αm. Denote λi := αi + i − 1 for
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1 ≤ i ≤ m. Then the unipotent character corresponding to α, which we denote by

χα, has degree

χα(1) =
(q + 1)(q2 − 1)...(qn − (−1)n)

∏
i′<i(q

λi − (−1)λi+λi′qλi′ )

q

 m− 1
2

+

 m− 2
2

+...∏
i

∏λi
k=1(qk − (−1)k)

. (3.1.1)

(See, for example, [16]).

The Steinberg character is the unipotent character St corresponding to the par-

tition (1, ..., 1), which has degree St(1) = qn(n−1)/2 = |G|p. In this section, we show

that St(1) > χα(1) for any unipotent character χα 6= St of G. (We note that this is

also shown in [42] using a different approach.)

The following inequalities, which can be found in [73], will be useful in what

follows.

Lemma 3.1.1. Let 2 ≤ a1 < a2 < ... < a` be integers and ε1, ..., ε` ∈ {1,−1}. Then

1

2
<

(qa1 + ε1) · ... · (qa` + ε`)

qa1+a2+...+a`
< 2.

Theorem 3.1.2. Let G = GUn(q), SUn(q), PUn(q), or PSUn(q). Let χ ∈ Irr(G) be a

unipotent character of G which is not the Steinberg character, St. Then χ(1) < St(1).

Proof. We want to show that if α is a partition of n of the form above and α 6=

(1, ..., 1), then χα(1) < χ(1,...,1)(1). We proceed by induction on n. For n = 2, 3, the

statement can be verified by direct calculation. So suppose that the statement holds

for unitary groups of degree smaller than n. We will use Stn to denote the Steinberg

character for a unitary group of degree n. Note that if α = (n), then χα(1) = 1,

so assume that α = (α1, ..., αm) with m > 1 and αm > 1. Let β be the partition

of n − αm given by β = (α1, ..., αm−1). Then by induction, we can assume that

χβ(1) ≤ Stn−αm(1) = q(n−αm)(n−αm−1)/2. Thus, we have

χα(1) =
χα(1)

χβ(1)
χβ(1) ≤ χα(1)

χβ(1)
q(n−αm)(n−αm−1)/2.
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We will show that f(α) := χα(1)
χβ(1)

q(n−αm)(n−αm−1)/2

qn(n−1)/2 is smaller than 1.

We have

χα(1) =

∏n
k=1(qk − (−1)k)

∏m
i=2

∏i−1
k=1(qλi − (−1)λi+λkqλk)

q

 m− 1
2

+

 m− 2
2

+...∏m
i=1

∏λi
k=1(qk − (−1)k)

and

χβ(1) =

∏n−αm
k=1 (qk − (−1)k)

∏m−1
i=2

∏i−1
k=1(qλi − (−1)λi+λkqλk)

q

 m− 2
2

+...∏m−1
i=1

∏λi
k=1(qk − (−1)k)

so that

χα(1)

χβ(1)
=

∏n
k=n−αm+1(qk − (−1)k)

∏m−1
k=1 (qλm − (−1)λm+λkqλk)

q

 m− 1
2

∏λm
k=1(qk − (−1)k)

=

∏n
k=n−αm+1(qk − (−1)k)

∏m−1
k=1 q

λk
∏m−1

k=1 (qλm−λk − (−1)λm−λk)

q

 m− 1
2

∏λm
k=1(qk − (−1)k)

Now,

m−1∑
k=1

λk =
m−1∑
k=1

(αk + k − 1) =
m−1∑
k=1

αk +
m−1∑
k=1

k − (m− 1) = (n− αm) +
m−2∑
k=1

k

and (
m− 1

2

)
= (m− 1)(m− 2)/2 =

m−2∑
k=1

k

so that

χα(1)

χβ(1)
=
qn−αm

∏n
k=n−αm+1(qk − (−1)k)

∏m−1
k=1 (qλm−λk − (−1)λm−λk)∏λm

k=1(qk − (−1)k)
.
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Note that qn(n−1)/2 =
∏n−1

i=1 q
i and q(n−αm)(n−αm−1)/2 =

∏n−αm−1
i=1 qi, so

f(α) =
qn−αm

∏n
k=n−αm+1(qk − (−1)k)

∏m−1
k=1 (qλm−λk − (−1)λm−λk)∏λm

k=1(qk − (−1)k)
∏n−1
k=n−αm

qk

=

∏n
k=n−αm+1(qk − (−1)k)

∏m−1
k=1 (qλm−λk − (−1)λm−λk)∏λm

k=1(qk − (−1)k)
∏n−1
k=n−αm+1 q

k

=
(qλm−λm−1 − (−1)λm−λm−1)

∏n
k=n−αm+1(qk − (−1)k)

∏m−2
k=1 (qλm−λk − (−1)λm−λk)

(q + 1)
∏λm

k=2(qk − (−1)k)
∏n−1
k=n−αm+1 q

k

<
23
∏n
k=n−αm+1 q

k
∏m−1
k=1 q

λm−λk∏λm

k=1 q
k
∏n−1
k=n−αm+1 q

k

= 23qR

where R = n+
∑m−1

k=1 (λm − λk)−
∑λm

k=1 k.

Note that the second-to-last inequality follows by Lemma 3.1.1 since λm − λk =

αm − αk + m − k ≥ 2 when k < m − 1, λm − λk > λm − λk−1, and n − αm + 1 ≥ 2

since we assume m > 1. Moreover, if λm − λm−1 = 1, then we have that (qλm−λm−1 −

(−1)λm−λm−1)/(q + 1) = 1 = qλm−λm−1/q and otherwise, we have λm − λk ≥ 2 for

k ≤ m− 1, and clearly 1/(q + 1) < 1/q.

Now, we have
m−1∑
k=1

(λm − λk) =
m−1∑
k=1

(αm − αk +m− k)

=
m−1∑
k=1

αm −
m−1∑
k=1

αk +
m−1∑
`=1

`

= (m− 1)αm − (n− αm) +
m−1∑
`=1

`

so that

R = n+mαm − n+
m−1∑
`=1

`−
λm∑
k=1

k

= mαm −
αm+m−1∑
k=m

k = mαm − (m+ (m+ 1) + (m+ 2) + ...+ (m+ αm − 1))

= mαm −

(
mαm +

αm−1∑
k=1

k

)
= −

αm−1∑
k=1

k = −(αm − 1)αm/2
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Thus we have f(α) < 23

q(αm−1)αm/2
≤ 1 for αm ≥ 3.

Now suppose that αm = 2. This means that α = (1, 1, ..., 1, 2, ..., 2). Say j is the
first position for which αj = 2. That is, α` = 1 for ` < j and αk = 2 for k ≥ j. Thus,
λi = i for i < j and λi = i+1 for i ≥ j. Also, n = 2m−j+1 and n−αm = 2m−j−1.
In this case, we have

f(α) =

∏n
k=n−αm+1(qk − (−1)k)

∏j−1
k=1(qλm−k − (−1)λm−k)

∏m−1
k=j (qλm−λk − (−1)λm−λk)∏λm

k=1(qk − (−1)k)
∏n−1
k=n−αm+1 q

k

=

∏n
k=n−αm+1(qk − (−1)k)

∏λm−1
`=λm−j+1(q` − (−1)`)

∏m−1
k=j (qm−k − (−1)m−k)∏λm

k=1(qk − (−1)k)
∏n−1
k=n−αm+1 q

k

=

∏n
k=n−αm+1(qk − (−1)k)

∏m−j
`=1 (q` − (−1)`)

(qλm − (−1)λm)
∏λm−j
k=1 (qk − (−1)k)

∏n−1
k=n−αm+1 q

k

=

∏n
k=n−1(qk − (−1)k)

∏m−j
`=1 (q` − (−1)`)

(qλm − (−1)λm)
∏λm−j
k=1 (qk − (−1)k)

∏n−1
k=n−1 q

k

=
(qn−1 − (−1)n−1)(qn − (−1)n)

∏m−j
`=1 (q` − (−1)`)

qn−1(qλm − (−1)λm)
∏λm−j
k=1 (qk − (−1)k)

=
(qn−1 − (−1)n−1)(qn − (−1)n)

∏m−j
`=1 (q` − (−1)`)

qn−1(qm+1 − (−1)m+1)
∏m+1−j
k=1 (qk − (−1)k)

=
(qn−1 − (−1)n−1)(qn − (−1)n)

qn−1(qm+1 − (−1)m+1)(qm+1−j − (−1)m+1−j)

So we see that

f(α) =
(q2m−j − (−1)2m−j)(q2m−j+1 − (−1)2m−j+1)

q2m−j(qm+1 − (−1)m+1)(qm+1−j − (−1)m+1−j)
.

If 2m− j is even, then we have

f(α) =
(q2m−j − 1)(q2m−j+1 + 1)

q2m−j(qm+1 − (−1)m+1)(qm+1−j − (−1)m+1−j)

<
q2(2m−j)+1

q2m−j(qm+1 − (−1)m+1)(qm+1−j − (−1)m+1−j)

=
q2m−j+1

(qm+1 − (−1)m+1)(qm+1−j − (−1)m+1−j)

<
2q2m−j+1

q2m−j+2
by Lemma 3.1.1

= 2/q ≤ 1.
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If 2m− j is odd then j is odd, and we get

f(α) =
(q2m−j + 1)(q2m−j+1 − 1)

q2m−j(qm+1 − (−1)m+1)(qm+1−j − (−1)m+1−j)
.

Note that since j is odd, m+ 1− j is the opposite parity of m+ 1. Consider (qm+1−

(−1)m+1)(qm+1−j − (−1)m+1−j). We have that this is either (qm+1 − 1)(qm+1−j + 1)

or (qm+1 + 1)(qm+1−j − 1). In the first case, we have

(qm+1 − 1)(qm+1−j + 1) = q2m−j+2 − qm−j+1 + qm+1 − 1 ≥ q2m−j+2,

where the last inequality is because m− j + 1 < m+ 1. In the second case, we have

(qm+1 + 1)(qm+1−j − 1) >
2

3
q2m+2−j,

unless we are in the case q = 2 and j = m. This inequality is because

(qm+1 + 1)(qm+1−j − 1)

qm+1qm+1−j >
qm+1(qm+1−j − 1)

qm+1qm−j+1
=
qm+1−j − 1

qm+1−j ,

which is minimized when qm+1−j is minimized, so is at least 2/3 unless qm−j+1 = 2.

Now, this means that, unless q = 2 and m = j (a case in which explicit computa-

tion yields the result),

f(α) <
3(q2m−j + 1)(q2m−j+1 − 1)

2q2m−jq2m−j+2
<

3(q2m−j + 1)(q2m−j+1)

2q2m−jq2m−j+2
=

3(q2m−j + 1)

2q2m−j+1
≤ 1

since for x ≥ 4 and q ≥ 2, 3x + 3 ≤ 2qx. (Note that here we’ve used the fact that

2m− j = n− 1 ≥ 2 and q ≥ 2.)

Thus we have shown that in any case, f(α) < 1, and therefore that the Steinberg

representation has larger degree than any other unipotent representation for G a finite

group of unitary type.

3.2 Proof of Theorem 3.0.3

In this section, we prove our bounds for the ratio b(G)
St(1)

in the case that G is a finite

unitary group. For more clarity, we may sometimes write StG for the Steinberg
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character of the group G. Throughout this section, let q be a power of the prime

p. Note that if for G = GUn(q), we have b(G)/StG(1) < C for some bound C, then

the same is true for G = SUn(q), PSUn(q), or PGUn(q). Therefore, to find an upper

bound for b(G)/StG(1) for G any of these finite unitary groups, it suffices to find one

for G = GUn(q).

Lemma 3.2.1. Let G = GUn(q), and denote by b(G) the largest irreducible character

degree. Then
b(G)

qn(n−1)/2
= max

ki,di,m
P

where P is

P =

∏n
i=1(1− (−1)iq−i)∏`

j=1

∏kj
i=1(1− (−1)iq−idj)

∏m
j=`+1

∏rj
i=1(1− q−2idj)

and the maximum is taken over possible characteristic polynomials

∏̀
i=1

fkii

m∏
i=`+1

(gig
X
i )ri

for semisimple elements. Here fi = fX
i and gi 6= gXi , in the sense of Section 2.4.1,

and di is the degree of fi or gi, depending on the index i.

Proof. Since G = G∗ is self-dual, we know from Lusztig’s correspondence that

b(G)

qn(n−1)/2
= max

s,ψ

{
[G : CG(s)]p′ψ(1)

qn(n−1)/2

}
,

where s is a semisimple element of G and ψ is a unipotent character of CG(s). More-

over, from Section 2.4, we know that the centralizer of s is of the form

CG(s) ∼=
∏̀
j=1

GUkj(q
dj)×

m∏
j=`+1

GLrj(q
2dj),

where the characteristic polynomial of s acting on Fnq2 is

f(t) =
∏̀
i=1

fi(t)
ki

m∏
j=`+1

(gj(t)gj(t)
X)rj
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with fi = fX
i and gi 6= gXi , deg fi = di, deg gj = deg gXj = dj. Note that

∑`
j=1 kjdj +

2
∑m

j=`+1 rjdj = n.

Now, by Theorem 3.1.2 we know that this is maximized when ψ = StCG(s), the

product of the Steinberg characters for the factors GUkj(q
dj) and GLrj(q

2dj). So we

see that

b(G)

qn(n−1)/2
= max

s

{
|G|p′

∏`
j=1 q

djkj(kj−1)/2
∏m

j=`+1 q
2djrj(rj−1)/2

|CG(s)|p′qn(n−1)/2

}
.

We have

|G|p′ =
n−1∏
i=0

(qn−i − (−1)i+n)

=
n∏
j=1

(qj − (−1)j)

=
n∏
j=1

qj
n∏
j=1

(1− (−1)jq−j)

= qn(n−1)/2+n

n∏
j=1

(1− (−1)jq−j)

= qnqn(n−1)/2

n∏
j=1

(1− (−1)jq−j)
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and

|CG(s)|p′ =
∏̀
j=1

kj−1∏
i=0

(qdj(kj−i) − (−1)i+kj ) ·
m∏

j=`+1

rj−1∏
i=0

(q2dj(rj−i) − 1)

=
∏̀
j=1

kj∏
i=1

(qdji − (−1)i) ·
m∏

j=`+1

rj∏
i=1

(q2dji − 1)

=
∏̀
j=1

kj∏
i=1

qidj ·
m∏

j=`+1

rj∏
i=1

q2idj ·
∏̀
j=1

kj∏
i=1

(1− (−1)iq−dji) ·
m∏

j=`+1

rj∏
i=1

(1− q−2dji)

=
∏̀
j=1

qdjkj(kj−1)/2+djkj

m∏
j=`+1

q2djrj(rj−1)/2+2djrj
∏̀
j=1

kj∏
i=1

(1− (−1)iq−dji)

·
m∏

j=`+1

rj∏
i=1

(1− q−2dji)

= q
∑`

j=1 kjdj+2
∑m

j=`+1 rjdj
∏̀
j=1

qdjkj(kj−1)/2
m∏

j=`+1

q2djrj(rj−1)/2
∏̀
j=1

kj∏
i=1

(1− (−1)iq−dji)

·
m∏

j=`+1

rj∏
i=1

(1− q−2dji)

= qn
∏̀
j=1

qdjkj(kj−1)/2
m∏

j=`+1

q2djrj(rj−1)/2
∏̀
j=1

kj∏
i=1

(1− (−1)iq−dji) ·
m∏

j=`+1

rj∏
i=1

(1− q−2dji)

Thus we see that

|G|p′
∏`
j=1 q

djkj(kj−1)/2∏m
j=`+1 q

2djrj(rj−1)/2

|CG(s)|p′qn(n−1)/2
=

∏n
j=1(1− (−1)jq−j)∏`

j=1

∏kj
i=1(1− (−1)iq−dji) ·

∏m
j=`+1

∏rj
i=1(1− q−2dji)

,

which completes the proof.

The following bounds will be very useful in the remainder of this section and are

proved in [42, Lemma 4.1].

Lemma 3.2.2. Let q ≥ 2. Then

•
∏∞

i=1(1− q−i) > exp(−α/q), where α = 2 ln(32/9).

•
∏∞

i=2(1− q−i) > 9/16.
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•
∏∞

i=5(1 + q−i) < 16/15.

• 1 <
∏n

i=1(1− (−1)iq−i) ≤ 3/2.

Lemma 3.2.3. Let k be an odd positive integer, ` an integer with ` ≥ k, and q an

integer with q ≥ 2. Then
∏`

i=k(1− (−1)iq−i) ≥ 1.

It will be useful to estimate the number of monic irreducible polynomials of a

given degree over a certain finite field, which is the purpose of the next two lemmas.

Lemma 3.2.4. Let pd(q) denote the number of monic irreducible polynomials of degree

d ≥ 2 over Fq. Then
qd

2d
< pd(q) <

qd

d
.

Proof. Write pd := pd(q). Given a monic irreducible polynomial f ∈ Fq[t] of degree

d, we know that f has d distinct roots, each of which are elements of Fqd . But the

number of elements of Fqd which are not contained in any proper subfield is at most

qd− 1. Thus dpd < qd. Moreover, the number of elements of Fqd not contained in any

proper subfield is at least |Fqd | −
∑

p|d |Fqd/p| where the sum is taken over the distinct

primes which divide d. But this means

dpd ≥ qd −
∑
p|d

qd/p ≥ qd −
d−1∑
r=1

qr = qd − (qd − q)/(q − 1).

Now, we have that 2(qd− q)/(q− 1) ≤ qd− q < qd for q ≥ 3. Thus (qd− q)/(q− 1) <

qd/2. So qd − (qd − q)/(q − 1) > qd − qd/2 = qd/2 for q ≥ 3.

Now let q = 2.

dpd ≥ qd −
∑
p|d

qd/p ≥ qd −
d/2∑
r=1

qr = qd − (qd/2+1 − q)/(q − 1)

We have 2(qd/2+1 − q)/(q − 1) = 2(2d/2+1 − 2) = 4(2d/2 − 1) = 2d/2+2 − 4. But

2d− (2d/2+2− 4) is positive for all d, so (2d/2+1− 2)/(2− 1) < 2d/2, which means that

2d − (2d/2+1 − 2)/(2− 1) > 2d − 2d/2 = 2d/2, and this completes the proof.
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Lemma 3.2.5. Let nd denote the number of pairs {f, fX}, where f is a monic ir-

reducible polynomial in Fq2 [t] of degree d such that f 6= fX, where fX = J1(f) as in

Section 2.4.1. Then if d ≥ 2,
2q2d

5d
< nd <

q2d

2d
,

except in the case (q, d) = (2, 2).

Proof. First note that the upper bound is clear from Lemma 3.2.4, since 2nd ≤

pd(q
2). Moreover, a monic irreducible polynomial f ∈ Fq2 [t] satisfies f = fX if and

only if deg(f) is odd and any root α satisfies αq
d+1 = 1 (see, for example, [73, Part

(B1) of the proof of Theorem 4.1]). Thus we see that for d even, 2nd = pd.

First, consider the case that d is odd. If d = 3, then Fq6/Fq2 has no intermediate

fields, and therefore

2dnd = 6n3 ≥ q2d − q2 − (qd + 1) = q6 − q3 − q2 − 1,

which is larger than 4q6/5 for q ≥ 3. Moreover, if q = 2, we know that every

element of F×4 satisfies α3 = 1, so in particular αq
d+1 = α9 = 1. Thus in this case,

2dnd = 6n3 ≥ q2d − (qd + 1) − 1 = q6 − q3 − 2 = 54 > 4(26)/5 = 4q2d/5. Then for

d = 3, the statement holds.

Now let d > 3 be odd. Subextensions of Fq2d containing Fq2 are of the form

Fq2m where m|d. The number of α ∈ Fq2d which are roots of irreducible degree-d

polynomials over Fq2 (so are not found in a proper subextension) and satisfy αq
d+1 = 1

is therefore

2dnd ≥ q2d −
∑
m|d

q2m − (qd + 1) ≥ q2d −

qd + 1 +

bd/3c∑
m=1

q2m


= q2d −

(
qd + 1 +

q2(bd/3c+1) − q2

q2 − 1

)
since we are assuming d is odd.
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Thus it suffices to show that
(
qd + 1 + q2(bd/3c+1)−q2

q2−1

)
≤ q2d/5. We have that for

q ≥ 3,

5

(
qd + 1 +

q2(bd/3c+1) − q2

q2 − 1

)
= 5qd + 5 +

5

q2 − 1
(q2(bd/3c+1) − q2)

≤ 5qd + 5 + q2(bd/3c+1) − q2 since q ≥ 3

≤ 5qd + 5 + qd − q2 since bd/3c+ 1 ≤ d/2 for d ≥ 4

< 6qd since 5 < q2 for q ≥ 3

≤ q2d.

Now suppose q = 2. Then

5

(
qd + 1 +

q2(bd/3c+1) − q2

q2 − 1

)
≤ 5(2d) + 5 +

5

3
2d − 20/3 <

10

3
2d < 22d

where the last inequality is because 10/3 < 4 and d+ 2 ≤ 2d for d ≥ 2.

Thus the claim holds in the case that d is odd.

Now suppose d ≥ 2 is even. Then 2nd = pd, so

2dnd ≥ q2d −
∑
m|d

q2m ≥ q2d −
d/2∑
m=1

q2m = q2d − q2(d/2+1) − q2

q2 − 1
= q2d − q2

q2 − 1
(qd − 1).

Thus it suffices to show that q2

q2−1
(qd − 1) ≤ q2d/5. For q ≥ 3, we have

5

(
q2

q2 − 1
(qd − 1)

)
≤ q2(qd − 1) < qd+2 ≤ q2d

since d ≥ 2. If q = 2, then

5

(
q2

q2 − 1
(qd − 1)

)
=

20

3
(2d − 1).

But 22d − 20
3

(2d − 1) is positive when d ≥ 3, so this completes the proof.

Theorem 3.2.6. Let G be of unitary type (i.e. G = GUn(q), PGUn(q), SUn(q), or

PSUn(q)). Then
b(G)

qn(n−1)/2
< 2

(
logq(n(q2 − 1) + q2)

)1.27
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Proof. We may assume thatG = GUn(q), so from Lemma 3.2.1, we want to maximize

P =

∏n
i=1(1− (−1)iq−i)∏`

j=1

∏kj
i=1(1− (−1)iq−idj)

∏m
j=`+1

∏rj
i=1(1− q−2idj)

.

Now, the numerator is

(1 + q−1)(1− q−2)(1 + q−3)(1− q−4)
n∏
i=5

(1− (−1)iq−i).

It is clear that

n∏
i=5

(1− (−1)iq−i) ≤
n∏
i=5

(1 + q−i) ≤
∞∏
i=5

(1 + q−i) ≤ 16/15

by Lemma 3.2.2. The function (1 + x−1)(1− x−2)(1 + x−3)(1− x−4) is decreasing on

[3,∞), and is smaller at x = 2 than x = 3, so we have that (1 + q−1)(1 − q−2)(1 +

q−3)(1− q−4) ≤ (4/3)(8/9)(28/27)(80/81) < 1.214 and therefore the numerator is no

more than 1.3.

Now,
∏`

j=1

∏kj
i=1(1− (−1)iq−idj) ≥ 1 by Lemma 3.2.2, so we have

P ≤ 1.3∏m
j=`+1

∏rj
i=1(1− q−2idj)

.

Note that

m∏
j=`+1

rj∏
i=1

(1− q−2idj) >
m∏

j=`+1

∞∏
i=1

(1− q−2idj) >
m∏

j=`+1

exp(−αq−2dj)

by Lemma 3.2.2. Let bd be the number of distinct irreducible polynomials g of degree

d over Fq2 such that g 6= gX and g occurs in the decomposition of the characteristic

polynomial of the semisimple element. Then bd < q2d/d. Note that
∑n

d=1 bdd ≤ n

since the characteristic polynomial must have degree n. Letting L be the natural log

of the denominator, we have

−L/α <
m∑

j=`+1

q−2dj =
n∑
d=1

bd
2
q−2d.
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Note that the bd/2 comes from the fact that each index j represents the product

gj · gXj , so two distinct polynomials with g 6= gX occurring in the decomposition.

Replacing bd/2 with real numbers xd, we wish to maximize
∑∞

d=1 xdq
−2d subject to

the conditions
∑∞

d=1 xdd ≤ n/2 and 0 ≤ xd ≤ q2d/2d.

Now there is some d0 such that this is optimized when xd = q2d/2d for d ≤ d0 and

xd = 0 for d > d0 + 1. That is, d0 is the largest integer such that

d0∑
d=1

(q2d/2d)d ≤ n/2,

or equivalently,

n ≥
d0∑
d=1

q2d =
(q2(d0+1) − q2)

q2 − 1
,

and therefore

d0 + 1 ≤
logq(n(q2 − 1) + q2)

2
.

Now, we have

d0+1∑
d=1

xdq
−2d ≤

d0+1∑
d=1

1

2d
=

1

2

d0+1∑
d=1

1/d <
1

2
(1 + ln(d0 + 1)),

so that

P ≤ (1.3)e−L < (1.3)e
1
2
α(1+ln(d0+1)) = (1.3)eα/2(d0 + 1)α/2.

Finally, this yields

P < (4.7)

(
logq(n(q2 − 1) + q2)

2

)1.27

< 2
(
logq(n(q2 − 1) + q2)

)1.27
,

as desired.

Let G be a finite group with normal subgroup N . Let χ ∈ Irr(G) and define the

constant κGN(χ) to be the number of irreducible constituents of χ|N . The next lemma

describes the value of κGN(χ) in the case that G/N is cyclic.



61

Lemma 3.2.7. Let G be a finite group with normal subgroup N such that G/N is

cyclic. Then

κGN(χ) = #{λ ∈ Irr(G/N) : λχ = χ}.

Proof. Let ϕ be an irreducible constituent of χN and set T = IG(ϕ). Then by

Clifford theory, we know that χN = e
∑[G:T ]

i=1 ϕgi , so that

κGN(χ) = e[G : T ]. (3.2.1)

Moreover, since G/N is cyclic, we have that e = 1 (i.e. ϕ is extendable to T )

(see, for example [33], corollary 11.22). Now, Gallagher’s theorem implies that the

[T : N ] distinct irreducible constituents of ϕT are of the form θβ where θ|N = ϕ and

β ∈ Irr(T/N). Then the irreducible constituents of ϕG are of the form (βθ)G (see, for

example, [33], theorem 6.11). But since G/N is cyclic, we know that any irreducible

character of T/N is extendable to G/N . (To see this, note that the character values

at the generator of T/N are [T : N ]th roots of unity, obtained by taking powers of

the [G : N ]th roots of unity found as character values of the generator of G/N .) In

particular, write β = λ|T for some λ ∈ Irr(G/N), so (βθ)G = (λT θ)
G = λθG. But of

course, χ is a constituent of ϕG, so that we can write any other irreducible constituent

of ϕG as λ′χ for λ′ ∈ Irr(G/N).

Thus we have that the number of irreducible constituents of ϕG is

|Irr(G/N)|
#{λ ∈ Irr(G/N) : λχ = χ}

=
[G : N ]

#{λ ∈ Irr(G/N) : λχ = χ}
.

But also, the number of irreducible constituents of ϕG is [T : N ], since ϕG(1) =

ϕ(1)[G : N ] = [G : N ]χ(1)/[G : T ] = [T : N ]χ(1) and each irreducible constituent of

ϕG(1) has degree χ(1) (since it must be equal to χ when restricted to N , by Clifford’s

theorem). Thus we have shown that

#{λ ∈ Irr(G/N) : λχ = χ} =
[G : N ]

[T : N ]
= [G : T ],

which completes the proof by (3.2.1).
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Now, we wish to find a lower bound for b(G)/qn(n−1)/2 given that G is of unitary

type. To do this, we will exhibit a character degree which occurs simultaneously for

each of GUn(q), SUn(q), PGUn(q), and PSUn(q) by finding a semisimple element s ∈

GUn(q) which lies in SUn(q) such that the character χ ∈ Irr(GUn(q)) corresponding

to ((s), St(CGUn(q)(s)) is trivial at the center and remains irreducible when restricted

to SUn(q). In the following discussion, let G := GUn(q) and S := SUn(q). From

Lemma 3.2.7, we see that for χ ∈ Irr(G), the restriction χ|S is irreducible if any only

if there is no nonidentity λ ∈ Irr(G/S) such that λχ = χ.

Note that letting G = GLn(Fq) and F the Frobenius map F : (aij) 7→ T(aqij)
−1, we

can write G = GF . In this case, G∗ = G and G = G∗, and since Z(G) is connected,

we know CG(s) is also connected for any semisimple s ∈ G. Hence it makes sense to

discuss the semisimple character χs of G corresponding to s. We may think of χs as

the character corresponding via Lusztig’s correspondence to the product of principal

characters in CG(s).

Now, characters in Irr(G/S) are precisely the characters χt for t ∈ Z(G). But

given a semisimple s ∈ G and t ∈ Z(G), the set of characters E(G, (s)) · χt is equal

to the set of characters E(G, (st)). (See, for example [20, Proposition 13.30].) Then

since Irr(G) is the disjoint union,

Irr(G) =
⊔

(s)∈G

E(G, (s)),

over semisimple conjugacy classes (s) of G, to achieve our goal it suffices to choose a

semisimple s lying in SUn(q) such that s and st are not conjugate for any t ∈ Z(G).

Theorem 3.2.8. Let G = GUn(q), SUn(q), PGUn(q), or PSUn(q). Then

b(G)

qn(n−1)/2
>

1

4

(
logq((n− 1)(1− q−2) + q4)

)2/5
.
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Proof. Let nd be the number of pairs of monic irreducible polynomials f ∈ Fq2 [t]

of degree d such that f 6= fX. Let pd be the total number of monic irreducible

polynomials of degree d over Fq2 . By Lemma 3.2.5, we have that

2q2d

5d
< nd <

q2d

2d
.

Suppose that n− 2 ≤ 6n3. Then in particular, n− 2 < q6, so n− 1 ≤ q6. In this case,

the statement is evident, since

1

4

(
logq((n− 1)(1− q−2) + q4)

)2/5 ≤ 1

4

(
logq(q

6(1− q−2) + q4)
)2/5

=
1

4

(
logq(q

6 − q4 + q4)
)2/5

=
1

4
(6)2/5

< 1 ≤ b(G)

St(1)
=

b(G)

qn(n−1)/2
.

Thus we may assume that n − 2 > 6n3. Let d0 be the largest integer such that

n− 2 > m := 2
∑d0

d=3 dnd. Then in particular,

(q2(d0+2)−q2)/(q2−1) =

d0+1∑
d=1

q2d =

d0+1∑
d=3

q2d+q2+q4 > 2

d0+1∑
d=3

dnd+q
2+q4 ≥ n−2+q2+q4.

Since 2dnd < q2d is a strict inequality, we see that this implies

(q2(d0+2) − q2)/(q2 − 1) ≥ n− 1 + q2 + q4,

so

q2(d0+2) ≥ (n− 1 + q2 + q4)(q2 − 1) + q2 = (n− 1)(q2 − 1) + q6,

and q2(d0+1) > (n−1)(q2−1)+q6

q2
. Thus we have

d0 + 1 >
logq((n− 1)(1− q−2) + q4)

2
. (3.2.2)

Consider the polynomial h :=
∏d0

d=3

∏nd
i=1(gig

X
i ) ∈ Fq2 [t], where the gig

X
i for i =

1, ..., nd are all the pairs of non-self-check monic irreducible polynomials of degree
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d. Let α be the product of the roots of h. Note that αq+1 = 1, so t − α−1 is a

self-check monic irreducible polynomial. (Indeed, we may write α = λλ−q where

λ ∈ Fq2 is the product of the roots of the gi’s, so λ−q is the product of roots of

gXi ’s. Hence since λq
2−1 = 1, we see αq+1 = 1.) Choose a semisimple element

s of GUn(q) with characteristic polynomial (t − 1)n−m−1(t − α−1)h(t). Note that

det(s) = 1, so s ∈ SUn(q). Moreover, s is not conjugate to sγ for any nontrivial

γI ∈ Z(GUn(q)), so by Lemma 3.2.7 and the discussion following it, the character

χ corresponding to ((s), StCGUn(q)(s)) in Lusztig correspondence is irreducible when

restricted to SUn(q). (Indeed, spec(γs) = γspec(s), so if α 6= 1, then γ has multiplicity

n −m − 1 ≥ 2 in spec(sγ), but multiplicity at most 1 in spec(s). If α = 1, then γ

has multiplicity n−m in spec(sγ), but multiplicity 0 in spec(s). In either case, s and

sγ have different eigenvalue multiplicities, so cannot be conjugate.) Moreover, since

s ∈ SUn(q) = [GUn(q), GUn(q)], χ is trivial at Z(GUn(q)) (see [54, Lemma 4.4(ii)]), so

χ can be viewed as an irreducible character of G for G = GUn(q), SUn(q), PGUn(q),

or PSUn(q).

In the case that α = 1, the centralizer of s in GUn(q) is

CGUn(q)(s) ∼= GUn−m(q)×
d0∏
d=3

GL1(q2d)nd

and if α 6= 1, the centralizer is

CGUn(q)(s) ∼= GUn−m−1(q)×GU1(q)×
d0∏
d=3

GL1(q2d)nd .

Thus in the first case,

b(G)

qn(n−1)/2
≥ χ(1)

qn(n−1)/2
=

∏n
i=1(1− (−1)iq−i)∏n−m

i=1 (1− (−1)iq−i)
∏d0

d=3(1− q−2d)nd

=

∏n
i=n−m+1(1− (−1)iq−i)∏d0

d=3(1− q−2d)nd
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In the second case, we get

b(G)

qn(n−1)/2
≥ χ(1)

qn(n−1)/2
=

∏n
i=1(1− (−1)iq−i)

(1 + q−1)
∏n−m−1

i=1 (1− (−1)iq−i)
∏d0

d=3(1− q−2d)nd

=

∏n
i=n−m(1− (−1)iq−i)

(1 + q−1)
∏d0

d=3(1− q−2d)nd

Thus since the second case gives a smaller bound, it suffices to consider only the

second case.

Note that
∏n

i=n−m(1−(−1)iq−i) ≥ 15/16 by Lemma 3.2.3, since we know n−m ≥ 3

and if n − m is odd, then the product is at least 1, and if n − m is even, then the

product is at least (1− q−(n−m)), which is at least (1− 2−4) = 15/16.
Now taking the natural log and noting that 1/(1− x) > ex on 0 < x < 1, we get

ln

(
d0∏
d=3

1

(1− q−2d)nd

)
=

d0∑
d=3

nd ln

(
1

(1− q−2d)

)
>

d0∑
d=3

ndq
−2d >

d0∑
d=3

2q2d

5d
q−2d =

2

5

d0∑
d=3

1

d

=
2

5

(
d0∑
d=1

1

d
− 3/2

)
>

2

5

(
ln(d0 + 1)− 3

2

)
= ln

((
d0 + 1

e3/2

)2/5
)

This yields
d0∏
d=3

1

(1− q−2d)nd
>

(
d0 + 1

e3/2

)2/5

.

Then from (3.2.2), we have

b(G)

qn(n−1)/2
>

15

16(1 + q−1)

(
logq((n− 1)(1− q−2) + q4)

2e3/2

)2/5

>
5

13

(
logq((n− 1)(1− q−2) + q4)

)2/5

1 + q−1

≥ 1

4

(
logq((n− 1)(1− q−2) + q4)

)2/5
,

which completes the proof.

Remark. Note that if (r, δ) ∈ Q>0 × Z>0 is such that nd >
rq2d

d
for d ≥ δ, then an

argument analogous to the proof of Theorem 3.2.8 shows that for G finite of unitary
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type,
b(G)

qn(n−1)/2
>

15

16 · Cr

(
logq((n− 1)(1− q−2) + q2δ−2)

)r
1 + q−1

,

with Cr := 2r · er
∑δ−1
d=1 1/d.

Recall that we are particularly interested in the case that q is small. For this

reason, we note the following corollary.

Corollary 3.2.9.

1

4
(log2(3n/4 + 19/2))2/5 <

b(PSUn(2))

2n(n−1)/2
< 2 (log2(3n+ 4))1.27
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Chapter 4

The Blocks and Brauer Characters of Sp6(2
a)

In this chapter, we discuss some aspects of the blocks and Brauer characters of Sp6(2a)

that will be useful in Chapters 5 and 7. We begin in Section 4.1 by showing that

Bonnafé and Rouquier’s [9] results apply to the centralizers of nontrivial semisimple

elements of G = Sp6(2a), which yields a Morita equivalence between blocks of G and

blocks of these centralizers. In Section 4.2, we use this information to prove Theorem

1.1.1, which describes the low-dimensional representations of G. In Section 4.3, we use

D. White’s [76] results to describe the Brauer characters of G which lie in unipotent

blocks. Finally, in Section 4.4, we give the distribution of ordinary characters of G

into non-unipotent blocks and use the results of Section 4.1 and results of various

authors to describe the Brauer characters in these blocks.

4.1 On Bonnafé-Rouquier’s Morita Equivalence

Recall that in [9], Bonnafé and Rouquier show that when CG∗(t) is contained in an F ∗-

stable Levi subgroup, L∗, of G∗, then Deligne-Lusztig induction RG
L yields a Morita

equivalence between E`(L, (t)) and E`(G, (t)), where L = (L)F and (L, F ) is dual to

(L∗, F ∗). Also, recall that when G = Sp6(q), q even, with G = GF and (G∗, F ∗) in

duality with (G,F ), each semisimple conjugacy class (s) of G∗ = (G∗)F
∗

satisfies that

|s| is odd. Hence by [20, Lemma 13.14(iii)], the centralizer CG∗(s) is connected.

While applying Deligne-Lusztig theory to Sp2n(q) with q even, it will be convenient

to view G = Sp2n(q) as SO2n+1(q) ∼= Sp2n(q), so that G∗ = Sp2n(q).

Lemma 4.1.1. Let G∗ = Sp6(q), q even, with G = GF and (G∗, F ∗) in duality

with (G,F ). The nontrivial semisimple conjugacy classes (s) of G∗ each satisfy

CG∗(s) = L∗ for an F ∗-stable Levi subgroup L∗ of G∗ with CG∗(s) = (L∗)F
∗

=: L∗. In
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particular, Bonnafé-Rouquier’s theorem [9] implies that there is a Morita equivalence

E`(L, (1)) ↔ E`(G, (t)) given by Deligne-Lusztig induction (composed with tensoring

by a suitable linear character) when t 6= 1 is a semisimple `′-element, where L = LF

and (L, F ) is dual to (L∗, F ∗).

Proof. Write G∗ = (G∗)F
∗
, as above. Direct calculation shows that for each semisim-

ple element s 6= 1 of G∗, CG∗(s) ≤ CG∗(S) for some F ∗-stable torus S in G∗ containing

s. (Each such s is conjugate in G∗ to a diagonal matrix s′ = gsg−1, g ∈ G∗, whose cen-

tralizer in G∗ depends only on the number of distinct entries different than 1 and their

multiplicities. Hence we may choose S to be g−1S ′g, where S ′ is the torus consisting

of all diagonal matrices in G∗ with the same form as s′.) Therefore, CG∗(s) = CG∗(S),

which is an F ∗-stable Levi subgroup of G∗.

Let t be a semisimple `′-element of G∗. Writing L∗ = CG∗(t), we see that t ∈ Z(L∗)

and therefore t ∈ Z(L∗). But then by [20, Proposition 13.30], tensoring with a suitable

linear character yields a Morita equivalence of E`(L, (t))↔ E`(L, (1)). Hence there is

a Morita equivalence E`(G, (t)) ↔ E`(L, (t)) ↔ E`(L, (1)) by this fact and Bonnafé-

Rouquier’s theorem [9].

Proposition 4.1.2. In the notation of Lemma 4.1.1, let t be a semisimple `′-element

of G∗. Let θ ∈ E`(G, (t)) be an irreducible Brauer character. Then θ(1) = [G∗ :

CG∗(t)]2′ϕ(1) for some ϕ ∈ IBr`(L) lying in a unipotent block of L. Moreover, if

θ(1) = [G∗ : CG∗(t)]2′, then the equivalence given by Lemma 4.1.1 maps θ to the

principal Brauer character of CG∗(t) and θ lifts to a complex character.

Proof. From Lemma 4.1.1, Deligne-Lusztig induction RG
L provides a Morita equiva-

lence between E`(L, (1)) and E`(G, (t)). Hence RG
L gives a bijection between ordinary

characters in E`(L, (1)) and E`(G, (t)) and also a bijection between `-Brauer characters

in these two unions of blocks, which preserve the decomposition matrices for these

two unions of blocks.
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Let B be a unipotent block in L, and let ϕ1, ..., ϕm be the irreducible Brauer

characters in B. Let χ1, ..., χs be the irreducible ordinary characters in B. Then

we can write χ̂i =
∑m

j=1 dijϕj, where (dij) is the decomposition matrix of the block

B. Writing ψ∗ for the image of an ordinary or Brauer character, ψ, of L under

Deligne-Lusztig induction RG
L , we therefore also have χ̂∗i =

∑m
j=1 dijϕ

∗
j .

Moreover, we may write ϕk =
∑s

i=1 akiχ̂i for some integers aki. We claim that

ϕ∗k =
∑s

i=1 akiχ̂
∗
i as well. Indeed,

ϕk =
s∑
i=1

akiχ̂i =
s∑
i=1

aki

(
m∑
j=1

dijϕj

)
=

m∑
j=1

ϕj

(
s∑
i=1

akidij

)
,

so
∑s

i=1 akidij = δkj is the Kronecker delta by the linear independence of irreducible

Brauer characters. Now,

s∑
i=1

akiχ̂
∗
i =

s∑
i=1

aki

(
m∑
j=1

dijϕ
∗
j

)
=

m∑
j=1

ϕ∗j

(
s∑
i=1

akidij

)
=

m∑
j=1

ϕ∗jδkj = ϕ∗k,

proving the claim.

Note that χ∗i (1) = [G : L]2′χi(1) for 1 ≤ i ≤ s. Letting θ = ϕ∗k, we can write

θ =
∑s

i=1 akiχ̂
∗
i , and hence

θ(1) =
s∑
i=1

akiχ̂
∗
i (1) = [G : L]2′

s∑
i=1

akiχ̂i(1) = [G : L]2′ϕk(1) = [G∗ : CG∗(t)]2′ϕk(1),

which completes the proof of the first statement.

For the last statement, we further note that the principal character 1CG∗ (s) is the

only Brauer character of the group CG∗(s) with degree 1 lying in a unipotent block.

The following lemma records the semisimple classes of Sp6(q) whose index of the

centralizer have smallest 2′-part.

Lemma 4.1.3. Let q ≥ 4 be even and let s ∈ G∗ = Sp6(q) be a noncentral semisimple

element. Then either [G∗ : CG∗(s)]2′ ≥ (q−1)2(q2 +1)(q4 +q2 +1), or s is a member of
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Table 4.1: Semisimple Classes of G∗ = Sp6(q) with Small [G∗ : CG∗(s)]2′

Semisimple Class (s) [G∗ : CG∗(s)]2′ CG∗(s)

c4,0
q6−1
q+1

Sp4(q)×GU1(q)

c3,0
q6−1
q−1

Sp4(q)×GL1(q)

c6,0 (q2 + 1)(q − 1)2(q2 + q + 1) GU3(q)
c5,0 (q2 + 1)(q + 1)2(q2 − q + 1) GL3(q)
c10,0 (q − 1)(q2 + 1)(q4 + q2 + 1) GU2(q)× Sp2(q)
c8,0 (q + 1)(q2 + 1)(q4 + q2 + 1) GL2(q)× Sp2(q)

one of the classes in Table 4.1, which follows the notation of [47] and lists the classes

in increasing order of [G∗ : CG∗(s)]2′. The table also lists the isomorphism class of

CG∗(s).

Proof. This is evident from inspection of the list of semisimple classes and the sizes

of their centralizers in [47, Tabelles 10 and 14].

4.2 Low-Dimensional Representations of Sp6(q)

The purpose of this section is to prove Theorem 1.1.1. We recall the statement of the

theorem:

Theorem (1.1.1). Let G = Sp6(q), with q ≥ 4 even, and let ` 6= 2 be a prime dividing

|G|. Suppose χ ∈ IBr`(G). Then:

A) If χ lies in a unipotent `-block, then either

1. χ ∈
{

1G, α̂3, ρ̂
1
3 − δ1, β̂3 − δ2, ρ̂

2
3 − δ3

}
, where

δ1 :=

{
1G, `|(q2 + q + 1),
0, otherwise,

δ2 :=

{
1G, `|(q + 1),
0, otherwise,

and

δ3 :=

{
1G, `|(q3 + 1),
0, otherwise.

2. χ is as in the following table:
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Condition on ` χ Degree χ(1)
`|(q3 − 1) or

3 6= `|(q2 − q + 1) χ̂6 q2(q4 + q2 + 1)
`|(q2 + 1) χ̂6 − 1G q2(q4 + q2 + 1)− 1

χ̂28

`|(q + 1) = χ̂6 − χ̂3 − χ̂2 + 1G (q2 + q + 1)(q − 1)2(q2 + 1)

,

3. χ is as in the following table:

Condition on ` χ Degree χ(1)
`|(q3 − 1) or

3 6= `|(q2 − q + 1) χ̂7 q3(q4 + q2 + 1)
`|(q2 + 1) χ̂7 − χ̂4 q3(q4 + q2 + 1)− q(q + 1)(q3 + 1)/2

χ̂35 − χ̂5

`|(q + 1) = χ̂7 − χ̂6 + χ̂3 − χ̂1 (q − 1)(q2 + 1)(q4 + q2 + 1)− q(q − 1)(q3 − 1)/2

,

or

4. χ(1) ≥ D, where D is as in the table:

Condition on ` D

`|(q3 − 1)(q2 + 1) 1
2
q4(q − 1)2(q2 + q + 1)

`|(q + 1),
(q + 1)` 6= 3 1

2
q(q3 − 2)(q2 + 1)(q2 − q + 1)− 1

2
q(q − 1)(q3 − 1) + 1

`|(q + 1),
(q + 1)` = 3 1

2
q(q3 − 2)(q2 + 1)(q2 − q + 1) + 1

3 6= `|(q2 − q + 1) 1
2
q4(q − 1)2(q2 + q + 1)− 1

2
q(q − 1)2(q2 + q + 1) = 1

2
q(q3 − 1)2(q − 1)

B) If χ does not lie in a unipotent block, then either

1. χ ∈ {τ̂ i3, ζ̂
j
3}1≤i≤((q−1)`′−1)/2,1≤j≤((q+1)`′−1)/2,

2. χ(1) = (q2 + 1)(q − 1)2(q2 + q + 1) or (q2 + 1)(q + 1)2(q2 − q + 1) (here χ is

the restriction to `-regular elements of the semisimple character indexed by a

semisimple `′ - class in the family c6,0 or c5,0 respectively, in the notation of [47]

- see Table 4.1),

3. χ(1) = (q − 1)(q2 + 1)(q4 + q2 + 1) or (q + 1)(q2 + 1)(q4 + q2 + 1) (here χ is

the restriction to `-regular elements of the semisimple character indexed by a

semisimple `′ - class in the family c10,0 or c8,0 respectively, in the notation of

[47] - see Table 4.1), or

4. χ(1) ≥ q(q4 + q2 + 1)(q − 1)3/2.

We begin by introducing the Weil characters of Sp2n(q).
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4.2.1 Weil Characters of Sp2n(q)

It is convenient to view Sp2n(q) as a subgroup of both GL2n(q) and GU2n(q). In [27],

Guralnick and Tiep describe the linear-Weil characters and unitary-Weil characters,

which are irreducible characters of Sp2n(q) for q even and n ≥ 2 obtained by restriction

from GL2n(q) and GU2n(q).

Consider the action of GL2n(q) on the points of its natural module F2n
q . The

irreducible constituents of the permutation representation of this action yield the

complex irreducible characters known as Weil characters for GL2n(q), denoted τ in

for 0 ≤ i ≤ q − 2. If n ≥ 2, these restrict irreducibly to SL2n(q), giving the Weil

characters of SL2n(q). The τ in for i ≥ 1 have degree (q2n−1)/(q−1), and τ 0
n has degree

(q2n−q)/(q−1) (see, for example, [27]). More generally, the largest composition factor

of the restriction of the corresponding Weil characters to `-regular elements yield the

irreducible `-modular Weil characters of GL2n(q).

Now consider the action of GL2n(q) on the set of 1-spaces of its natural module

F2n
q , and let P be the stabilizer of a 1-space 〈v〉Fq . Then P has a Levi decomposition

P = UL, where U = Op(P ) and L ∼= GL2n−1(q)×GL1(q). (Here p is the characteristic

of Fq.) Consider a linear character α ∈ Irr(GL1(q)). Note that GL1(q) ∼= Cq−1, and

hence there are q − 1 such linear characters. The character α extends to a linear

character of L by taking 1GL2n−1(q) × α, and by the identification L ∼= P/U , we can

then inflate this character to a character of P . By an abuse of notation, we will also

denote this character of P by α. Inducing to G, we obtain the character IndGP (α),

which has degree q2n−1
q−1

. If α 6= 1P , then it turns out that this (complex) character is

actually irreducible, and the q− 2 characters obtained in this way are actually the τ in

for 1 ≤ i ≤ q − 2. If, however, α = 1P , then IndGP (α) − 1G is irreducible, and this is

the degree- q2n−q
q−1

character τ 0
n.

If we write τn for the permutation representation of GL2n(q) acting on its natural

module, then τn(g) = qdimFq ker(g−1), where the kernel is taken on the natural module.



73

Table 4.2: Weil Characters of Sp2n(q) [27, Table 1]

Complex Linear `-Modular Linear
Weil Characters Degree Weil Characters (` 6= 2)

ρ1
n

(qn+1)(qn−q)
2(q−1)

ρ̂1
n −

{
1, `| qn−1

q−1
,

0, otherwise

ρ2
n

(qn−1)(qn+q)
2(q−1)

ρ̂2
n −

{
1, `|(qn + 1),
0, otherwise

τ in,
q2n−1
q−1

τ̂ in
1 ≤ i ≤ (q − 2)/2 1 ≤ i ≤ ((q − 1)`′ − 1)/2
Complex Unitary `-Modular Unitary
Weil Characters Degree Weil Characters (` 6= 2)

αn
(qn−1)(qn−q)

2(q+1)
α̂n

βn
(qn+1)(qn+q)

2(q+1)
β̂n −

{
1, `|(q + 1),
0, otherwise

ζ in,
q2n−1
q+1

ζ̂ in,

1 ≤ i ≤ q/2 1 ≤ i ≤ ((q + 1)`′ − 1)/2

The Weil characters of SU2n(q) can be obtained in an analogous manner, defining

ζn to be the character ζn(g) = (−q)dimF
q2

ker(g−1)
, where now the kernel is taken over

the natural module F2n
q2 of SU2n(q). This character then decomposes into the sum of

characters ζ in for 0 ≤ i ≤ q, which we call the Weil characters of SU2n(q).

Guralnick and Tiep [27] show that the restrictions to Sp2n(q) satisfy τ in|Sp2n(q) =

τ q−1−i
n |Sp2n(q) and ζjn|Sp2n(q) = ζq+1−j

n |Sp2n(q), and these are irreducible for 1 ≤ i ≤ q−2
2

and 1 ≤ j ≤ q
2
. Also, τ 0

n|Sp2n(q) decomposes into the sum of two irreducible charac-

ters ρ1
n and ρ2

n, and similarly ζ0
n|Sp2n(q) = αn + βn for irreducible characters αn, βn.

Moreover, [27, Theorems 7.5,7.10], yield that the restrictions of these characters to

the `-regular elements of Sp2n(q) are either irreducible Brauer characters or the sum

of an irreducible Brauer character and the principal character 1Sp2n(q). These nontriv-

ial irreducible Brauer characters are called the `-modular linear-Weil characters and

`-modular unitary-Weil characters, and are listed in Table 4.2, which is a recreation

of [27, Table 1].

The formulae from [27] for calculating the values for the characters τ in and ζ in in
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SL2n(q) and SU2n(q), respectively, are

τ in(g) =
1

q − 1

q−2∑
j=0

δ̃ijqdimFq ker(g−δj) − 2δi,0 (4.2.1)

and

ζ in(g) =
1

q + 1

q∑
j=0

ξ̃ij(−q)dimF
q2

ker(g−ξj)
. (4.2.2)

Here δ and δ̃ are fixed primitive (q − 1)th roots of unity in Fq and C, respectively.

Similarly, ξ, ξ̃ are fixed primitive (q + 1)th roots of unity in Fq2 and C, respectively.

The kernels in the formulae are computed on the natural modules W := (Fq)2n for

SL2n(q) or W̃ := (Fq2)2n for SU2n(q).

4.2.2 The Proof of Theorem 1.1.1

We are now ready to prove Theorem 1.1.1. We do this in the form of two separate

proofs - one for part (A) and one for part (B).

Proof of Theorem 1.1.1 (A). Suppose that χ ∈ IBr`(G) lies in a unipotent block.

The degrees of irreducible Brauer characters lying in unipotent blocks can be extracted

from [76], and we have listed these in Section 4.3. Note that the character χ2 in the

notation of [76] is the Weil character ρ2
3 in the notation of [27]. Similarly, χ3 = β3,

χ4 = ρ1
3, and χ5 = α3.

We consider the cases ` divides q − 1, q + 1, q2 − q + 1, q2 + q + 1, and q2 + 1

separately. Let D` denote the bound in part A(4) of Theorem 1.1.1 for the prime `.

First, assume that `|(q − 1) and ` 6= 3. If χ(1) ≤ D` = χ̂11(1), then since q ≥ 4,

χ must be χ̂1 = 1G, χ̂2, χ̂3, χ̂4, χ̂5, χ̂6, or χ̂7. Hence we are in situation A(1), A(2), or

A(3).

Now let `|(q2 + q+ 1). Note that we are including the case ` = 3|(q− 1). In either

case, if χ(1) ≤ D` = χ̂11(1), then χ is 1G, χ̂2, χ̂3, χ̂4 − 1G, χ̂5, χ̂6, or χ̂7, as q ≥ 4.

Again, we therefore have situation A(1), A(2), or A(3).
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If `|(q2 + 1), then again D` = χ̂11(1). A character in a unipotent block has degree

smaller than this bound if and only if it is 1G, χ̂2, χ̂3, χ̂4, χ̂5, χ̂6−1G, or χ̂7− χ̂4, which

gives us situation A(1), A(2), or A(3) in this case.

Now let `|(q2 − q + 1) with ` 6= 3. Then D` = χ̂11(1) − χ̂5(1), and χ(1) < D` if

and only if χ is 1G, χ̂2 − 1G, χ̂3, χ̂4, χ̂5, χ̂6 or χ̂7, so we have situation A(1), A(2), or

A(3) for this choice of `.

Finally, suppose `|(q + 1). In this case, D` = ϕ7(1). Note that from [76], the

parameter α which occurs in the description for this Brauer character (see Section

4.3) is 1 if (q + 1)` = 3 and 2 otherwise. Also, note that in this case, D. White [76]

has left 3 unknowns in the decomposition matrix for the principal block. Namely, the

unknown β1 is either 0 or 1 and the unknowns β2, β3 satisfy

1 ≤ β2 ≤ (q + 2)/2, 1 ≤ β3 ≤ q/2.

Now, using these bounds for β2 and β3, we may find a lower bound for ϕ10(1) as

follows:

ϕ10(1) = χ30(1)− β3(χ11(1)− χ5(1))− (β2 − 1)χ23(1)− χ28(1)

= φ2
1φ3(q3φ4 − β3q

4/2 + β3q/2− φ4 − (β2 − 1)qφ1φ6/2)

≥ φ2
1φ3(q3φ4 − (q/2)q4/2 + q/2− φ4 − (q/2)qφ1φ6/2)

= φ2
1φ3(q3φ4 − q5/4 + q/2− φ4 − q2φ1φ6/4).

Here φj represents the jth cyclotomic polynomial. As this bound is larger than D`

for q ≥ 4, and the other Brauer characters are known, with the possible exception of

ϕ2 = χ̂2 − β1 · 1G, we see that the only irreducible Brauer characters in a unipotent

block with degree less thanD` are 1G, χ̂2−β1·1G, χ̂3−1G, χ̂4, χ̂5, χ̂6−χ̂3−χ̂2+1G = χ̂28,

and χ̂7 − χ̂6 + χ̂3 − 1G = χ̂35 − χ̂5.

Now, recall that when `|(q3 +1), [27, Table 1] gives us that ρ̂2
3−1G is an irreducible

Brauer character. Since (q + 1)|(q3 + 1) and ρ̂2
3 = χ̂2, this implies that in fact the

unknown β1 must be 1.
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Hence, we see that we are in one of the situations A(1), A(2), or A(3), and the

proof is complete for χ in a unipotent block.

Proof of Theorem 1.1.1(B). As χ does not lie in a unipotent block, we have χ ∈

E`(G, (s)) for some semisimple `′-element s 6= 1. Let B denote the bound q(q4 + q2 +

1)(q − 1)3/2 in part B(4) of Theorem 1.1.1. Since (q − 1)2(q2 + 1)(q4 + q2 + 1) > B

when q ≥ 4, it follows from Lemma 4.1.3 and Proposition 4.1.2 that either χ(1) > B

or χ ∈ E`(G, (s)) where s lies in one of the classes c3,0, c4,0, c5,0, c6,0, c8,0, or c10,0

of G∗ = Sp6(q). (Note that we are making the identification G ∼= SO7(q) so that

G∗ = Sp6(q) here.) From Table 4.1, we see that in each of these cases, CG∗(s) = L∗ is

a direct product of groups of the form Sp2(q), Sp4(q), GUi(q), or GLi(q) for 1 ≤ i ≤ 3,

and hence is self-dual. That is, L ∼= L∗ in the notation of Lemma 4.1.1. We will make

this identification and consider characters of CG∗(s) as characters of L.

If s ∈ c3,0 or c4,0, then CG∗(s) ∼= C × Sp4(q), where C is a cyclic group of order

q−1 or q+1, respectively. In this case, since d`(Sp4(q)) = (q−1)(q2−q)/2 (see [41]),

we have χ(1) ≥ (q6 − 1)(q − 1)(q2 − q)/(2(q + 1)) = B by Proposition 4.1.2, unless

χ corresponds to 1CG∗ (s) in IBr`(CG∗(s)). In the latter case, we are in situation B(1),

as χ is one of the characters τ̂ i3 or ζ̂j3 .

For s in one of the families of classes c5,0 or c6,0, we have CG∗(s) ∼= GL3(q) or

GU3(q), respectively. Now, nonprincipal characters found in a unipotent `-block of

GL3(q) have degree at least q2 + q − 1 (see [35]). Moreover, d`(GU3(q)) is at least

q2 − q (see, for example, [73]). Hence in either case, for χ ∈ E`(G, (s)), we know by

Proposition 4.1.2 that either χ(1) ≥ (q2 + 1)(q − 1)2(q2 + q + 1)(q2 − q) > B or χ

corresponds to 1CG∗ (s) in IBr`(CG∗(s)). In the second case, we have situation B(2).

Next, suppose that χ ∈ E`(G, s) with s ∈ c8,0 or c10,0. Here we have CG∗(s) ∼=

GL2(q) × SL2(q) or GU2(q) × SL2(q), respectively. The smallest possible nontrivial

character degree in a unipotent block is therefore at least q − 1. Since (q − 1)[G∗ :
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CG∗(s)]2′ > B in either case, we know by Proposition 4.1.2 that either χ(1) ≥ B or

situation B(3) holds, and the proof is complete.

4.3 Unipotent Blocks of Sp6(2
a)

In this section, we use [76] to describe the Brauer characters of G = Sp6(q), q even,

lying in unipotent blocks, in terms of the restrictions of ordinary characters to `-

regular elements.

First let `|(q−1). In this case, there are two unipotent blocks, the principal block

b0 and a cyclic block b1 (in the notation of [76]). Using [76], we see that the irreducible

Brauer characters of G = Sp6(q) can be written as in Table 4.3 if ` 6= 3 and Table

4.4 if ` = 3, where χ̂ is the restriction of the character χ ∈ Irr(G) to the `-regular

elements G◦ of G.

Now let `|(q + 1). In this case, from [76], there are again two unipotent blocks:

the principal block b0 and a cyclic block b1. Using the decomposition numbers found

in [76], we see that the irreducible Brauer characters are as shown in Table 4.5. We

use the notation φi for the ith cyclotomic polynomial. Also, α = 2 if (q+ 1)` 6= 3 and

is 1 if (q + 1)` = 3. In this case, D. White has left three unknowns βi for 1 ≤ i ≤ 3,

which satisfy 1 ≤ β2 ≤ q/2 + 1, and 1 ≤ β3 ≤ q/2 (see [76]). Moreover, from [76], the

unknown β1 is either 0 or 1. However, as discussed in the proof of Theorem 1.1.1 in

Section 4.2 above, the results of [27] yield that in fact β1 = 1.

In the case `|(q2−q+1), where ` 6= 3, there is only one unipotent block of nonzero

defect, namely the principal block b0. Inspection of the decomposition matrices in

[76] yields the list of irreducible `-Brauer characters of G in this block to be as in

Table 4.6.

Now, suppose `|(q2 + q+ 1), where ` 6= 3. Then there is again only one unipotent

block of positive defect, namely the principal block b0, and from inspection of the



78

decomposition matrices found in [76], we find that the irreducible `-Brauer characters

of G in this block can be written as in Table 4.7.

Finally, let `|(q2 +1). In this case, all blocks are cyclic and there are two unipotent

blocks of positive defect: the principal block, b0, and the block b1, and inspection of the

decomposition matrices found in [76] yields that the irreducible `-Brauer characters

of G in the unipotent blocks can be written as in Table 4.8.

Table 4.3: `−Brauer Characters in Unipotent Blocks of G = Sp6(q), `|(q − 1), ` 6= 3

(a) Principal Block b0

ϕ ∈ IBr(G) ∩ b0 Degree, ϕ(1)
χ̂1 1
χ̂2

1
2
q(q2 + q + 1)(q2 + 1)

χ̂3
1
2
q(q2 − q + 1)(q2 + 1)

χ̂4
1
2
q(q2 − q + 1)(q + 1)2

χ̂6 q2(q4 + q2 + 1)
χ̂7 q3(q4 + q2 + 1)
χ̂8

1
2
q4(q2 + q + 1)(q2 + 1)

χ̂9
1
2
q4(q2 − q + 1)(q + 1)2

χ̂10
1
2
q4(q2 − q + 1)(q2 + 1)

χ̂12 q9

(b) Block b1

ϕ ∈ IBr(G) ∩ b1 Degree, ϕ(1)
χ̂5

1
2
q(q − 1)2(q2 + q + 1)

χ̂11
1
2
q4(q − 1)2(q2 + q + 1)
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Table 4.4: `−Brauer Characters in Unipotent Blocks of G = Sp6(q), ` = 3|(q − 1)

(a) Principal Block b0

ϕ ∈ IBr(G) ∩ b0 Degree, ϕ(1)
χ̂1 1
χ̂2

1
2
q(q2 + q + 1)(q2 + 1)

χ̂3
1
2
q(q2 − q + 1)(q2 + 1)

χ̂4 − χ̂1
1
2
q(q2 − q + 1)(q + 1)2 − 1

χ̂6 q2(q4 + q2 + 1)
χ̂7 q3(q4 + q2 + 1)
χ̂8

1
2
q4(q2 + q + 1)(q2 + 1)

χ̂9 − χ̂3
1
2
q4(q2 − q + 1)(q + 1)2 − 1

2
q(q2 − q + 1)(q2 + 1)

χ̂10 − χ̂4 + χ̂1
1
2
q4(q2 − q + 1)(q2 + 1)− 1

2
q(q2 − q + 1)(q + 1)2 + 1

χ̂12 − χ̂9 + χ̂3 q9 − 1
2
q4(q2 − q + 1)(q + 1)2 + 1

2
q(q2 − q + 1)(q2 + 1)

(b) Block b1

ϕ ∈ IBr(G) ∩ b1 Degree, ϕ(1)
χ̂5

1
2
q(q − 1)2(q2 + q + 1)

χ̂11
1
2
q4(q − 1)2(q2 + q + 1)

Table 4.5: `−Brauer Characters in Unipotent Blocks of G = Sp6(q), `|(q + 1)

(a) Principal Block b0

ϕ ∈ IBr(G) ∩ b0 Degree, ϕ(1)
ϕ1 = χ̂1 1
ϕ2 = χ̂2 − β1χ̂1

1
2
q(q2 + q + 1)(q2 + 1)− β1

ϕ3 = χ̂3 − χ̂1
1
2
q(q2 − q + 1)(q2 + 1)− 1

ϕ4 = χ̂5
1
2
q(q2 + q + 1)(q − 1)2

ϕ5 = χ̂28 (q2 + q + 1)(q − 1)2(q2 + 1)
= χ̂6 − χ̂3 − χ̂2 + χ̂1

ϕ6 = χ̂35 − χ̂5 φ1φ3(φ4φ6 − 1
2
qφ1)

= χ̂7 − χ̂6 + χ̂3 − χ̂1

ϕ7 = χ̂22 − (α− 1)χ̂5 − χ̂3 + χ̂1 1
2
qφ1φ3φ4φ6 − α−1

2
qφ21φ3 −

1
2
qφ4φ6 + 1

= χ̂8 − χ̂7 − αχ̂5 − χ̂3 + χ̂1

ϕ8 = χ̂23 1
2
qφ31φ3φ6= χ̂10 − χ̂7 + χ̂6 − χ̂3

ϕ9 = χ̂11 − χ̂5
1
2
qφ31φ

2
3

ϕ10 = χ̂30 − β3(χ̂11 − χ̂5)− (β2 − 1)χ̂23 − χ̂28 φ21φ3(q3φ4 − β3
2
q4 + β3

2
q − φ4 − β2−1

2
qφ1φ6)

(b) Block b1

ϕ ∈ IBr(G) ∩ b1 Degree, ϕ(1)
χ̂4

1
2
q(q + 1)2(q2 − q + 1)

χ̂9 − χ̂4
1
2
q(q + 1)2(q2 − q + 1)(q3 − 1)



80

Table 4.6: `−Brauer Characters in Unipotent Blocks of G = Sp6(q), `|(q2 − q + 1),
` 6= 3

(a) Principal Block b0

ϕ ∈ IBr(G) ∩ b0 Degree, ϕ(1)
χ̂1 1

χ̂2 − χ̂1
1
2
q(q2 + q + 1)(q2 + 1)− 1

χ̂8 − χ̂2 + χ̂1
1
2
q4(q2 + q + 1)(q2 + 1)− 1

2
q(q2 + q + 1)(q2 + 1) + 1

χ̂12 − χ̂8 + χ̂2 − χ̂1 q9 − 1
2
q4(q2 + q + 1)(q2 + 1) + 1

2
q(q2 + q + 1)(q2 + 1)− 1

χ̂5
1
2
q(q − 1)2(q2 + q + 1)

χ̂11 − χ̂5
1
2
q4(q − 1)2(q2 + q + 1)− 1

2
q(q − 1)2(q2 + q + 1)

(b) Blocks of Defect 0

ϕ ∈ IBr(G) Degree, ϕ(1)
χ̂3

1
2
q(q2 − q + 1)(q2 + 1)

χ̂4
1
2
q(q2 − q + 1)(q + 1)2

χ̂6 q2(q4 + q2 + 1)
χ̂7 q3(q4 + q2 + 1)
χ̂9

1
2
q4(q2 − q + 1)(q + 1)2

χ̂10
1
2
q4(q2 − q + 1)(q2 + 1)
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Table 4.7: `−Brauer Characters in Unipotent Blocks of G = Sp6(q), `|(q2 + q + 1),
` 6= 3

(a) Principal Block b0

ϕ ∈ IBr(G) ∩ b0 Degree, ϕ(1)
χ̂1 1

χ̂4 − χ̂1
1
2
q(q + 1)2(q2 − q + 1)− 1

χ̂10 − χ̂4 + χ̂1
1
2
q4(q2 + 1)(q2 − q + 1)− 1

2
q(q + 1)2(q2 − q + 1) + 1

χ̂3
1
2
q(q2 + 1)(q2 − q + 1)

χ̂9 − χ̂3
1
2
q4(q + 1)2(q2 − q + 1)− 1

2
q(q2 + 1)(q2 − q + 1)

χ̂12 − χ̂9 + χ̂3 q9 − 1
2
q4(q + 1)2(q2 − q + 1) + 1

2
q(q2 + 1)(q2 − q + 1)

(b) Blocks of Defect 0

ϕ ∈ IBr(G) Degree, ϕ(1)
χ̂2

1
2
q(q2 + q + 1)(q2 + 1)

χ̂5
1
2
q(q − 1)2(q2 + q + 1)

χ̂6 q2(q4 + q2 + 1)
χ̂7 q3(q4 + q2 + 1)
χ̂8

1
2
q4(q2 + q + 1)(q2 + 1)

χ̂11
1
2
q4(q − 1)2(q2 + q + 1)
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Table 4.8: `−Brauer Characters in Unipotent Blocks of G = Sp6(q), `|(q2 + 1)

(a) Principal Block b0

ϕ ∈ IBr(G) ∩ b0 Degree, ϕ(1)
χ̂1 1
χ̂6 − χ̂1 q2(q4 + q2 + 1)− 1
χ̂9 − χ̂6 + χ̂1

1
2
q4(q + 1)2(q2 − q + 1)− q2(q4 + q2 + 1) + 1

χ̂11
1
2
q4(q − 1)2(q2 + q + 1)

(b) Block b1

ϕ ∈ IBr(G) ∩ b1 Degree, ϕ(1)
χ̂4

1
2
q(q + 1)2(q2 − q + 1)

χ̂7 − χ̂4 q3(q4 + q2 + 1)− 1
2
q(q + 1)2(q2 − q + 1)

χ̂12 − χ̂7 + χ̂4 q9 − q3(q4 + q2 + 1) + 1
2
q(q + 1)2(q2 − q + 1)

χ̂5
1
2
q(q − 1)2(q2 + q + 1)

(c) Blocks of Defect 0

ϕ ∈ IBr(G) Degree, ϕ(1)
χ̂2

1
2
q(q2 + q + 1)(q2 + 1)

χ̂3
1
2
q(q2 + 1)(q2 − q + 1)

χ̂8
1
2
q4(q2 + q + 1)(q2 + 1)

χ̂10
1
2
q4(q2 + 1)(q2 − q + 1)
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4.4 Non-Unipotent Blocks of Sp6(2
a)

4.4.1 Non-Unipotent Block Distributions for Irr(Sp6(2a))

We list here the block distribution, in cross-characteristic, for irreducible characters

of positive defect lying in non-unipotent blocks of G = Sp6(q) with q even. Any char-

acters not listed either have defect zero or lie in a unipotent block, whose distribution

can be found in [76]. In this section, the notation for characters of G is taken from

CHEVIE [26]. The indexing sets are as follows:

For ε ∈ {±1}, let I0
q−ε be the set {i ∈ Z : 1 ≤ i ≤ q − ε − 1}, and let Iq−ε be a

set of class representatives on I0
q−ε under the equivalence relation i ∼ j ⇐⇒ i ≡ ±j

mod (q − ε). Let I0
q2+1 := {i ∈ Z : 1 ≤ i ≤ q2} and I0

q2−1 := {i ∈ Z : 1 ≤

i ≤ q2 − 1, (q − 1) 6 |i, (q + 1) 6 |i}, and let Iq2−ε be a set of representatives for the

equivalence relation on I0
q2−ε given by i ∼ j ⇐⇒ i ≡ ±j or ±qj mod (q2 − ε).

Similarly, let I0
q3−ε := {i ∈ Z : 1 ≤ i ≤ q3 − ε; (q2 + εq + 1) 6 |i} and Iq3−ε a set of

representatives for the equivalence relation on I0
q3−ε given by i ∼ j ⇐⇒ i ≡ ±j,±qj,

or ±q2j mod (q3 − ε). Given one of these indexing sets, I∗, we write Ik∗ for the

elements (i1, ..., ik) of I∗ × I∗...× I∗ (k copies) with none of i1, i2, ..., ik the same and

Ik∗∗ for the set of equivalence classes of Ik∗ under (i1, ..., ik) ∼ (ρ(i1), ..., ρ(ik)) for all

ρ ∈ Sk.

We will denote by Bi(J) the `-blocks in E`(G, (s)) of positive defect, where s is

conjugate in G∗ to the semisimple element gi(J) in the notation of [47]. (Here J

denotes the proper indices. For example, for the family g6, J = (i) for i ∈ Iq−1,

and for the family g32, J = (i, j, k) where (i, j, k) ∈ I3∗
q+1.) In most cases, CG∗(s) has

only one unipotent block, and therefore E`(G, (s)) is a single block. However, when

multiple such blocks exist, which occurs for i = 6, 7, 8, 9 when `|(q2−1), we will denote

by Bi(J)(0) the the block corresponding in the Bonnafé-Rouquier correspondence (see

Lemma 4.1.1) to the principal block of CG∗(s) and by Bi(J)(1) the block corresponding

to the unique other block of positive defect. (Indeed, in such cases there are only two
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blocks of positive defect in E`(G, (gi(J))).)

The block distributions listed in this section follow from the theory of central

characters (the central characters of G can be obtained from CHEVIE [26]) together

with the definition of E`(G, (gi(J))) and Broué-Michel’s result [12] that this is a union

of `-blocks.

4.4.2 `|(q2 + 1)

Let k ∈ Iq−1, t ∈ Iq+1, s ∈ Iq2+1 with (q2 + 1)`|s and write m := (q2 + 1)`′ .

B6(k) = {χ13(k), χ14(k), χ17(k), χ18(k), χ62(k, r) : m|r}

B7(t) = {χ19(t), χ20(t), χ23(t), χ24(t), χ65(r, t) : m|r}

B24(s)(0) = {χ55(r) : r ≡ ±s or ± qs mod m}

B24(s)(1) = {χ56(r) : r ≡ ±s or ± qs mod m}

B30(k, s) = {χ62(k, r) : r ≡ ±s or ± qs mod m}

B33(s, t) = {χ65(r, t) : r ≡ ±s or ± qs mod m}

4.4.3 3 6= `|(q2 + q + 1)

In the following, let k ∈ Iq−1 and v ∈ Iq3−1 with (q3−1)`|v and write n := (q2+q+1)`′ .

B8(k) = {χ25(k), χ26(k), χ27(k), χ63(r) : r ≡ ±k(q2 + q + 1) mod (q − 1)n}



85

B31(v) = {χ63(r) : r ≡ ±v,±qv, or ± q2v mod (q − 1)n}

4.4.4 3 6= `|(q2 − q + 1)

In the following, let t ∈ Iq+1 and w ∈ Iq3+1 with (q3+1)`|w and write n := (q2−q+1)`′ .

B9(t) = {χ28(t), χ29(t), χ30(t), χ66(r) : r ≡ ±t(q2 − q + 1) mod (q + 1)n}

B34(w) = {χ66(r) : r ≡ ±w,±qw, or ± q2w mod (q + 1)n}

4.4.5 `|(q − 1)

In the following, let k1, k2, k3 ∈ Iq−1 with `d|ki and none of k1, k2, k3 the same. Let

t1, t2, t3 ∈ Iq+1 with none of t1, t2, t3 the same, u ∈ Iq2+1, and s ∈ Iq2−1 with `d|s,

where `d := (q − 1)`. Let v ∈ Iq3−1 and w ∈ Iq3+1 with (q3 − 1)`|v. Moreover, let

m := (q − 1)`′ . When ` = 3, let n := (q2 + q + 1)3′ .

B6(k1)(0) = {χ13(r), χ14(r), χ15(r), χ16(r), χ18(r), χ39(j, r), χ40(j, r),

χ41(j, r), χ42(j, r), χ57(r, j, i) : r ≡ ±k1 mod m,m|j,m|i}

B6(k1)(1) = {χ17(r) : r ≡ ±k1 mod m}

B7(t1) = {χ19(t1), χ20(t1), χ21(t1), χ22(t1), χ24(t1), χ43(r, t1), χ44(r, t1),

χ47(r, t1), χ48(r, t1), χ58(r, j, t1) : m|r,m|j}

(Note: E`(G, g7(t1)) also contains the defect-zero block {χ23(t1)}.)
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B8(k1) =



{χ25(r1), χ26(r1), χ27(r1), χ39(r1, r2), χ40(r1, r2),
if ` 6= 3

χ57(r1, r2, r3) : r1, r2, r3 ≡ ±k1 mod m}

{χ25(r1), χ26(r1), χ27(r1), χ39(r1, r2), χ40(r1, r2),
if ` = 3χ57(r1, r2, r3), χ63(r4) : r1, r2, r3 ≡ ±k1 mod m,

r4 ≡ ±k1(q2 + q + 1) mod mn}

B9(t1) = {χ28(t1), χ30(t1), χ61(r, t1) : r ≡ ±(q − 1)t1 mod m(q + 1)}

(Note: E`(G, g9(t1)) also contains the defect-zero block {χ29(t1)}.)

B11(k1) = {χ31(r1), χ32(r1), χ33(r1), χ34(r1), χ41(r1, r2), χ42(r1, r2), χ39(r1, j),

χ40(r1, j), χ57(r1, r2, j) : r1 ≡ ±k1 mod m, r2 ≡ ±k1 mod m,m|j}

B13(t1) = {χ35(t1), χ36(t1), χ37(t1), χ38(t1), χ49(t1, r), χ50(t1, r), χ45(j), χ46(j),

χ59(j, r) : j ≡ ±(q − 1)t1 mod m(q + 1),m|r}

B16(k1, k2) = {χ39(r1, r2), χ40(r1, r2), χ57(r1, j, r2) : ri ≡ ±ki mod m,

j ≡ ±k1 mod m}

B17(k1, k2) = {χ41(r1, r2), χ42(r1, r2), χ57(r1, r2, j) : ri ≡ ±ki mod m,m|j}

B18(k1, t1) = {χ43(r, t1), χ44(r, t1), χ58(r, j, t1) : r ≡ ±k1 mod m,

j ≡ ±k1 mod m}
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B19(s) = {χ45(r), χ46(r), χ59(r, j) : r ≡ ±s or ± qs mod m(q + 1),m|j}

B20(k1, t1) = {χ47(r, t1), χ48(r, t1), χ58(r, j, t1) : r ≡ ±k1 mod m,m|j}

B21(t1, k1) = {χ49(t1, r), χ50(t1, r), χ59(j, r) : j ≡ ±(q − 1)t1 mod m(q + 1),

r ≡ ±k1 mod m}

B22(t1, t2) = {χ51(t1, t2), χ52(t1, t2), χ61(r, t2) : r ≡ ±(q − 1)t1 mod m(q + 1)}

B23(t1, t2) = {χ53(t1, t2), χ54(t1, t2), χ60(r, t1, t2) : m|r}

B24(u) = {χ55(u), χ56(u), χ62(r, u) : r ≡ 0 mod m}

B25(k1, k2, k3) = {χ57(r1, r2, r3) : ri ≡ ±ki mod m}

B26(k1, k2, t1) = {χ58(r1, r2, t1) : ri ≡ ±ki mod m}

B27(s, k1) = {χ59(r, j) : r ≡ ±s or ± qs mod m(q + 1), j ≡ ±k1 mod m}

B28(k1, t1, t2) = {χ60(r, t1, t2) : r ≡ ±k1 mod m}
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B29(s, t1) = {χ61(r, t1) : r ≡ ±s or ± qs mod m(q + 1)}

B30(k1, u) = {χ62(r, u) : r ≡ ±k1 mod m}

B31(v) =

{
{χ63(r) : r ≡ ±v,±qv, or ± q2v mod m(q2 + q + 1)} if ` 6= 3
{χ63(r) : r ≡ ±v,±qv, or ± q2v mod mn} if ` = 3

B32(t1, t2, t3) = {χ64(t1, t2, t3)} (defect zero)

B33(u, t1) = {χ65(u, t1)} (defect zero)

B34(w) = {χ66(w)} (defect zero)

4.4.6 `|(q + 1)

In the following, let k1, k2, k3 ∈ Iq−1 with none of k1, k2, k3 the same. Let t1, t2, t3 ∈

Iq+1 with `d|ti and none of t1, t2, t3 the same, u ∈ Iq2+1, and s ∈ Iq2−1 with `d|s, where

`d := (q+1)`. Let v ∈ Iq3−1 and w ∈ Iq3+1 with (q3 +1)`|w. Let m := (q+1)`′ . When

` = 3, write n := (q2 − q + 1)3′ .

B6(k1) = {χ13(k1), χ15(k1), χ16(k1), χ17(k1), χ18(k1), χ47(k1, r), χ48(k1, r),

χ49(r, k1), χ50(r, k1), χ60(k1, r, j) : m|r,m|j}

(Note: E`(G, g6(k1)) also contains the defect-zero block {χ14(k1)}.)

B7(t1)(0) = {χ19(r), χ21(r), χ22(r), χ23(r), χ24(r), χ51(j, r), χ52(j, r),

χ53(j, r), χ54(j, r), χ64(r, j, i) : r ≡ ±t1 mod m,m|j,m|i}
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B7(t1)(1) = {χ20(r) : r ≡ ±t1 mod m}

B8(k1) = {χ25(k1), χ27(k1), χ59(r, k1) : r ≡ ±(q + 1)k1 mod m(q − 1)}

(Note: E`(G, g8(k1)) also contains the defect-zero block {χ26(k1)}.)

B9(t1) =



{χ28(r1), χ29(r1), χ30(r1), χ51(r1, r2), χ52(r1, r2),
if ` 6= 3,

χ64(r1, r2, r3) : r1, r2, r3 ≡ ±t1 mod m}

{χ28(r1), χ29(r1), χ30(r1), χ51(r1, r2), χ52(r1, r2),
if ` = 3,χ64(r1, r2, r3), χ66(r4) : r1, r2, r3 ≡ ±t1 mod m,

r4 ≡ ±t1(q2 − q + 1) mod mn}

B11(k1) = {χ31(k1), χ32(k1), χ33(k1), χ34(k1), χ43(k1, r), χ44(k1, r),

χ45(j), χ46(j), χ61(j, r) : j ≡ ±(q + 1)k1 mod m(q − 1),m|r}

B13(t1) = {χ35(r1), χ36(r1), χ37(r1), χ38(r1), χ53(r1, r2), χ54(r1, r2), χ51(r1, j),

χ52(r1, j), χ64(r1, r2, j) : r1 ≡ ±t1 mod m, r2 ≡ ±t1 mod m,m|j}

B16(k1, k2) = {χ39(k1, k2), χ40(k1, k2), χ59(r, k2) : r ≡ ±(q + 1)k1 mod m(q − 1)}

B17(k1, k2) = {χ41(k1, k2), χ42(k1, k2), χ58(k1, k2, r) : m|r}

B18(k1, t1) = {χ43(k1, r), χ44(k1, r), χ61(j, r) : j ≡ ±(q + 1)k1 mod m(q − 1),

r ≡ ±t1 mod m}
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B19(s) = {χ45(r), χ46(r), χ61(r, j) : r ≡ ±s or ± qs mod m(q − 1),m|j}

B20(k1, t1) = {χ47(k1, r), χ48(k1, r), χ60(k1, r, j) : r ≡ ±t1 mod m,m|j}

B21(t1, k1) = {χ49(r, k1), χ50(r, k1), χ60(k1, r, j) : r ≡ ±t1 mod m,

j ≡ ±t1 mod m}

B22(t1, t2) = {χ51(r1, r2), χ52(r1, r2), χ64(r1, j, r2) : ri ≡ ±ti mod m,

j ≡ ±t1 mod m}

B23(t1, t2) = {χ53(r1, r2), χ54(r1, r2), χ64(r1, r2, j) : ri ≡ ±ti mod m,m|j}

B24(u) = {χ55(u), χ56(u), χ65(u, r) : r ≡ 0 mod m}

B25(k1, k2, k3) = {χ57(k1, k2, k3)} (defect zero)

B26(k1, k2, t1) = {χ58(k1, k2, r) : r ≡ ±t1 mod m}

B27(s, k1) = {χ59(r, k1) : r ≡ ±s or ± qs mod m(q − 1)}

B28(k1, t1, t2) = {χ60(k1, r1, r2) : ri ≡ ±ti mod m}
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B29(s, t1) = {χ61(r, j) : r ≡ ±s or ± qs mod m(q − 1), j ≡ ±t1 mod m}

B30(k1, u) = {χ62(k1, u)} (defect zero)

B31(v) = {χ63(v)} (defect zero)

B32(t1, t2, t3) = {χ64(r1, r2, r3) : ri ≡ ±ti mod m}

B33(u, t1) = {χ65(u, r) : r ≡ ±t1 mod m}

B34(w) =

{
{χ66(r) : r ≡ ±w,±qw, or ± q2w mod m(q2 − q + 1)} if ` 6= 3,
{χ66(r) : r ≡ ±w,±qw, or ± q2w mod mn} if ` = 3

4.4.7 Non-Unipotent Brauer Characters for Sp6(2a)

Tables 4.9 and 4.10 give the irreducible Brauer characters of G = Sp6(q), q even,

listed by the families E`(G, (t)) for `′-semisimple elements t ∈ G∗. The indexing sets

for t = gk are as given in Section 4.4 for Bk. Characters listed in the same set

for the same choice of t make up the Brauer characters of a single block. Notation

for the characters of G is taken from CHEVIE [26], and the notation for the class

representatives t ∈ G∗ is from [47]. As usual, χ̂ denotes the restriction of χ ∈ Irr(G)

to `-regular elements G◦ of G.

The results in the tables follow from Lemma 4.1.1, Theorem 2.4.2, and the decom-

position numbers for the unipotent blocks for the low-rank groups. The decomposition

matrices for the unipotent blocks of SL2(q) (and therefore Sp2(q) = SL2(q), GL2(q) =

Cq−1× SL2(q), and GU2(q) = Cq+1× SL2(q)) and GL3(q) can be obtained from [35],

and those for Sp4(q) are found in [75]. Note that the number α found in the descrip-

tion of the Brauer characters of E`(G, (t)) for t in the family g6 or g7 when `|(q + 1)
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is as in [75], and by [60], we have α = 1 when (q + 1)` = 3 and α = 2 otherwise. The

decomposition matrices for the unipotent blocks of GU3(q) were found in [25], up to

an unknown in the case `|(q + 1), which is found in [61].
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Table 4.9: `−Brauer Characters in Non-Unipotent Blocks of G = Sp6(2a), ` 6= 2

t Condition
IBr`(G) ∩ E`(G, (t))CG∗ (t) on `

g6(k1)
`|(q − 1) {χ̂13(k1), χ̂14(k1), χ̂15(k1), χ̂16(k1), χ̂18(k1)}, {χ̂17(k1)}

`|(q + 1)
{χ̂13(k1), χ̂15(k1)− χ̂13(k1), χ̂16(k1)− χ̂13(k1), χ̂17(k1),

χ̂18(k1)− αχ̂17(k1)− χ̂16(k1)− χ̂15(k1) + χ̂13(k1)}, {χ̂14(k1)}

`|(q2 + 1)
Cq−1 × Sp4(q)

{χ̂13(k1), χ̂14(k1)− χ̂13(k1), χ̂18(k1)− χ̂14(k1) + χ̂13(k1), χ̂17(k1)},
{χ̂15(k1)}, {χ̂16(k1)}

` 6 |(q4 − 1) {χ̂13(k1)}, {χ̂14(k1)}, {χ̂15(k1)}, {χ̂16(k1)}, {χ̂17(k1)}, {χ̂18(k1)}

g7(t1)
`|(q − 1) {χ̂19(t1), χ̂20(t1), χ̂21(t1), χ̂22(t1), χ̂24(t1)}, {χ̂23(t1)}

`|(q + 1)
{χ̂19(t1), χ̂21(t1)− χ̂19(t1), χ̂22(t1)− χ̂19(t1), χ̂23(t1),

χ̂24(t1)− αχ̂23(t1)− χ̂22(t1)− χ̂21(t1) + χ̂19(t1)}, {χ̂20(t1)}

`|(q2 + 1)
Cq+1 × Sp4(q)

{χ̂19(t1), χ̂20(t1)− χ̂19(t1), χ̂24(t1)− χ̂20(t1) + χ̂19(t1), χ̂23(t1)},
{χ̂21(t1)}, {χ̂22(t1)}

` 6 |(q4 − 1) {χ̂19(t1)}, {χ̂20(t1)}, {χ̂21(t1)}, {χ̂22(t1)}, {χ̂23(t1)}, {χ̂24(t1)}

g8(k1)
3 6= `|(q − 1) {χ̂25(k1), χ̂26(k1), χ̂27(k1)}
`|(q + 1) {χ̂25(k1), χ̂27(k1)− χ̂25(k1)}, {χ̂26(k1)}

GL3(q)
`|(q2 + q + 1) {χ̂25(k1), χ̂26(k1)− χ̂25(k1), χ̂27(k1)− χ̂26(k1) + χ̂25(k1)}

` 6 |(q3 − 1)(q + 1) {χ̂25(k1)}, {χ̂26(k1)}, {χ̂27(k1)}

g9(t1)
`|(q − 1) {χ̂28(t1), χ̂30(t1)}, {χ̂29(t1)}
`|(q + 1) {χ̂28(t1), χ̂29(t1), χ̂30(t1)− 2χ̂29(t1)− χ̂28(t1)}

GU3(q)
3 6= `|(q2 − q + 1) {χ̂28(t1), χ̂29(t1), χ̂30(t1)− χ̂28(t1)}
` 6 |(q3 + 1)(q − 1) {χ̂28(t1)}, {χ̂29(t1)}, {χ̂30(t1)}

g11(k1)
`|(q − 1) {χ̂31(k1), χ̂32(k1), χ̂33(k1), χ̂34(k1)}

`|(q + 1)
{χ̂31(k1), χ̂32(k1)− χ̂31(k1), χ̂33(k1)− χ̂31(k1),

χ̂34(k1)− χ̂33(k1)− χ̂32(k1) + χ̂31(k1)}
GL2(q)× Sp2(q)

` 6 |(q2 − 1) {χ̂31(k1)}, {χ̂32(k1)}, {χ̂33(k1)}, {χ̂34(k1)}

g13(t1)
`|(q − 1) {χ̂35(t1), χ̂36(t1), χ̂37(t1), χ̂38(t1)}

`|(q + 1)
{χ̂35(t1), χ̂36(t1)− χ̂35(t1), χ̂37(t1)− χ̂35(t1),

χ̂38(t1)− χ̂37(t1)− χ̂36(t1) + χ̂35(t1)}
GU2(q)× Sp2(q)

` 6 |(q2 − 1) {χ̂35(t1)}, {χ̂36(t1)}, {χ̂37(t1)}, {χ̂38(t1)}

g16(k1, k2)
`|(q − 1) {χ̂39(k1, k2), χ̂40(k1, k2)}
`|(q + 1) {χ̂39(k1, k2), χ̂40(k1, k2)− χ̂39(k1, k2)}

Cq−1 ×GL2(q) ` 6 |(q2 − 1) {χ̂39(k1, k2)}, {χ̂40(k1, k2)}

g17(k1, k2)
`|(q − 1) {χ̂41(k1, k2), χ̂42(k1, k2)}
`|(q + 1) {χ̂41(k1, k2), χ̂42(k1, k2)− χ̂41(k1, k2)}(

Cq−1
)2 × Sp2(q) ` 6 |(q2 − 1) {χ̂41(k1, k2)}, {χ̂42(k1, k2)}

g18(k1, t1)
`|(q − 1) {χ̂43(k1, t1), χ̂44(k1, t1)}
`|(q + 1) {χ̂43(k1, t1), χ̂44(k1, t1)− χ̂43(k1, t1)}

Cq+1 ×GL2(q) ` 6 |(q2 − 1) {χ̂43(k1, t1)}, {χ̂44(k1, t1)}

g19(s)
`|(q − 1) {χ̂45(s), χ̂46(s)}
`|(q + 1) {χ̂45(s), χ̂46(s)− χ̂45(s)}

C
q2−1

× Sp2(q) ` 6 |(q2 − 1) {χ̂45(s)}, {χ̂46(s)}

g20(k1, t1)
`|(q − 1) {χ̂47(k1, t1), χ̂48(k1, t1)}
`|(q + 1) {χ̂47(k1, t1), χ̂48(k1, t1)− χ̂47(k1, t1)}

Cq−1 × Cq+1 × Sp2(q) ` 6 |(q2 − 1) {χ̂47(k1, t1)}, {χ̂48(k1, t1)}

g21(t1, k1)
`|(q − 1) {χ̂49(t1, k1), χ̂50(t1, k1)}
`|(q + 1) {χ̂49(t1, k1), χ̂50(t1, k1)− χ̂49(t1, k1)}

Cq−1 ×GU2(q) ` 6 |(q2 − 1) {χ̂49(t1, k1)}, {χ̂50(t1, k1)}

g22(t1, t2)
`|(q − 1) {χ̂51(t1, t2), χ̂52(t1, t2)}
`|(q + 1) {χ̂51(t1, t2), χ̂52(t1, t2)− χ̂51(t1, t2)}

Cq+1 ×GU2(q) ` 6 |(q2 − 1) {χ̂51(t1, t2)}, {χ̂52(t1, t2)}

g23(t1, t2)
`|(q − 1) {χ̂53(t1, t2), χ̂54(t1, t2)}
`|(q + 1) {χ̂53(t1, t2), χ̂54(t1, t2)− χ̂53(t1, t2)}(

Cq+1
)2 × Sp2(q) ` 6 |(q2 − 1) {χ̂53(t1, t2)}, {χ̂54(t1, t2)}

g24(u)
`|(q − 1) {χ̂55(u), χ̂56(u)}
`|(q + 1) {χ̂55(u), χ̂56(u)− χ̂55(u)}

C
q2+1

× Sp2(q) ` 6 |(q2 − 1) {χ̂55(u)}, {χ̂56(u)}
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Table 4.10: `−Brauer Characters in Non-Unipotent Blocks of G = Sp6(2a), ` 6= 2,
Continued

t Condition
IBr`(G) ∩ E`(G, (t))CG∗(t) on `

g25(k1, k2, k3)
all ` 6= 2 {χ̂57(k1, k2, k3)}

(Cq−1)3

g26(k1, k2, t1)
all ` 6= 2 {χ̂58(k1, k2, t1)}

(Cq−1)2 × Cq+1

g27(s, k1)
all ` 6= 2 {χ̂59(s, k1)}

Cq−1 × Cq2−1

g28(k1, t1, t2)
all ` 6= 2 {χ̂60(k1, t1, t2)}

Cq−1 × (Cq+1)2

g29(s, t1)
all ` 6= 2 {χ̂61(s, t1)}

Cq+1 × Cq2−1

g30(k1, u)
all ` 6= 2 {χ̂62(k1, u)}

Cq−1 × Cq2+1

g31(v)
all ` 6= 2 {χ̂63(v)}

Cq3−1

g32(t1, t2, t3)
all ` 6= 2 {χ̂64(t1, t2, t3)}

(Cq+1)3

g33(u, t1)
all ` 6= 2 {χ̂65(u, t1)}

Cq+1 × Cq2+1

g34(w)
all ` 6= 2 {χ̂66(w)}

Cq3+1
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Chapter 5

Cross-Characteristic Representations of Sp6(2
a)

and Their Restrictions to Proper Subgroups

Recall Section 1.1, where we provide an overview and motivation of the Aschbacher-

Scott program and introduce the main theorems of this chapter.

We begin in Section 5.1 by making some preliminary observations, listing some

useful facts, and reviewing some of our notation. In the remaining sections, we prove

Theorems 1.1.2 and 1.1.3, first making a basic reduction to rule out a few subgroups,

then treating each remaining maximal subgroup H separately to find all irreducible

G−modules V which restrict irreducibly to H. Finally, in Section 5.6 we treat the

case q = 2 and prove Theorems 1.1.4 and 1.1.5.

5.1 Some Preliminary Observations

We adapt the notation of [37] for the finite groups of Lie type. In particular, Ln(q)

and Un(q) will denote the groups PSLn(q) and PSUn(q), respectively. O+
2n(q) and

O−2n(q) will denote the general orthogonal groups corresponding to quadratic forms

of Witt defect 0 and 1, respectively. Moreover, if X acts on a group Y , we denote by

Y : X or Y oX the semidirect product of Y with X. More generally, we may write

Y.X if Y is a (not necessarily complemented) normal subgroup with quotient X. If

r is a positive integer, we will sometimes write Y : r (or Y.r) if X = Cr is the cyclic

group of order r, and an elementary abelian group of order r will be denoted by [r].

Given a finite group X, recall that we denote by d`(X) the smallest degree larger

than one of absolutely irreducible representations of X in characteristic `. Similarly,

m`(X) denotes the largest such degree. When ` = 0, we write m0(X) =: m(X).

Given χ a complex character of X, we denote by χ̂ the restriction of χ to `-regular
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elements of X, and we will say a Brauer character ϕ lifts if ϕ = χ̂ for some complex

character χ. Throughout the chapter, ` will usually denote the characteristic of the

representation.

As usual, Irr(X) will denote the set of irreducible ordinary characters of X and

IBr`(X) will denote the set of irreducible `-Brauer characters of X. Given a subgroup

Y and a character λ ∈ IBr`(Y ), we will use IBr`(X|λ) to denote the set of irreducible

Brauer characters of X which contain λ as a constituent when restricted to Y . The

restriction of the character ϕ to Y will be written ϕY or ϕ|Y , and the induction of

λ to X will be written λX or sometimes IndXY (λ) for more clarity. We will use the

notation kerϕ to denote the kernel of the representation affording ϕ ∈ IBr`(X).

We begin by making a few general observations, which we will sometimes use

without reference:

Lemma 5.1.1. Let G be a finite group, H < G a proper subgroup, F an algebraically

closed field of characteristic ` ≥ 0, and V an irreducible FG-module with dimension

greater than 1. Further, suppose that the restriction V |H is irreducible. Then√
|H/Z(H)| ≥ m(H) ≥ m`(H) ≥ dim(V ) ≥ d`(G).

Lemma 5.1.2. Let χ ∈ Irr(G) such that χ̂|H ∈ IBr`(H). Then χ|H ∈ Irr(H).

Proof. We may write χ|H =
∑

i aiϕi for ϕi ∈ Irr(H) and non-negative integers ai.

Then IBr`(H) 3 χ̂H =
∑

i aiϕ̂i, and by the linear independence of irreducible `-Brauer

characters and the irreducibility of χ̂H , we see that there is exactly one index i for

which ai is nonzero, and it must be that χ|H = ϕi.

Lemma 5.1.3. Let G be a finite group, H ≤ G a subgroup, and ` a prime. Let

Ĥ denote the set of irreducible complex characters of degree 1 of H. If χ ∈ Irr(G)

such that χ|H − λ 6∈ Irr(H) for any λ ∈ Ĥ ∪ {0}, then χ̂|H − µ 6∈ IBr`(H) for any

µ ∈ IBr`(H) of degree 1.
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Proof. Write χ|H =
∑s

i=1 θi where θi ∈ Irr(H) are not necessarily distinct. Each θ̂i

is a non-negative integer linear combination of irreducible Brauer characters of H. By

way of contradiction, suppose χ̂|H−µ ∈ IBr`(H) for some µ ∈ IBr`(H) with µ(1) = 1.

Then
∑s

i=1 θ̂i = χ̂|H = ϕ + µ for some ϕ ∈ IBr`(H). By the linear independence of

irreducible Brauer characters, we conclude that s ≤ 2 and, allowing for reordering of

the θi’s, either θ̂1 = ϕ and θ̂2 = µ or θ̂1 = ϕ+ µ. In the first case, χ|H = θ1 + θ2 with

θ2 ∈ Ĥ, and in the latter case, χ|H = θ1 ∈ Irr(H), yielding a contradiction in either

situation.

Lemmas 5.1.2 and 5.1.3 suggest that in some situations, we will be able to reduce to

the case of ordinary representations.

5.1.1 Other Notes on Sp6(q), q even

We note that |Sp6(q)| = q9(q2− 1)(q4− 1)(q6− 1), so if ` is a prime dividing |Sp6(q)|

and ` 6= 3, then ` must divide exactly one of q−1, q+1, q2 +1, q2 +q+1, or q2−q+1.

If ` = 3, then it divides q − 1 if and only if it divides q2 + q + 1, and it divides q + 1

if and only if it divides q2 − q + 1. In what follows, it will often be convenient to

distinguish between these cases.

D. White [76] has calculated the decomposition numbers for the unipotent blocks

of G = Sp6(q), q even, up to a few unknowns in the case `|(q + 1). Recall that in

Section 4.3 of Chapter 4, we have summarized these results by giving the description

(in terms of the restrictions of ordinary characters to `-regular elements) of the `-

Brauer characters for G that lie in unipotent blocks, along with their degrees.

5.2 A Basic Reduction

The goal of this section is to eliminate many possibilities for subgroups H yielding

triples as in Problem 1. We do this in the form of two theorems, treating Sp6(q) and

Sp4(q) separately.
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Theorem 5.2.1 (Reduction Theorem for Sp6(q)). Let (G,H, V ) be a triple as in

Problem 1, with ` 6= 2, G = Sp6(q), q ≥ 4 even, and H < G a maximal subgroup.

Then H is G-conjugate to either G2(q), O±6 (q), or a maximal parabolic subgroup of G.

Proof. First note that from [41], d`(G) = (q3− 1)(q3− q)/(2(q+ 1)). Second, by [10]

and [37], the maximal subgroups of G are isomorphic to one of the following:

1. SL2(q3).3

2. Sp2(q) o S3

3. Sp4(q)× Sp2(q)

4. Sp6(q0), where q = qm0 , some m > 1

5. G2(q)

6. O±6 (q)

7. a maximal parabolic subgroup of G.

If H is as in (1), then by Clifford theory, m(H) ≤ 3(q3 + 1) < d`(G), since

m(SL2(q3)) = q3 + 1. Hence by Lemma 5.1.1, H is not of this form.

If H is as in (2), then (Sp2(q))3 C H of index 6, so by Clifford theory, m(H) ≤

6(q+ 1)3, which is smaller than d`(G) unless q = 4. When q = 4, we have 6(q+ 1)3 <

q2(q3− 1), so we can restrict our attention to the Weil characters, by Theorem 1.1.1.

Now since the `-modular Weil characters are of the form χ̂ or χ̂−1G for some complex

Weil character χ ∈ Irr(G) (see Table 4.2), it suffices by Lemma 5.1.3 to note that

neither χ(1) nor χ(1) − 1 divides |H| for any complex Weil character χ, so these

degrees cannot appear as ordinary character degrees for H. Hence again, H cannot

be of this form.

If H is as in (3), then m(H) ≤ (q2 +1)(q+1)3, since by [49], m(Sp2(q)) ≤ q+1 and

m(Sp4(q)) ≤ (q + 1)2(q2 + 1). Hence m(H) ≤ D, where D is the bound in part (B)
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of Theorem 1.1.1, so by Theorem 1.1.1, χ must either lift to an ordinary character or

belong to a unipotent block of G.

Moreover, part (A) of Theorem 1.1.1 yields that the only irreducible Brauer char-

acters in a unipotent block that do not lift and have degree at most m(H) are

ρ̂2
3 − 1, β̂3 − 1 in the case `|(q + 1), ρ̂2

3 − 1 in the case `|(q2 − q + 1), or ρ̂1
3 − 1 in

the case `|(q2 + q + 1). From [49], we see that none of the degrees corresponding to

these characters occur in Irr(H) = Irr(Sp4(q)) ⊗ Irr(Sp2(q)), and moreover none of

the degrees of characters in Irr(G) can occur in Irr(H). Thus by Lemma 5.1.3, there

are no possible such modules V for this choice of H.

Finally, suppose H is as in (4). Then

m(H) =

{
(q2

0 + 1)(q4
0 + q2

0 + 1)(q0 + 1)3 if q0 > 4
q2

0(q0 + 1)(q2
0 + 1)(q4

0 + q2
0 + 1) if q0 ≤ 4

by [49], and d`(G) =
(q3m0 −1)(q3m0 −qm0 )

2(qm0 +1)
. Thus

d`(G) ≥ (q6
0 − 1)(q6

0 − q2
0)

2(q2
0 + 1)

=
1

2
q2

0(q4
0 + q2

0 + 1)(q2
0 − 1)2 > m(H)

as long as q0 ≥ 4, and we have only to consider the case H = Sp6(2).

Here as long as q ≥ 8, we also have d`(G) > m(H), so we are reduced to the

case H = Sp6(2), G = Sp6(4). Then m(H) = 512 and d`(G) = 378. Moreover, from

Theorem 1.1.1, the only irreducible `-Brauer characters of G which have degree less

than or equal to m(H) are Weil characters, which are all of the form χ̂ or χ̂ − 1

for χ ∈ Irr(G). Now, from GAP’s character table library (see [24], [11]), it is clear

that the only `-Brauer character of G whose degree also occurs as a degree of H is

α̂3, which has degree 378. However, there is an involutory class of H on which the

character of this degree takes the value −30, but there is no such involutory class in

G for α̂3. Thus α̂3 does not restrict irreducibly to H, and there are no possible triples

(G,H, V ) with this choice of G and H, by Lemma 5.1.3.

Therefore, we are left only with subgroups H as in (5)-(7), as claimed.
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Theorem 5.2.2 (Reduction Theorem for Sp4(q)). Let (G,H, V ) be a triple as in

Problem 1, with ` 6= 2, G = Sp4(q), q ≥ 4 even, and H < G a maximal subgroup.

Then H is a maximal parabolic subgroup of G.

Proof. Let V afford the character χ ∈ IBr`(G). From [41],

d`(G) =
(q2 − 1)(q2 − q)

2(q + 1)
=

1

2
q(q − 1)2,

and by [23] and [10], the maximal subgroups of G are

1. a maximal parabolic subgroup of G (geometrically, the stabilizer of a point or

a line)

2. Sp2(q) o S2 (geometrically, the stabilizer of a pair of polar hyperbolic lines)

3. Oε
4(q), ε = + or −

4. Sp2(q2) : 2

5. [q4] : C2
q−1

6. Sp4(q0), where q = qm0 , some m > 1

7. C2
q−1 : D8

8. C2
q+1 : D8

9. Cq2+1 : 4

10. Sz(q) (when q = 2m with m ≥ 3 odd)

If H is as in (2), H has an index-2 subgroup K isomorphic to Sp2(q)× Sp2(q), so

by Clifford theory, an irreducible character of H must restrict to either an irreducible

character of K or the sum of two irreducible characters of K of the same degree.

In particular, this must be true of χ|H , as we are assuming χ is irreducible on H.
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Suppose first that χ|K ∈ IBr`(K). Now by [49], m(K) = (q + 1)2 < d`(G) unless

q = 4, in which case α̂2 is the only character of G with degree sufficiently small.

Since Sp2(4) has ordinary character degrees 1, 3, 4, and 5, we see that α2(1) = 18 is

not an ordinary character degree of K, and therefore by Lemma 5.1.2, α̂2|K is not

irreducible. Thus we must have that χK is the sum of two irreducible characters

of the same degree, and hence χ(1) is even. Moreover, χ(1) ≤ 2(q + 1)2, which is

again smaller than d`(G) unless q = 4. When q = 4, using the GAP Character Table

Library [11], we see that this leaves the `-modular Weil characters α̂2, β̂2, ρ̂
1
2, and

ρ̂2
2, which have degree 18, 34, 34, and 50, respectively, as the only possibilities for χ.

(The characters ρ̂1
2 − 1, ρ̂2

2 − 1, or β̂2 − 1 have odd degree, a contradiction.) Now,

using GAP, we see that K has no irreducible character of degree 17 and exactly one

irreducible character of degree 25. Inspecting the character values, we see that on

classes consisting of elements of order 3, ρ2
2 does not take twice the value of this degree-

25 character of K. Thus β2, ρ
1
2, and ρ2

2 do not restrict irreducibly to H. Also, using

GAP, we can construct the character table of H to see that there is a unique character

of degree 18, but that this character takes the value 0 on one of the classes containing

order-4 elements, and α2 does not. Hence this character is not the restriction of α2,

and by Lemma 5.1.2 H cannot be as in (2).

If H is as in (3), then

H = Oε
4(q) ∼=

{
SL2(q2).2 if ε = −

(SL2(q)× SL2(q)).2 if ε = +
.

Thus m(H) ≤ 2(q2 + 1) or 2(q + 1)2, which are smaller than d`(G) for q ≥ 8. Now,

when q = 4, the only members of IBr`(G) with sufficiently small degree are the `-

modular Weil characters corresponding to α2, β2, ρ
1
2, and ρ2

2, and hence either lift to an

ordinary character or are of the form χ̂− 1G for an ordinary character χ of G. Direct

calculation using GAP and the GAP Character Table Library ([24], [11]) shows that

no ordinary character χ ∈ Irr(G) satisfies χ|H ∈ Irr(H) or χ|H − 1 ∈ Irr(H) when

H ∼= SL2(16).2. Thus by Lemma 5.1.3, H cannot be O−4 (4).
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If H = O+
4 (4) ∼= (SL2(4) × SL2(4)).2, then as discussed above, χ cannot restrict

irreducibly to K = SL2(4) × SL2(4) ∼= Sp2(4) × Sp2(4). Repeating the argument

from case (2) above, we see that the only possibility for χ is the Weil character α̂2.

Now, computation in GAP shows that α2 restricts to SL2(4)× SL2(4) as the sum of

two irreducible characters of degree 9. However, it is clear by inspecting the character

values on the third class of involutions in the character table for O+
4 (4) stored in GAP

[24] that the unique character of degree 18 cannot extend to the unique character,

α2, of degree 18 in G. Hence, by Lemma 5.1.2, H cannot be as in (3).

If H is as in (4), then the bounds for m(H) are the same as O−4 (q), and when

q = 4, the two groups are the same. Thus the same proof as in case (3) when ε = −

shows that H cannot be as in (4) either.

If H is as in (5), then it is solvable and by the Fong-Swan theorem, every `-Brauer

character lifts to an ordinary character. Hence by Lemma 5.1.2, it suffices to consider

the problem when χ ∈ Irr(G) is an ordinary character. H has a normal subgroup of

the form [q4] : Cq−1 with quotient group Cq−1, so by Clifford theory any irreducible

character of H has degree t · θ(1), where t divides q − 1 and θ ∈ Irr([q4] : Cq−1).

Moreover, since [q4] is a normal abelian subgroup of [q4] : Cq−1, Ito’s theorem (see

[33, Theorem (6.15)]) implies that θ(1) divides q− 1. It follows that any character of

H must have degree dividing (q − 1)2, which is smaller than d`(G), so H cannot be

as in (5).

If H is as in (6), then

m(H) =


(q2

0 + 1)(q0 + 1)2 if q0 > 4
q0(q0 + 1)(q2

0 + 1) if q0 = 4
q4

0 if q0 = 2

by [49], and d`(G) =
(q2m0 −1)(q2m0 −qm0 )

2(qm0 +1)
. Thus

d`(G) ≥ (q4
0 − 1)(q4

0 − q2
0)

2(q2
0 + 1)

=
1

2
q2

0(q2
0 − 1)2 > m(H),

and H cannot be as in (6).
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If H is as in (7) or (8), then |H| = 8(q ± 1)2, and therefore by Lemma 5.1.1,

m`(H) ≤ 2
√

2(q ± 1), which is smaller than d`(G) for q ≥ 4. If H is as in (9), then

|H| = 4(q2 + 1), so m`(H) ≤ 2
√
q2 + 1, which is also smaller than d`(G) for q ≥ 4.

Hence, H cannot be as in (7)-(9).

Finally, if H is as in (10), then from [49], m`(H) = (q − 1)(q +
√

2q + 1), which

is smaller than d`(G) as long as q is at least 8. Since this subgroup only exists for

q = 2m, m ≥ 3 odd, this shows that H cannot be as in (10) either, which leaves (1)

as the only possibility for H, as stated.

5.3 Restrictions of Irreducible Characters of Sp6(q) to G2(q)

Let q be a power of 2. The purpose of this section is to prove part (2) of Theorem

1.1.2. Viewing H = G2(q) as a subgroup of Sp6(q), we solve Problem 1 for the

case G = Sp6(q), H = G2(q), and V is a cross-characteristic G-module. That is,

we completely classify all irreducible `-Brauer characters of Sp6(q), which restrict

irreducibly to G2(q) when ` 6= 2. As remarked earlier, this provides the “converse” of

G. Seitz’ theorem [64] for case (iv) when p = 2.

For the classes and complex characters of Sp6(q), we use as reference Frank

Lübeck’s thesis (see [47]), in which he finds the conjugacy classes and irreducible

complex characters of Sp6(q). For G2(q), we refer to [22], in which Enomoto and

Yamada find the conjugacy classes and irreducible complex characters of G2(q). For

the remainder of this section, we adapt the notation of [22] that ε ∈ {±1} is such

that q ≡ ε mod 3.

For the `-Brauer characters lying in unipotent blocks of Sp6(q), we refer to work

done by D. White in [76], and for the Brauer characters of G2(q) we refer to work

by G. Hiss and J. Shamash in [29], [32], [66], [67], and [68]. Since many of these

references utilize different notations for the same characters, we include a conversion
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Table 5.1: Notation of Characters of Sp6(q)

Degree Guralnick-Tiep [27] Lübeck [47] D. White [76]
(q3+1)(q3−q)

2(q−1)
ρ1

3 χ1,4 χ4

(q3−1)(q3+q)
2(q−1)

ρ2
3 χ1,2 χ2

q6−1
q−1

τ i3 Type χ13

(q3−1)(q3−q)
2(q+1)

α3 χ1,5 χ5

(q3+1)(q3+q)
2(q+1)

β3 χ1,3 χ3

q6−1
q+1

ζ i3 Type χ19

Table 5.2: Notation of Characters of G2(q)

Degree Guralnick-Tiep [27] Enomoto-Yamada [22]
Hiss-Shamash

[29],[32],[66],[67],[68]
(q3+1)(q3−q)

2(q−1)
(ρ1

3)|G2(q) θ2 X15

(q3−1)(q3−q)
2(q+1)

(α3)|G2(q) θ′2 X17

q6−1
q−1

(τ i3)|G2(q) χ3(i) X ′1b
q6−1
q+1

(ζ i3)|G2(q) χ′3(i) X ′2a
q(q2+q+1)(q+1)2

6
θ1 X16

q(q2−q+1)(q−1)2

6
θ′1 X18

q(q4+q2+1)
3

θ4 X14

between notations in Tables 5.1 and 5.2.

Our first step is to find the fusion of conjugacy classes from G2(q) into Sp6(q).

5.3.1 Fusion of Conjugacy Classes in G2(q) into Sp6(q)

In this section, we compute the fusion of conjugacy classes from H = G2(q) into

G = Sp6(q). Table 5.3 summarizes the results.

We begin with the unipotent classes. In the notation of [22] and [47], the unipotent

classes of H and G, respectively, are:



105

Class in G2(q) A0 A1 A2 A31 A32 A4 A51 A52

Order 1 2 2 4 4 4 8 8

Class in
c1,0 c1,1 c1,2 c1,3 c1,4 c1,5 c1,6 c1,7 c1,8 c1,9 c1,10 c1,11Sp6(q)

Order 1 2 2 2 2 4 4 4 4 4 8 8

Armed with the calculation of commutators of unipotent elements of H and G

given in [22] and [47], respectively, explicit calculations shows that for any element

u ∈ H of order 8, u4 lies in the class A1. Similarly, any u ∈ G of order 8 satisfies that

u4 lies in the class c1,2. Thus the class A1 of H must lie in the class c1,2 of G.

Now, [40, Proposition 7.6] implies that the characters τ i3 for 1 ≤ i ≤ (q − 2)/2

restrict irreducibly from GL6(q) to the character χ3(i) in G2(q) (in the notation

of [22]). Since the only eigenvalues of unipotent elements are 1, we can use the

values given in [22] of χ3(i) on the different classes and Equation (4.2.1) to find the

dimensions of the eigenspaces for each unipotent class in G2(q). Then using the

explicit descriptions of the unipotent class representatives in [47, Sections 1 and 4],

we find the dimensions of the eigenspaces for each unipotent class in Sp6(q) so as to

find the values of τ i3 on the classes. With this information, we see that c1,4 is the only

conjugacy class of G of involutions on which τ i3 has the same value, q2 + q + 1, as on

the class A2 in H. This tells us that the class A2 of H must lie in the class c1,4 of G.

Moreover, χ3(i) = τ i3|H has the value q+ 1 on all classes of order-4 elements in H.

Among the classes of order-4 elements of G, τ i3 only has this value on the classes c1,5

and c1,6. Hence A31, A32, and A4 must sit inside (c1,5 ∪ c1,6). However, the order of

the centralizer in H = G2(q) of an element of A31 is 6q4 and of A4 is 3q4, so if ε = 1

(that is, q ≡ 1 mod 3), then these do not divide 2q6(q + 1), which is the order of

the centralizer in G = Sp6(q) of an element in the class c1,6. On the other hand, if

ε = −1, then they do not divide 2q6(q − 1), which is the order of the centralizer in

Sp6(q) of an element in the class c1,5. Noting that |CH(x)| must divide |CG(x)| for
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x ∈ H, we deduce that

A31, A4 ⊂ H ∩
{
c1,5 if ε = 1,
c1,6 if ε = −1

.

We claim that the class A32 does not fuse with the classes A31 and A4 in Sp6(q).

Indeed, suppose otherwise, so that A31, A32, A4 are all in

{
c1,5 if ε = 1,
c1,6 if ε = −1

. Consider

the character χ = χ1,2 ∈ Irr(G) in the notation of [47]. Note that this character has

the same absolute value on all elements of order 8, namely q
2
. From [22, Tables I-1,

II-1], we know the fusion of the Borel subgroup B = UT into the parabolic subgroup

P of H and the fusion of P into H. For the convenience of the reader, we have

included these fusions and the class sizes for the unipotent classes of B in Table 5.4,

following the notation of [22]. Using this information and the fusion of the elements

of order 2 and 4 from H into G which we know (or are assuming), together with the

fact that U C B is the union of the unipotent conjugacy classes of B, we calculate

that [χU , χU ] is not an integer, a contradiction. Therefore, A32 must not fuse with

A31 and A4, so

A32 ⊂ H ∩
{
c1,6 if ε = 1,
c1,5 if ε = −1

.

We return to the remaining unipotent classes (namely, those consisting of elements

of order 8) after calculating the fusion of the non-unipotent classes.

Let W and W̃ denote the natural modules for SL6(q) and SU6(q), respectively.

The eigenvalues of the semisimple elements acting on W or W̃ is clear from the nota-

tion for the element in [47] and [22]. Namely, the element h(z1, z2, z3) has eigenvalues

z1, z2, z3, z
−1
3 , z−1

2 , z−1
1 .

For example, the class representative in [22] for the class D21(i) of G2(q) is

h(ηi, η−i, 1), and the eigenvalues (acting on either W or W̃ ) of this element are

ηi, ηi, η−i, η−i, 1, 1. The class representative in [47] for the class c10,0(i1) is h(ξ̃i11 , ξ̃
i1
1 , 1),

which has eigenvalues ξ̃i11 , ξ̃
i1
1 , ξ̃

−i1
1 , ξ̃−i11 , 1, 1. Now, we see that both η and ξ̃ represent

primitive (q + 1)st roots of unity in C in the respective papers, and a comparison of

notations tells us that D21(i) must sit inside c10,0(i).
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A similar analysis of notations yields the results for the other semisimple classes,

which can be found in Table 5.3. For the convenience of the reader, we include below

the list of semisimple class representatives in each notation, together with the fusions

for the semisimple classes:

N Nth root of unity in [22] Nth root of unity in [47]

q − 1 γ ζ̃1

q + 1 η ξ̃1

q2 − 1 θ ζ̃2

(q2 − 1)/3 ω

q2 + q + 1 τ ζ̃
(q−1)
3

q2 − q + 1 σ ξ̃
(q+1)
3

Semisimple Class Representative Class in Representative
in G2(q) (from [22]) Sp6(q) (from [47])

B0 h(ω, ω, ω)

{
c5,0 ε = 1,
c6,0 ε = −1

{
h(ζ̃i11 , ζ̃

i1
1 , ζ̃

i1
1 ) ε = 1,

h(ξ̃i11 , ξ̃
i1
1 , ξ̃

i1
1 ) ε = −1

taking i1 = (q + ε)/3

C11(i) h(γi, γ−2i, γi) c14,0
h(ζ̃i11 , ζ̃

i1
1 , ζ̃

i2
1 )

taking i2 = 2i1

C21(i) h(γi, γ−i, 1) c8,0 h(ζ̃i11 , ζ̃
i1
1 , 1)

C(i, j) h(γi, γj , γ−i−j) c22,0
h(ζ̃i11 , ζ̃

i2
1 , ζ̃

i3
1 )

taking i3 = i1 + i2

D11(i) h(ηi, η−2i, ηi) c21,0
h(ξ̃i11 , ξ̃

i1
1 , ξ̃

i2
1 )

taking i2 = 2i1

D21(i) h(ηi, η−i, 1) c10,0 h(ξ̃i11 , ξ̃
i1
1 , 1)

D(i, j) h(ηi, ηj , η−i−j) c29,0
h(ξ̃i11 , ξ̃

i2
1 , ξ̃

i3
1 )

taking i3 = i1 + i2

E1(i) h(θi, θ(q−1)i, θ−qi) c26,0
h(ζ̃2

i1
, ζ̃qi12 , ξ̃i21 )

taking i2 = i1

E2(i) h(θi, θqi, θ−(q+1)i) c24,0
h(ζ̃2

i1
, ζ̃qi12 , ζ̃i21 )

taking i2 = i1

E3(i) h(τ i, τ qi, τ q
2i) c28,0

h(ζ̃3
i1
, ζ̃qi13 , ζ̃q

2i1
3 )

taking i1 = (q − 1)i

E4(i) h(σi, σ−qi, σq
2i) c31,0

h(ξ̃3
i1
, ξ̃qi13 , ξ̃q

2i1
3 )

taking i1 = (q + 1)i

We note that the result for B0 depends on ε since the element ω of F×q2 in the
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notation of [22] is η(q+1)/3 if ε = −1 and γ(q−1)/3 if ε = 1, where η is a (q + 1)th root

of unity and γ is a (q − 1)th root of unity.

Now, for arbitrary elements, we use the fact that conjugate elements must have

conjugate semisimple and unipotent parts. In the cases of the classes c14,1(i), c21,1(i)

in Sp6(q), these are the only non-semisimple classes with semisimple part in the

appropriate class, from which we deduce

C12(i) ⊂ c14,1(i) ∩H and D12(i) ⊂ c21,1(i) ∩H.

For C = C22(i), D22(i), B1 in G2(q), comparing the dimensions of the eigenspaces

of the unipotent parts of the classes in Sp6(q) that have semisimple part in the same

class as that of the representative for C, we obtain only one possibility in each case,

yielding

C22(i) ⊂ c8,3(i), D22(i) ⊂ c10,3(i), B1 ⊂
{
c5,1 if ε = 1
c6,1 if ε = −1

This leaves only the classes B2(0), B2(1), B2(2), and the classes of elements of

order 8 in G2(q). For these classes, we again utilize the fact that the scalar product

of characters must be integral. Note that the character ρ1
3 is the character χ1,4 in

the notation of [47] and the character α3 is the character χ1,5 in the notation of [47],

and that for the classes whose fusions have been calculated so far, these characters

agree with the characters θ2 and θ′2 of G2(q), respectively, in the notation of [22].

Also note that to compute
[
ρ1

3|G2(q), ρ
1
3|G2(q)

]
or
[
α3|G2(q), α3|G2(q)

]
, the fusion of the

order-8 classes is not needed, since the absolute value of each of these characters is

the same on all such elements of Sp6(q).

Suppose that any of B2(0), B2(1), or B2(2) fuses with B1 in Sp6(q). Then for

ε = 1,
[
ρ1

3|G2(q), ρ
1
3|G2(q)

]
is not an integer since [θ2, θ2] is an integer. If ε = −1,

then
[
α3|G2(q), α3|G2(q)

]
is not an integer, using the fact that [θ′2, θ

′
2] is an integer.

Since there is only one other non-semisimple conjugacy class in Sp6(q) with the same

semisimple part, this contradiction yields that B2(0), B2(1), and B2(2) must fuse in
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Sp6(q), and

B2(0) ∪B2(1) ∪B2(2) ⊂
{
c5,2 if ε = 1,
c6,2 if ε = −1

∩G2(q)

Finally, we may return to the order-8 unipotent classes. If the two classes A51, A52

fused in Sp6(q), then we would have that ρ1
3 agrees with the character θ2 on all

conjugacy classes of G2(q) except either A51 or A52. Using this fact, we can calculate[
ρ1

3|G2(q), θ2

]
to see that it is not an integer, so these two classes cannot fuse. If A51

was contained in c1,11 and A52 was in c1,10, we would again see that
[
ρ1

3|G2(q), θ2

]
is

not an integer, so we must have

A51 ⊂ c1,10 ∩G2(q) and A52 ⊂ c1,11 ∩G2(q),

which completes the calculation of the fusions of classes of G2(q) into Sp6(q).
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Table 5.3: The Fusion of Classes from G2(q) into Sp6(q)

(a)

Class in Class in
G2(q) Sp6(q)

A0 c1,0

A1 c1,2

A2 c1,4

A31

{
c1,5 if ε = 1,
c1,6 if ε = −1

A32

{
c1,6 if ε = 1,
c1,5 if ε = −1

A4

{
c1,5 if ε = 1,
c1,6 if ε = −1

A51 c1,10

A52 c1,11

(b)

Class in Class in
G2(q) Sp6(q)

B0

{
c5,0 if ε = 1,
c6,0 if ε = −1

B1

{
c5,1 if ε = 1,
c6,1 if ε = −1

B2(0)

{
c5,2 if ε = 1,
c6,2 if ε = −1

B2(1)

{
c5,2 if ε = 1,
c6,2 if ε = −1

B2(2)

{
c5,2 if ε = 1,
c6,2 if ε = −1

(c)

Class in Class in
G2(q) Sp6(q)

C11(i) c14,0

C12(i) c14,1

C21(i) c8,0

C22(i) c8,3

C(i, j) c22,0

D11(i) c21,0

D12(i) c21,1

D21(i) c10,0

D22(i) c10,3

D(i, j) c29,0

E1(i) c26,0

E2(i) c24,0

E3(i) c28,0

E4(i) c31,0
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Table 5.4: Unipotent Classes of B and Fusion into P and H

Size of Class Class in B Class in P Class in H
1 A0 A0 A0

q − 1 A1 A1 A1

q(q − 1) A2 A2 A1

q2(q − 1) A3 A3 A2

q2(q − 1) A41 A3 A2
1
2
q2(q − 1)2 A42 A41 A31

1
2
q2(q − 1)2 A43 A42 A32

q2(q − 1) A51 A2 A1{
q2(q − 1)2 ε = −1
1
3
q2(q − 1)2 ε = 1

A52(i), 0 ≤ i ≤ 1 + ε

 A42 ε = −1
A41 i = 0 ε = 1
A5 i 6= 0 ε = 1

 A32 ε = −1
A31 i = 0 ε = 1
A4 i 6= 0 ε = 1

q2(q − 1)2 each A53(t), t ∈ Fq


A3 t = 0
A42 t ∈ Ω1

A41 t ∈ Ω2

A5 t ∈ Ω3


A2 t = 0
A32 t ∈ Ω1

A31 t ∈ Ω2

A4 t ∈ Ω3

q3(q − 1) A61 A61 A2
1
2
q3(q − 1)2 A62 A62 A31

1
2
q3(q − 1)2 A63 A63 A32

1
2
q4(q − 1)2 A71 A71 A51

1
2
q4(q − 1)2 A72 A72 A52
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5.3.2 The Complex Case

In this section, we consider irreducible ordinary characters χ ∈ Irr(Sp6(q)) which

restrict irreducibly to G2(q). We also discuss the decompositions of the linear Weil

character, ρ2
3 and unitary Weil character, β3, which are reducible over G2(q).

Theorem 5.3.1. Let G = Sp6(q), H = G2(q) with q ≥ 4 even. Suppose that V is an

absolutely irreducible ordinary G-module. Then V is irreducible over H if and only if

V affords one of the Weil characters

• ρ1
3, of degree 1

2
q(q + 1)(q3 + 1),

• τ i3, 1 ≤ i ≤ ((q − 1)`′ − 1)/2, of degree (q2 + q + 1)(q3 + 1),

• α3, of degree 1
2
q(q − 1)(q3 − 1),

• ζ i3, 1 ≤ i ≤ ((q + 1)`′ − 1)/2, of degree (q2 − q + 1)(q3 − 1).

Proof. Assume V |H is irreducible. Using [49] to compare character degrees of H

and G, we see that the degrees of the characters ρ1
3, τ

i
3, α3, ζ

i
3 are the only irreducible

complex character degrees of G which also occur as irreducible character degrees of

H. Moreover, we see that these character degrees appear in G with exactly the

multiplicity given in the statement of the theorem. Thus it suffices to show that each

such character indeed is irreducible when restricted to H.

Note that from [40], the characters τ i3 for 1 ≤ i ≤ (q − 2)/2 actually restrict

irreducibly from GL6(q) to G2(q), and τ i3|G2(q) = χ3(i) in the notation of [22].

We use the fusion of the classes of H into G found in Section 5.3.1 to compute

the character values of ζ i3 on each class. The class representatives for G found in

[47] are given in their Jordan-Chevelley decompositions, from which we can find the

eigenvalues from the semisimple part (as discussed briefly in Section 5.3.1), and the

total number of Jordan blocks (and therefore the dimensions of the eigenspaces over

Fq2 for the relevant eigenvalues) from the unipotent part. We then obtain the values of
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ζ i3 by using the formula (4.2.2). We conclude that ζ i3|H agrees with the character χ′3(i)

of H in the notation of [22], and therefore is irreducible on H for each 1 ≤ i ≤ q/2.

The cases of the characters ρ1
3 and α3 are easier, since we see that in the notation

of [47], ρ1
3 is the unipotent character χ1,4 and α3 is the unipotent character χ1,5.

Given the fusion of classes found in Section 5.3.1, we see that χ1,4|H agrees with the

character θ2 in [22] and χ1,5|H agrees with the character θ′2 in [22], meaning that ρ1
3

and α3 are therefore irreducible when restricted to G2(q).

Note that Theorem 5.3.1 tells us that the only characters which restrict irreducibly

from Sp6(q) to G2(q) are Weil characters. Before moving on to the `-modular case, we

briefly discuss the restriction to G2(q) of the Weil characters missing from Theorem

5.3.1 and show that they restrict as the sum of two irreducible characters.

Theorem 5.3.2. Let q be a power of 2. Then

1. the linear Weil character ρ2
3 in Irr(Sp6(q)) decomposes over G2(q) as

(ρ2
3)|G2(q) = θ1 + θ4,

and

2. the unitary Weil character β3 in Irr(Sp6(q)) decomposes over G2(q) as

(β3)|G2(q) = θ′1 + θ4,

where θ1, θ
′
1, θ4 ∈ Irr(G2(q)) are the characters of degrees 1

6
q(q+ 1)2(q2 + q+ 1),

1
6
q(q − 1)2(q2 − q + 1), and 1

3
q(q4 + q2 + 1), respectively, as in the notation of

Enomoto and Yamada, [22].

Proof. This follows from the fusion of conjugacy classes found in Section 5.3.1 and

the character tables in [47] and [22], noting that the character ρ2
3 and β3 are given
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by χ1,2 and χ1,3, respectively, in the notation of [47]. (Indeed, by comparing degrees,

and using [49] for the multiplicities of degrees in Sp6(q), we know that these are the

correct characters.)

5.3.3 The Modular Case

In this section, we consider more generally the irreducible Brauer characters χ ∈

IBr`(Sp6(q)) in characteristic ` 6= 2 which restrict irreducibly to G2(q).

Theorem 5.3.3. Let G = Sp6(q), H = G2(q) with q ≥ 4 even. Let ` 6= 2 and suppose

χ ∈ IBr`(G) is one of the following:

• ρ̂1
3 −

{
1, `| q3−1

q−1
,

0, otherwise
,

• τ̂ i3, 1 ≤ i ≤ ((q − 1)`′ − 1)/2,

• α̂3,

• ζ̂ i3, 1 ≤ i ≤ ((q + 1)`′ − 1)/2.

Then χ|H ∈ IBr`(H).

Proof. We may assume that `||G|, since otherwise the result follows from Theorem

5.3.1. We consider the cases ` divides (q − 1), (q + 1), (q2 − q + 1), (q2 + q + 1), and

(q2 + 1) separately.

If `|(q−1), then (ρ1
3)|H = X15 in [32],[29]. From [32, Table I], we see that if ` = 3,

then indeed X̂15− 1H is an irreducible Brauer character of H. From [29], we see that

if ` 6= 3, then X̂15 is an irreducible Brauer character. We also see that (α3)|H has

defect 0, so indeed (α̂3)|H ∈ IBr`(H).

By [32] and [29], (ζ̂ i3)H = X̂ ′2a is an irreducible Brauer character, and the ((q −

1)`′ − 1)/2 characters (τ̂ i3)|H = X̂ ′1b which lie outside the the principal block are also

irreducible Brauer characters, completing the proof in the case `|(q − 1).
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Now let `|(q + 1). In this case, Hiss and Shamash show in [32] and [29] that

(τ̂ i3)|H = X̂ ′1b is an irreducible Brauer character and the
(q+1)`′−1

2
characters (ζ̂ i3)H =

X̂ ′2a lying outside the principal block are irreducible Brauer characters. Also, from

[32, Section 3.3] and [29, Section 2.2], X̂17 = α̂3|H ∈ IBr`(H). Finally, note that

(ρ1
3)|H has defect 0, which completes the proof in the case `|(q + 1).

Suppose `|(q2 − q + 1), where ` 6= 3. From [68, Section 2.1], we see that X17

lies in the principal block with cyclic defect group and that X̂17 ∈ IBr`(H). As this

character is the restriction of α3 to H, we have (α̂3)|H ∈ IBr`(H). We see from their

degrees that X15, X
′
1b, and X ′2a are all of defect 0, so their restrictions to `-regular

elements are irreducible Brauer characters of H. But these are exactly the restrictions

to H of the characters ρ1
3, τ

i
3, and ζ i3, respectively, which completes the proof in the

case `|(q2 − q + 1).

Now assume `|(q2 + q+ 1), where ` 6= 3. Then from the Brauer tree for H given in

[68, Section 2.1], we see that X̂15−1 ∈ IBr`(H), and since (ρ1
3)|H = X15 in Shamash’s

notation, this shows that ρ̂1
3 − 1 restricts irreducibly to H. Also, X17, X

′
2a, and X ′1b

have defect 0, so X̂17, X̂
′
2a, and X̂ ′1b ∈ IBr(H) as well. As (α3)|H = X17, (ζ

k
3 )|H = X ′2a,

and (τ k3 )|H = X ′1b in Shamash’s notation, it follows that all of the characters claimed

indeed restrict irreducibly to H, completing the proof in the case `|(q2 + q + 1).

Finally, if `|(q2 + 1), then ` does not divide |H|, which means that IBr`(H) =

Irr(H), and the result is clear from Theorem 5.3.1.

Theorem 5.3.4. Let G = Sp6(q), H = G2(q) with q ≥ 4 even. Suppose that V is an

absolutely irreducible G-module in characteristic ` 6= 2. Then V is irreducible over H

if an only if the `-Brauer character afforded by V is one of the Weil characters

• ρ̂1
3 −

{
1, `| q3−1

q−1
,

0, otherwise
,

• τ̂ i3, 1 ≤ i ≤ ((q − 1)`′ − 1)/2,
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• α̂3,

• ζ̂ i3, 1 ≤ i ≤ ((q + 1)`′ − 1)/2.

Proof. If V affords one of the characters listed, then V is irreducible on H by Theo-

rem 5.3.3. Conversely, assume that V is irreducible on H and let χ ∈ IBr`(G) denote

the `-Brauer character afforded by V . If χ lifts to a complex character, then the result

follows from Theorem 5.3.1, so we assume χ does not lift. We may therefore assume

that ` is an odd prime dividing |G|. We note that χ(1) ≤ m(H) ≤ (q+1)2(q4 +q2 +1)

by [49], and if q = 4, then m(H) = q(q + 1)(q4 + q2 + 1).

Since (q − 1)(q2 + 1)(q4 + q2 + 1) > m(H) when q ≥ 4, it follows from part (B)

of Theorem 1.1.1 that either χ lifts to an ordinary character or χ lies in a unipotent

block of G. In the first situation, Theorem 5.3.1 and Lemma 5.1.2 imply that χ is

in fact one of the characters listed in the statement. Therefore, we may assume that

χ lies in a unipotent block of G and does not lift to a complex character. Again we

treat each case for ` separately.

Since m(H) is smaller than the degree of each of the characters listed in situation

A(3) of Theorem 1.1.1, we see that the only irreducible Brauer characters which do

not lift to a complex character and whose degree does not exceed m(H) are ρ̂2
3 − 1G

and β̂3− 1G when `|(q+ 1), ρ̂2
3− 1G in the case 3 6= `|(q2− q+ 1), ρ̂1

3− 1G in the case

`|(q2 + q + 1), and χ̂6 − 1G when `|(q2 + 1).

From Theorem 5.3.2, we know that (ρ2
3)|G2(q) = θ1 + θ4 and (β3)|G2(q) = θ′1 + θ4

in the notation of [22]. Also, θ4 = X14, θ1 = X16, and θ′1 = X18 in the notation of

Shamash and Hiss.

Suppose `|(q + 1). From [29, Section 2.2], we know that X̂14 − 1 ∈ IBr`(H) when

` 6= 3, and therefore neither ρ̂2
3 − 1 nor β̂3 − 1 can restrict irreducibly to IBr`(H). If

` = 3, then by [32, Section 3.3], X̂14 + X̂18 − 1 6∈ IBr`(H), since this is ϕ14 + 2ϕ18 in

the notation of [32, Table II]. Similarly, X̂14 + X̂16 − 1 6∈ IBr`(H), so we have shown

that if ` = 3, again neither ρ̂2
3 − 1 nor β̂3 − 1 can restrict irreducibly to IBr`(H).
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Suppose `|(q2 − q + 1), where ` 6= 3. From [68, Section 2.1], the Brauer character

X̂16 − 1 is irreducible, and X14 is defect zero, meaning that X̂14 is also irreducible.

But this implies that X̂14 + X̂16 − 1 is not irreducible. Recalling again that X14 = θ4

and X16 = θ1, this shows that ρ̂2
3 − 1G does not restrict irreducibly to H.

If `|(q2 + q + 1) = q3−1
q−1

, then we know that ρ̂1
3 − 1G is irreducible, by Theorem

5.3.3, so we are done in this case.

Finally, if `|(q2+1), then ` cannot divide |H|, which means that IBr`(H) = Irr(H),

and every irreducible Brauer character of H lifts to C. Since the degree of χ̂6 − χ̂1 is

not the degree of any element of Irr(H), we know χ cannot be χ̂6− χ̂1, and the proof

is complete.

5.3.4 Descent to Subgroups of G2(q)

We now consider subgroups H of Sp6(q) such that H < G2(q). In [55], Nguyen finds

all triples as in Problem 1 when G = G2(q) and H is a maximal subgroup. Noting

that none of the representations described in [55] to give triples for G = G2(q) come

from the Weil characters listed in Theorem 5.3.4, it follows that there are no proper

subgroups of H of G2(q) that yield triples as in Problem 1 for G = Sp6(q).

5.4 Restrictions of Irreducible Characters of Sp6(q) to the
Subgroups O±6 (q)

In this section, let q ≥ 4 be a power of 2, G = Sp6(q), and H± ∼= O±6 (q) as a subgroup

of G. Since q is even, we have H± = Ω±6 (q).2 ∼= L±4 (q).2 (see [37, Chapter 2]). This

means that there is an index-2 subgroup of H±, which we will denote K±, which

satisfies

Kε ∼= Lε4(q) =

{
SL4(q) ε = +
SU4(q) ε = −.
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We at times may simply refer to H and K rather than H± and K± if the result is

true in either case.

The following lemma describes the order-2 automorphisms of K± inside H±, which

will be useful when applying Clifford theory to these groups.

Lemma 5.4.1. The order-2 automorphism of K− = Ω−6 (q) identified with L−4 (q) in-

side H− = O−6 (q) = Ω−6 (q).2 identified with L−4 (q).2 is given by τ : (aij) 7→ (aqij). The

order-2 automorphism of K+ = Ω+
6 (q) identified with L+

4 (q) inside H+ = O+
6 (q) =

Ω+
6 (q).2 identified with L+

4 (q).2 is given by σ : A 7→ (A−1)T .

Proof. The first statement can be seen easily since Out(K−) is cyclic (see, for ex-

ample, [37, Section 2.3]) so K− has only one order-2 outer automorphism.

From [37, Chapter 2], we see that Ω+
6 (q) is the index-2 subgroup of O+

6 (q) com-

posed of elements that can be written as a product of an even number of reflections.

Hence the order-2 automorphism can be given by conjugation by any element of

O+
6 (q) which is a product of an odd number of reflections. In particular, the matrix

J3 =

(
0 I3

I3 0

)
can be written as the product of 3 reflections. Namely, J3 is the

product r1r2r3 of the reflections ri switching the standard basis elements ei and fi.

Now, from [37, Chapter 2], the identification of L+
4 (q) with Ω+

6 (q) is given by the

action of L+
4 (q) on the second wedge space Λ2(W ) of the natural module W = F4

q

for L+
4 (q). We claim that the automorphism σ : A 7→ (A−1)T of L+

4 (q) corresponds to

conjugation by J3 in O+
6 (q) under this identification. Certainly for g ∈ Ω+

6 (q), we have

gJ3g
T = J3, so J3gJ3 = (g−1)T . Hence it suffices to note that by direct calculation,

the transpose of an element in L+
4 (q) acting on its natural module corresponds to the

transpose of the corresponding action on the wedge space.

The purpose of this section is to show that restrictions of nontrivial representations

of G to H are reducible. We again begin with the complex case.
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Theorem 5.4.2. Let G = Sp6(q) and H = O±6 (q), with q ≥ 4 even. If 1G 6= χ ∈

Irr(G), then χH is reducible.

Proof. Assume that χ|H is irreducible. For the list of irreducible complex character

degrees of K± ∼= L±4 (q) and G = Sp6(q), we refer to [49].

As [H : K] = 2, we see from Clifford theory that χH has degree e · φ(1) where

e ∈ {1, 2} and φ ∈ Irr(K±). Inspecting the list of character degrees for K± and for

G, we see that for q > 4 there is only one character degree of G which matches a

character degree or twice a character degree for K±. It follows that the only option

for χ(1) is (q2 + 1)(q2 − q + 1)(q + 1)2 in case − and (q2 + 1)(q2 + q + 1)(q − 1)2 in

case +, and that e = 1. This means that if χ|H is irreducible, then χ|K must also be

irreducible.

From [47], we see that these characters are χ = χ8,1 and χ9,1, respectively. In

Lübeck’s notation [47], the characters can be written

χ8,1 =
1

6
(R8,1 + 3R8,3 + 2R8,7)

and

χ9,1 =
1

6
(3R9,5 +R9,8 + 2R9,10).

In particular, on unipotent elements, these characters satisfy

χ8,1 =
1

6
(Q1,1 + 3Q1,3 + 2Q1,7)

and

χ9,1 =
1

6
(3Q1,5 +Q1,8 + 2Q1,10),

where Qij is the Green function from [47, Tabelle 16]. (In Lübeck’s notation, i is the

index of the semisimple element, and j is the index of the torus.) We can use this to

see that on the classes of involutions, the values of χ8,1 and χ9,1 are as shown below:
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c1,0 = {1} c1,1 c1,2

χ8,1 (q2 + 1)(q2 − q + 1)(q + 1)2 (q + 1)(q2 + 1) (q + 1)(q3 + q2 + 1)
χ9,1 (q2 + 1)(q2 + q + 1)(q − 1)2 −(q − 1)(q2 + 1) (q − 1)(q3 − q2 − 1)

c1,3 c1,4

χ8,1 (q + 1)(q2 + 1) q2 + q + 1
χ9,1 −(q − 1)(q2 + 1) q2 − q + 1

However, from [58], the characters χ2(k, `) of SU4(q) which have degree (q2 +

1)(q2 − q + 1)(q + 1)2, have the value 2q2 + q + 1 on one of the classes of involutions.

(Here we may also use the character table for GU4(q) ∼= Cq+1×L−4 (q) constructed by

F. Lübeck for the CHEVIE system [26].) Since this value does not occur on any of the

involution classes of G for χ8,1, we therefore see that χ8,1 does not restrict irreducibly

to H−. Similarly, the characters of SL4(q) of degree (q2 + 1)(q2 + q+ 1)(q− 1)2 have

the value 2q2 − q + 1 on one of the involution classes (see, for example, the character

table for GL4(q) ∼= Cq−1 × L+
4 (q) constructed by F. Lübeck for the CHEVIE system

[26]), so χ9,1 also does not restrict irreducibly to H+.

Thus for q > 4, there are no irreducible characters of G which restrict irreducibly

to H.

In the case q = 4, there are additional character degrees φ(1) of K for which

2φ(1) is a character degree for G. For K− ∼= SU4(4), these degrees are (q2 + 1)(q2 −

q + 1) = 221 and (q + 1)2(q2 − q + 1) = 325, and for K+ ∼= SL4(4), they are

(q2 + q + 1)(q − 1)2 = 189 and (q2 + q + 1)(q2 + 1) = 357. For each of these degrees,

there is exactly one character of Sp6(4) with twice that degree. Using GAP [24] and

the GAP Character Table Library [11], we can find the character tables explicitly for

Sp6(4), SU4(4), and SL4(4).

There are exactly two characters of degree 221 in Irr(SU4(4)), and one of degree

442 in G. Namely, this degree-442 character of G is the Weil character β3. From direct

calculation in GAP (in particular using the “PossibleClassFusions” function), we see

that the restriction of β3 to K− is indeed the sum of these two characters. However,

these characters extend to irreducible characters of H−, which can be seen as follows.
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These characters are χ7, χ8 ∈ Irr(K−) in the notation of the GAP Character Table

Library [11]. However, by Lemma 5.4.1, the order-2 automorphism of K− inside H−

is given by τ : (aij) 7→ (aqij). Thus if χ7 and χ8 do not extend, then we must have

χτ7 = χ8, since H−/K− is cyclic. Now, when using GAP to construct the conjugacy

class representatives of SU4(4):

List(ConjugacyClasses(SpecialUnitaryGroup(4,4)), x->Representative(x));

we see that classes 48 and 49 must correspond to the set {5e, 5f} in the notation

of [11], by inspection of the size of the centralizer. We note that χ7 6= χ8 on the

conjugacy classes 5e, 5f. Now, creating a function for τ in GAP by

tau:=function(r)

local z;

z:=[List(r[1], x->x^4),List(r[2], x->x^4),

List(r[3], x->x^4),List(r[4], x->x^4)];

return z;

end;

and using the“IsConjugate” function, we see that elements A of each of these classes

are conjugate in SU4(4) to τ(A). But this means that χτ7(A) = χ7(A) 6= χ8(A),

meaning that χ7 and χ8 must be fixed by τ , and therefore must be extendable to

SU4(4).2. Thus the restriction of β3 is reducible, as it restricts to H− as the sum of

two characters.

Along the same lines, there are two characters of degree 189 in Irr(SL4(4)), and

one of degree 378 in G (namely, α3), and from direct calculation in GAP as above, we

see that the restriction of α3 to K+ is again the sum of these two characters. However,

we claim that these characters again extend to irreducible characters of H+. Indeed,

the characters of K+ in question are χ52 and χ63 in the notation of [11]. By Lemma

5.4.1, the order-2 automorphism of K+ inside H+ is given by σ : A 7→ (A−1)T . Thus
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if χ52 and χ63 do not extend, then we must have χσ52 = χ63. Now, when using GAP

to construct the conjugacy class representatives of SL4(4):

List(ConjugacyClasses(SpecialLinearGroup(4,4)), x->Representative(x));

we see that classes 6 and 8 must correspond to the set {5a, 5b} in the notation

of [11], by inspection of the size of the centralizer. Now, χ52 6= χ63 on these classes.

But again using the “IsConjugate” function, we see that elements A of each of these

classes are conjugate in SL4(4) to σ(A) = (A−1)T . But this means that χσ52(A) =

χ52(A) 6= χ63(A), so χ52 and χ63 must be fixed by σ, and therefore extend to SL4(4).2.

Thus α3|H+ is the sum of two characters, so is reducible.

There is exactly one character, φ, of degree 325 in Irr(SU4(4)), which means that

if χ(1) = 650, then χ|K− = 2φ. Now, as H−/K− is cyclic and φ is H−-invariant, we

see that φ must extend to a character of H−, so χ|K− 6= 2φ.

Similarly, there is exactly one character, φ, of degree 357 in Irr(SL4(4)), which

means that if χ(1) = 714, then the restriction of χ to K+ is twice this character.

Again, as H+/K+ is cyclic and φ is H+-invariant, this is not the case.

Lemma 5.4.3. Let G = Sp6(q) and H = O±6 (q), with q ≥ 4 even and let χ ∈

Irr(G) be one of the characters χ2, χ3, χ4, χ6 in the notation of D. White [76] (i.e.

χ12, χ13, χ14, χ16 in F. Lübeck’s [47] notation). If χ|H − λ ∈ Irr(H) for λ ∈ Ĥ, then

the restriction to K ∼= L±4 (q) also satisfies χ|K − λ|K ∈ Irr(K).

Proof. Write θ := χ|H − λ ∈ Irr(H). Note that since q ≥ 4, and χ(1) is divisible by

1
2
q, we know that χ(1) is even. In particular, θ(1) = χ(1) − λ(1) = χ(1) − 1 is odd.

Since K has index 2 in H, we know by Clifford theory that

θK =
t∑
i=1

θi
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where θi ∈ Irr(K), each θi has the same degree, and t = [H : stabH(θ1)] divides

[H : K] = 2. That is, t must be either 1 or 2. This means that if θK is reducible,

then θ(1) is even, yielding a contradiction. Hence χ|K − λ|K ∈ Irr(K).

Lemma 5.4.4. Let q ≥ 4 and χ be one of the characters as in Lemma 5.4.3. Then

χ|H − λ 6∈ Irr(H) for any λ ∈ Ĥ ∪ {0}.

Proof. Comparing degrees of characters of G and K (see, for example, [49]), we see

that neither χ(1) nor χ(1)/2 occur as a degree of an irreducible character of K for

any of these characters. Then by Clifford theory (see the argument in Lemma 5.4.3),

we know that χ|H 6∈ Irr(H). Moreover, χ(1) − 1 does not occur as an irreducible

character degree for K, which means that χ|K − λK 6∈ Irr(K) for any λ ∈ Ĥ. Thus

by Lemma 5.4.3, χ|H − λ 6∈ Irr(H) for any λ ∈ Ĥ.

The above lemma yields the following:

Corollary 5.4.5. Let q ≥ 4 and let ` be a prime. If χ ∈ Irr(G) is one of the

characters χ2, χ3, χ4, χ6 in D. White’s notation, then χ̂H − 1H 6∈ IBr`(H).

Proof. This follows immediately from Lemma 5.1.3 and Lemma 5.4.4.

We are now ready to prove the main theorem of this section, which generalizes

Theorem 5.4.2 to the modular case:

Theorem 5.4.6. Let H ∼= O±6 (q) be a maximal subgroup of G = Sp6(q), with q ≥ 4

even, and let ` 6= 2 be a prime. If χ ∈ IBr`(G) with χ(1) > 1, then the restriction

χ|H is reducible.

Proof. Suppose that χ|H is irreducible. We first note that from Clifford theory,

m`(H
±) = m`(K

±.2) ≤ 2m`(K
±).

Now

m`(K
+) ≤ (q + 1)2(q2 + 1)(q2 + q + 1)
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and

m`(K
−) ≤ (q + 1)2(q2 + 1)(q2 − q + 1)

(see, for example, [49]).

Note that q(q4 + q2 + 1)(q − 1)3/2 > m`(H
−) for q ≥ 4. Moreover, q(q4 + q2 +

1)(q − 1)3/2 > m`(H
+), except possibly when q = 4. However, from [49], we can see

that if q = 4, then in fact m`(K
+) ≤ 7140, so q(q4 + q2 + 1)(q − 1)3/2 > m`(H

+) in

this case as well. Thus we know from Theorem 1.1.1 that either χ lifts to a complex

character, or χ lies in a unipotent block.

Suppose that χ lies in a unipotent block of G. Then the character degrees listed

in situation A(3) of Theorem 1.1.1 are larger than our bound for m`(H
−) for q ≥ 4

and are larger than m`(H
+) unless q = 4 and `|(q+ 1). (Here we have again used the

fact that m`(K
+) ≤ 7140.) Hence, by Theorem 1.1.1, χ either lifts to an ordinary

character or is of the form χ̂−1G where χ is one of the characters discussed in Lemma

5.4.4 (and therefore do not remain irreducible over H), except possibly in the case

H = O+
6 (4) and ` = 5.

If q = 4 and ` = 5, the bound D in part (A) of Theorem 1.1.1 is larger than

14280, so χ̂35 − χ̂5 is the only additional character we must consider. However, the

degree of χ̂35 − χ̂5 is (q3 − 1)(q4 − q3 + 3q2/2 − q/2 + 1) = 13545, which is odd, so

by Clifford theory, if it restricts irreducibly to H+, then it also restricts irreducibly

to the index-2 subgroup K+. But 7140 < 13545, a contradiction. Hence χ̂35 − χ̂5 is

reducible when restricted to H+.

We have therefore reduced to the case of complex characters, by Lemma 5.1.2,

which by Theorem 5.4.2 are all reducible on H.
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5.5 Restrictions of Irreducible Characters to Maximal
Parabolic Subgroups

The purpose of this section is to prove part (1) of Theorem 1.1.2. We momentarily

relax the assumption that G = Sp6(q), and instead consider the more general case

G = Sp2n(q) for n ≥ 2. Let {e1, ..., en, f1, ..., fn} denote a symplectic basis for the

natural module F2n
q . That is, (ei, ej) = (fi, fj) = 0 and (ei, fj) = δij is the Kronecker

delta for 1 ≤ i, j ≤ n, so that the Gram matrix of the symplectic form with isometry

group G is

Jn :=

(
0 In
In 0

)
,

as defined in Chapter 2. We will use many results from [27] and will keep the notation

used there. In particular, Pj = stabG(〈e1, ..., ej〉Fq) will denote the jth maximal

parabolic subgroup, Lj its Levi subgroup, Qj its unipotent radical, and Zj = Z(Qj).

If we reorder the basis as {e1, ..., en, fj+1, ..., fn, f1, ..., fj}, then the subgroup Qj

can be written as

Qj =


 Ij (AT )Jn−j C

0 I2n−2j A
0 0 Ij

 :
A ∈M2n−2j,j(Fq), C ∈Mj(q),
C + CT + (AT )Jn−jA = 0


and

Zj =


 Ij 0 C

0 I2n−2j 0
0 0 Ij

 : C ∈Mj(q), C + CT = 0

 .

In particular, note that in the case j = n, Qn is abelian and Zn = Qn. Also,

Lj ∼= Sp2n−2j(q)×GLj(q) is the subgroup

Lj =


 A 0 0

0 B 0
0 0 (AT )−1

 : A ∈ GLj(q), B ∈ Sp2n−2j(q)

 .

Linear characters λ ∈ Irr(Zj) are in the form

λY :

 Ij 0 C
0 I2n−2j 0
0 0 Ij

 7→ (−1)TrFq/F2 (Tr(Y C))
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for some Y ∈ Mj(q). These characters correspond to quadratic forms qY on Fjq =

〈f1, ..., fj〉Fq defined by qY (fi) = Yii with associated bilinear form having Gram matrix

Y +Y T . The Pj-orbit of the linear characters λY of Zj is given by the rank r and type

± of qY , denoted by O±r for 0 ≤ r ≤ j. We will sometimes denote the corresponding

orbit sums by ω±r . From [27], we can see that for λ ∈ O±r , the stabilizer in Lj is

stabLj(λ) ∼= Sp2n−2j(q)×
(
[qr(j−r)] : (GLj−r(q)×O±r (q))

)
,

where [N ] denotes the elementary abelian group of order N .

We begin with a theorem proved in [72].

Theorem 5.5.1. Let G = Sp2n(q). Let Z be a long-root subgroup and assume V is a

non-trivial irreducible representation of G. Then Z must have non-zero fixed points

on V .

Proof. This is [72, Theorem 1.6] in the case that G is type Cn.

Theorem 5.5.1 shows that there are no examples of irreducible representations of

G which are irreducible when restricted to P1.

Corollary 5.5.2. Let V be an irreducible representation of G = Sp2n(q), q even,

which is irreducible on H = P1 = stabG(〈e1〉Fq). Then V is the trivial representation.

Proof. Suppose that V is non-trivial and let χ ∈ IBr`(G) denote the Brauer character

afforded by V . By Clifford theory, χ|Z1 = e
∑

λ∈O λ for some P1-orbit O on Irr(Z1)

and positive integer e. But in this case, Z1 is a long-root subgroup, so Z1 has non-zero

fixed points on V by Theorem 5.5.1. This means that O = {1Z1}, so Z1 ≤ kerχ, a

contradiction since G is simple.

We can view Sp4(q) as a subgroup of G under the identification

Sp4(q) ' stabG(e3, ..., en, f3, ..., fn).



127

With respect to the usual ordering of the symplectic basis above, the embedding is

given by

Sp4(q) 3
(
A B
C D

)
7→


A 0 B 0
0 In−2 0 0
C 0 D 0
0 0 0 In−2

 ∈ Sp2n(q)

where A,B,C,D are each 2 × 2 matrices. To distinguish between subgroups of

Sp4(q) and Sp2n(q), we will write P
(n)
j := stabSp2n(q)(〈e1, ..., ej〉) for the jth maxi-

mal parabolic subgroup of Sp2n(q), P
(2)
j for the jth maximal parabolic subgroup of

Sp4(q), and similarly for the subgroups Zj, Qj, and Lj. Note that P
(2)
2 ≤ P

(n)
n since

Sp4(q) fixes e3, ..., en. Moreover, Z
(2)
2 ≤ Z

(n)
n since

Z
(2)
2 3

(
I2 C
0 I2

)
7→


I2 0 C 0
0 In−2 0 0
0 0 I2 0
0 0 0 In−2

 ∈ Z(n)
n

and C ∈M2(q) satisfies C + CT = 0, so

(
C 0
0 0

)
+

(
C 0
0 0

)T
= 0 also.

The following theorem will often be useful when viewing Sp4(q) as a subgroup of

G in this manner.

Theorem 5.5.3. Let q be even and let V be an absolutely irreducible Sp4(q)-module

of dimension larger than 1 in characteristic ` 6= 2. Then V is irreducible on P2 =

stabG(〈e1, e2〉Fq) if and only if V affords the `-Brauer character α̂2.

Proof. Let Z := Z
(2)
2 be the unipotent radical of P2. First we claim that α̂2 is indeed

irreducible on P2. Note that α̂2|Z = α2|Z since Z \ {1} consists of 2-elements. Now,

α2(1) = |O−2 |, and by Clifford theory it suffices to show that α2|Z =
∑

λ∈O−2
λ = ω−2 .

From the proof of [27, Proposition 4.1], it follows that nontrivial elements of Z belong

to the classes A31, A2, A32 of Sp4(q). The values of ω−2 are computed in the proof of

[27, Proposition 4.1], and the values of α2 can be found in [21]. (Note that α2 is the

character θ5 in the notation of [21].) These character values are as follows:
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1 A31 A2 A32

ω−2 q(q − 1)2/2 −q(q − 1)/2 −q(q − 1)/2 q/2
α2 q(q − 1)2/2 −q(q − 1)/2 −q(q − 1)/2 q/2

Thus α2|Z = ω−2 , and α̂2 must be irreducible when restricted to P2.

Conversely, suppose that χ is the Brauer character afforded by V , and χ|P2 =

ϕ ∈ IBr`(P2). By Clifford theory, ϕ|Z = e
∑

λ∈O λ for some nontrivial P2-orbit O of

Irr(Z). It follows that ϕ satisfies condition W±2 of [27], so χ is a Weil character of

Sp4(q) by [27, Theorem 1.2].

Now, following the notation of the proof of [27, Proposition 4.1], we have

ζ2|Z = 1Z + (q + 1)ω1 + (2q + 2)ω−2 .

Since Z consists of 2-elements, [27, Lemma 3.8] implies that ζ i2|Z = α2|Z+β2|Z−1Z

for each 1 ≤ i ≤ q/2, so by the definition of ζ2 (see [27, Section 3]),

ζ2|Z = (q + 1)α2|Z + (q + 1)β2|Z − q · 1Z .

Since we have already shown α̂2|Z = ω−2 , it follows that β̂2|Z = 1Z+ω1 +ω−2 . Recalling

that ζ̂ i2|Z = α̂2|Z + β̂2|Z − 1Z = 2ω−2 + ω1, this shows that if χ is any of the unitary

Weil characters aside from α̂2, then χ|Z contains as constituents multiple P2-orbits of

characters of Z, a contradiction.

Now suppose χ is a linear Weil character. The values of ω1 and ω+
2 on Z are

obtained in [27, Proposition 4.1], and the values of ρ1
2, and ρ2

2 are obtained in [21].

These values are as follows:

1 A31 A2 A32

ω1 q2 − 1 q2 − 1 −1 −1
ω+

2 q(q2 − 1)/2 −q(q + 1)/2 q(q − 1)/2 −q/2
ρ1

2 q(q2 + 1)/2 −q(q − 1)/2 q(q + 1)/2 q/2
ρ2

2 q(q + 1)2/2 q(q + 1)/2 −q(q − 1)/2 q/2

From this we can see that

ρ1
2|Z = ω+

2 + q · 1Z
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and

ρ2
2|Z = (q + 1) · 1Z + ω1 + ω+

2 .

Moreover, [27, Lemma 3.8] implies that on Z, τ i2|Z = ρ1
2|Z + ρ2

2|Z + 1 for each 1 ≤

i ≤ (q − 2)/2. Thus any linear Weil character will also contain multiple P2-orbits of

characters when restricted to Z, a contradiction.

This shows that only α̂2 can restrict irreducibly to P2, as stated.

The following corollary follows directly from the proof of Theorem 5.5.3.

Corollary 5.5.4. Let Z2 be the unipotent radical of P2 = stabSp4(q)(〈e1, e2〉Fq). Then

α2|Z2 =
∑
λ∈O−2

λ, β2|Z2 =
∑
λ∈O−2

λ+
∑
λ∈O1

λ+ 1Z2 ,

and

ζ i2|Z2 = 2
∑
λ∈O−2

λ+
∑
λ∈O1

λ,

for each 1 ≤ i ≤ q/2. Moreover,

ρ1
2|Z2 = q · 1Z2 +

∑
λ∈O+

2

λ, ρ2
2|Z2 = (q + 1) · 1Z2 +

∑
λ∈O1

λ+
∑
λ∈O+

2

λ,

and

τ i2|Z2 = (2q + 2) · 1Z2 +
∑
λ∈O1

λ+ 2
∑
λ∈O+

2

λ

for each 1 ≤ i ≤ (q − 2)/2.

The following theorem shows that for any n ≥ 2 and any characteristic ` 6= 2, the

group G = Sp2n(2a) yields a triple (G, V,H) as in Problem 1 with H = Pn.

Theorem 5.5.5. Let G = Sp2n(q) with q even and n ≥ 2, and let V be an absolutely

irreducible G-module in characteristic ` 6= 2 affording the `-Brauer character α̂n.

Then V is irreducible on Pn = stabG(〈e1, ..., en〉Fq).
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Proof. Note that IBr`(Zn) = Irr(Zn) since Zn is made up entirely of 2 - elements.

Let λY ∈ Irr(Zn) be labeled by

Y =

(
Y1 Y2

Y3 Y4

)
∈Mn(q)

with Y1 ∈ M2(q), Y4 ∈ Mn−2(q). Identifying a symmetric matrix X ∈ M2(q) with

both (
I2 X
0 I2

)
∈ Z(2)

2

and (
In X1

0 In

)
∈ Z(n)

n ,

where

X1 :=

(
X 0
0 0

)
∈Mn(q),

we see

λY (X) = (−1)TrFq/F2 (Tr(X1Y )) = (−1)TrFq/F2 (Tr(XY1)) = λY1(X).

Thus λY |Z(2)
2

= λY1 . Also, it is clear from the definition that qY |〈f1,f2〉Fq = qY1 .

From [27, Proposition 7.2], α̂n|Sp2n−2(q) contains α̂n−1 as a constituent, and con-

tinuing inductively, we see α̂n|Sp4(q) contains α̂2 as a constituent. Now, by Theorem

5.5.3, α̂2 is irreducible when restricted to P
(2)
2 , and α̂2|Z(2)

2
is the sum of the characters

in the orbit O−2 .

Since α̂2|Z(2)
2

is a constituent of α̂n|Z(2)
2

, it follows that α̂n|Z(n)
n

must contain some

λY such that qY1 is rank-2. Since |O−2 | = αn(1) and |O±r | > αn(1) for the other orbits

with r ≥ 2, we know α̂n|Z(n)
n

=
∑

λ∈O−2
λ. Therefore α̂n|P (n)

n
must be irreducible.

It will now be convenient to reorder the basis of G = Sp2n(q) as

{e1, e2, ..., en, f3, f4, ..., fn, f1, f2}.
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Under this basis, the embedding of Sp4(q) into G is given by

Sp4(q) 3
(
A B
C D

)
7→

 A 0 B
0 I2n−4 0
C 0 D

 ∈ Sp2n(q)

where A,B,C,D are each 2× 2 matrices.

Note that P
(2)
2 ≤ P

(n)
2 and, moreover, Z

(2)
2 = Z

(n)
2 . We will therefore simply write

Z2 for this group.

Theorem 5.5.6. Let G = Sp2n(q) with q even and n ≥ 2, and let V be an absolutely

irreducible G-module with dimension larger than 1 in characteristic ` 6= 2. Then V is

absolutely irreducible on P
(n)
2 if and only if n = 2 and V is the module affording the

`-Brauer character α̂2.

Proof. Assume n > 2. Let χ ∈ IBr`(G) denote the `-Brauer character afforded by

V , and let ϕ ∈ IBr`(H) be the `-Brauer character afforded by V on H := P
(n)
2 . Write

Z := Z2. The nontrivial orbits of the action of H on Irr(Z) and those of P
(2)
2 on

Irr(Z) are the same, with sizes

|O1| = q2 − 1, |O−2 | =
1

2
q(q − 1)2, |O+

2 | =
1

2
q(q2 − 1).

By Clifford theory, χ|Z = e
∑

λ∈O λ for one of these orbits O and some positive

integer e. (Note that O is not the trivial orbit since G is simple, so χ cannot contain

Z in its kernel.) It is clear from this that V |H has the property W±2 in the notation

of [27], and therefore by [27, Theorem 1.2], χ is one of the Weil characters from Table

4.2.

If χ is a linear Weil character, then the branching rules found in [27, Propositions

7.7] imply that χ|Sp4(q) contains 1Sp4(q) as a constituent, and so χ|Z contains 1Z as a

constituent, which is a contradiction.

If χ is a unitary Weil character, then the branching rules found in [27, Proposition

7.2] show that χ|Sp4(q) contains
∑q/2

k=1 ζ
k
2 −γ, where γ ∈ {0, 1} as a constituent. (Note
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that γ = 1 in the case `|(q + 1) and χ = β̂n − 1.) But [27, Lemma 3.8] shows that

ζ in = αn + βn − 1 on Z, so by Corollary 5.5.4, χ|Z contains (q/2)(ω1 + 2ω−2 ) − γ, a

contradiction since χ|Z can have as constituents Z-characters from only one H-orbit.

We therefore see that n must be 2, and the result follows from Theorem 5.5.3.

We are now prepared to classify all triples (G, V,H) as in Problem 1 when G =

Sp4(2a) and H is a maximal parabolic subgroup.

Corollary 5.5.7. Let q be even. A nontrivial absolutely irreducible representation V

of Sp4(q) in characteristic ` 6= 2 is irreducible on a maximal parabolic subgroup if and

only if the subgroup is P2 and V affords the character α̂2.

Proof. This is immediate from Theorem 5.5.6 and Corollary 5.5.2.

Note that we have now completed the proof of Theorem 1.1.3.

We will now return to the specific groupG = Sp6(q). LetH = P3 = stabG(〈e1, e2, e3〉Fq)

be the third maximal parabolic subgroup, and note that here Z3 = Q3 is elementary

abelian of order q6. We will simply write Z for this group. The sizes of the four

nontrivial orbits of Irr(Z) and the corresponding L3-stabilizers are

|O1| = q3 − 1, |stabL3(λ)| = q3(q − 1)(q2 − 1);

|O±2 | =
1

2
q(q ± 1)(q3 − 1), |stabL3(λ)| = 2q2(q − 1)(q ∓ 1);

and

|O3| = q2(q − 1)(q3 − 1), |stabL3(λ)| = q(q2 − 1).

We begin by considering the ordinary case, ` = 0.

Theorem 5.5.8. Let V be a nontrivial absolutely irreducible ordinary representation

of G = Sp6(q), q ≥ 4 even. Then V is irreducible on H = P3 if and only if it affords

the Weil character α3.
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Proof. Note that α3 is irreducible on H by Theorem 5.5.5. Conversely, suppose that

χ ∈ Irr(G) is irreducible when restricted to H. Since ZCH is abelian, it follows from

Ito’s theorem (see [33, Theorem 6.15]) that χ(1) divides [H : Z], which is

[H : Z] = |L3| = |GL3(q)| = q3(q − 1)(q2 − 1)(q3 − 1).

Moreover, by Clifford theory, if λ ∈ Irr(Z) such that χ|H ∈ Irr(H|λ), then χ(1) is

divisible by the size of the orbit O containing λ. In particular, this means that q3− 1

must divide χ(1). (Note that λ 6= 1, since G is simple and thus Z cannot be contained

in the kernel of χ.) However, from inspection of the character degrees given in [49], it

is clear that the only irreducible ordinary character of G satisfying these conditions

is α3.

Given any ϕ ∈ IBr`(H) and a nontrivial irreducible constituent λ of ϕ|Z , we know

by Clifford theory that ϕ = ψH for some ψ ∈ IBr`(I|λ), where I := stabH(λ). Then

ψ|Z = ψ(1) · λ and therefore kerλ ≤ kerψ. Note that |Z/ kerλ| = 2 since Z is

elementary abelian and λ is nontrivial. Viewing ψ as a Brauer character of I/ kerψ,

we see

ψ(1) ≤
√
|I/ kerψ| ≤

√
|I/ kerλ| =

(
|Z| · |stabL3(λ)|
| kerλ|

)1/2

=
√

2|stabL3(λ)|

Now, ϕ(1) = ψ(1) · |O| where O is the H-orbit of Irr(Z) which contains λ. If

λ ∈ O1, this yields

ϕ(1) ≤ (q3 − 1)
√

2q3(q − 1)(q2 − 1) = (q − 1)(q3 − 1)
√

2q3(q + 1),

and we will denote this upper bound by B1.

If λ ∈ O±2 , then we see similarly that

ϕ(1) ≤ 1

2
q(q ± 1)(q3 − 1)

√
4q2(q − 1)(q ∓ 1).
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We will denote this bound by B±2 , so

B−2 := q2(q − 1)(q3 − 1)
√
q2 − 1, and B+

2 := q2(q2 − 1)(q3 − 1).

For λ ∈ O3, we have I = Z : Sp2(q). If we denote K := kerψ, then

(K · Sp2(q))/K ≤ I/K.

But

(K · Sp2(q))/K ∼= Sp2(q)/(K ∩ Sp2(q)),

which must be isomorphic to Sp2(q) or {1} since Sp2(q) is simple for q ≥ 4. Thus

either I/ kerψ contains a copy of Sp2(q) as a subgroup of index at most 2 or ψ(1) = 1.

Moreover, (ZK)/K C I/K. But

(ZK)/K ∼= Z/(Z ∩K) = Z/ kerλ ∼= Z/2Z,

and thus I/K contains a normal subgroup of size 2. Assuming we are in the case

that I/K contains a copy of Sp2(q), we know this normal subgroup intersects Sp2(q)

trivially, and thus I/K ∼= Z/2 × Sp2(q). In either case, ψ(1) ≤ m(Sp2(q)) = q + 1,

and therefore

ϕ(1) ≤ (q + 1)q2(q − 1)(q3 − 1) = q2(q2 − 1)(q3 − 1),

which we will denote by B3. Note that B3 = B+
2 > B−2 > B1 for q ≥ 4.

Theorem 5.5.9. Let G = Sp6(q), q ≥ 4 even, and let H = P3. Then a nontrivial

absolutely irreducible G-module V in characteristic ` 6= 2 is irreducible on H if and

only if V affords the `-Brauer character α̂3.

Proof. That α̂3 is irreducible on H follows from Theorem 5.5.5. Conversely, suppose

that V affords χ ∈ IBr`(G) and that χ|H = ϕ ∈ IBr`(H). We claim that χ must lift

to an ordinary character, so that the result follows from Theorem 5.5.8. We will keep

the notation from the above discussion.
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First suppose that χ does not lie in a unipotent block. As the bound q(q−1)3(q4 +

q2 + 1)/2 in part (B) of Theorem 1.1.1 is larger than B−2 and is larger than B3 unless

q = 4, it follows that either χ lifts to an ordinary character or q = 4 and λ ∈ O3 or

O+
2 .

Now let q = 4. We identify G with SO7(4) so that G∗ = Sp6(4). As noted

in Proposition 4.1.2, if χ corresponds to 1CG∗ (s) in IBr`(CG∗(s)), then it lifts by the

Morita equivalence guaranteed by Lemma 4.1.1. Let u(CG∗(s)) denote the smallest

degree larger than 1 of an irreducible Brauer character lying in a unipotent block of

CG∗(s) for a semisimple element s. Using the same argument as in the proof of part

(B) of Theorem 1.1.1, we will show that for a nontrivial semisimple element s ∈ G∗,

u(CG∗(s))[G
∗ : CG∗(s)]2′ > B3 unless s belongs to a class in the family c3,0 or c4,0.

Indeed, if s is any semisimple element in a class other than c3,0, c4,0, c5,0, c6,0, c8,0, or

c10,0, then [G∗ : CG∗(s)]2′ > B3 by Lemma 4.1.3. If s is in c5,0, then CG∗(s) ∼= GL3(q)

and from [35], u(CG∗(s)) ≥ q2 + q − 1, so

u(CG∗(s))[G
∗ : CG∗(s)]2′ ≥ (q2 + q − 1)[G∗ : CG∗(s)]2′

= (q2 + q − 1)(q + 1)2(q2 + 1)(q2 − q + 1) > B3.

If s is in c6,0, then CG∗(s) ∼= GU3(q), so d`(CG∗(s)) ≥ b q
3−q
q+1
c = q2−q (see, for example,

[71]), so

u(CG∗(s))[G
∗ : CG∗(s)]2′ ≥ (q2 − q)[G∗ : CG∗(s)]2′

= (q2 − q)(q2 + 1)(q − 1)2(q2 + q + 1) > B3.

If s is in c8,0 or c10,0, then CG∗(s) ∼= GL±2 (q)× Sp2(q) so

u(CG∗(s))[G
∗ : CG∗(s)]2′ ≥ (q − 1)[G∗ : CG∗(s)]2′

= (q − 1)2(q2 + 1)(q4 + q2 + 1) > B3.

Hence we may assume s belongs to a class in the family c3,0 or c4,0. In this

case, CG∗(s) ∼= Sp4(q) × C for a cyclic group C. Now, the Brauer character tables
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of Sp4(4) are available in the GAP Character Table Library, [24],[11]. We can see

that the smallest nonprincipal character degree of Sp4(4) for any ` 6= 2 is 18. This

corresponds to α̂2, which clearly lifts to C, so by the Morita equivalence guaranteed

by Lemma 4.1.1, χ also lifts if it corresponds to this character. The next smallest

degree is 33 if ` = 5 and 34 if ` = 3 or 17. If s ∈ c3,0, then [G∗ : CG∗(s)]2′ = 1365,

and 1365 · 33 = 45045 > 15120 = B3. If s ∈ c4,0, then [G∗ : CG∗(s)]2′ = 819, and

819 · 33 = 27027 > 15120 = B3. It follows that in this case, χ must again lift to an

ordinary character.

Next, assume χ lies in a unipotent block. Note that the bound D in part (A) of

Theorem 1.1.1 is larger than B3 for q ≥ 4. Hence, χ must be as in situations A(1),

A(2), or A(3) of Theorem 1.1.1. Also, note that χ(1) must be divisible by (q3−1), as

|O1|, |O±2 |, and |O3| are all divisible by (q3 − 1). Therefore, χ cannot be any of the

characters ρ̂1
3−1, ρ̂2

3−1, β̂3−1, χ̂6−1 or χ̂7− χ̂4. Thus in the case `|(q3−1)(q2 +1) or

3 6= `|(q2− q+ 1), we know from Theorem 1.1.1 that χ lifts to an ordinary character.

Now assume `|(q + 1) and that χ does not lift to an ordinary character. Then by

the above remarks, χ must be χ̂35− χ̂5, which has degree larger than B−2 and is odd.

Since |O3| and |O+
2 | are each even, this shows our χ cannot be this character. So, χ

must again lift to an ordinary character.

This completes the proof, by Lemma 5.1.2 and Theorem 5.5.8.

Corollary 5.5.10. Let G = Sp6(q) with q ≥ 4 even. A nontrivial absolutely ir-

reducible G-module V in characteristic ` 6= 2 is irreducible on a maximal parabolic

subgroup P if and only if P = P3 and V affords the `-Brauer character α̂3.

Proof. This follows directly from Corollary 5.5.2, Theorem 5.5.6, and Theorem 5.5.9.
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5.5.1 Descent to Subgroups of P3

Let Z = Z3 be the unipotent radical of P3, and let R ≤ Z be the subgroup [q3] given

by matrices C ∈ Z with zero diagonal. That is,

R =

{(
I C
0 I

)
: C ∈M3(q), C + CT = 0, C has diagonal 0

}
.

Note that the subgroups L3
∼= GL3(q) and L′3

∼= SL3(q) of P3 each act transitively

on R \ 0.

Let λ = λY be an irreducible character of Z corresponding to the matrix Y ∈

M3(q), and write λ|R = µ = µY . If λ′ is another such character corresponding to Y ′

and λ′|R = µ′, then we have µ = µ′ if and only if (Y + Y ′) + (Y + Y ′)T = 0. (Note

that unlike characters of Z, we do not require that Y, Y ′ have the same diagonal.)

Hence µY = µXTY X for X ∈ GL3(q) if and only if XT (Y + Y T )X = Y + Y T . That

is, X is in the isometry group of the form with Gram matrix Y + Y T . As the action

of X ∈ L3
∼= GL3(q) on µY is given by (µY )X = µXTY X , this means that stabL3(µ) is

this isometry group..

In particular, if λ is in the P3-orbit O−2 of linear characters of Z, then this means

that stabL3(λ|R) = [q2] : (F×q × Sp2(q)) = [q2] : GL2(q). Recall that from the proof of

Theorem 5.5.5, α3|Z = ω−2 is the orbit sum corresponding to O−2 . Hence we have

stabL3(µ) = [q2] : GL2(q)

if µ is a constituent of α3|R. Taking the elements of this stabilizer with determinant

one, we also see

stabL′3(µ) = [q2] : SL2(q).

Lemma 5.5.11. The Brauer character α̂3 is irreducible on the subgroup P ′3 = Z :

SL3(q) of P3.

Proof. Let λ be an irreducible constituent of α̂3|Z , so that λ ∈ O−2 . Recall that the

stabilizer in L3
∼= GL3(q) is stabL3(λ) ∼= [q2] : (F×q × O−2 (q)). Taking the elements in
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this group with determinant 1, we see that the stabilizer in SL3(q) is isomorphic to

[q2] : (O−2 (q)), and hence the P ′3-orbit has length

q9(q2 − 1)(q3 − 1)

2q8(q + 1)
=

1

2
q(q − 1)(q3 − 1) = |O−2 | = α3(1).

Therefore, α̂3|P ′3 is irreducible.

Lemma 5.5.12. Let G = Sp6(q) with q ≥ 4 even, and let V be an absolutely irre-

ducible G-module V which affords the Brauer character α̂3. Write Z = Z3 for the

unipotent radical of the parabolic subgroup P3 and L = L3 for the Levi subgroup. If

H < P3 with V |H irreducible, then ZH contains P ′3 = Z : L′ = Z : SL3(q).

Proof. Note that HZ/Z ∼= H/(Z ∩H) is a subgroup of P3/Z ∼= GL3(q). As α3(1) =

q(q−1)(q3−1)/2, we know that |H|2′ is divisible by (q−1)(q3−1). Moreover, HZ/Z

must act transitively on the q3 − 1 elements of R \ 0. Therefore, by [40, Proposition

3.3], there is some power of q, say qs, such that M := HZ/Z satisfies one of the

following:

1. M B SLa(q
s) with qsa = q3 for some a ≥ 2

2. M B Sp2a(q
s)′ with q2sa = q3 for some a ≥ 2

3. M BG2(qs)′ with q6s = q3, or

4. M · (Z(GL3(q))) ≤ ΓL1(q3).

Now, the conditions that q2as = q3 or q6s = q3 imply that H cannot satisfy (2) or (3).

As (q − 1)(q3 − 1) must divide |M |, H also cannot satisfy (4). Hence, H is as in (1).

But then the conditions qas = q3 and q ≥ 2 imply that a = 3 and s = 1. Therefore,

SL3(q) CM = HZ/Z.
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Lemma 5.5.13. A nontrivial SL3(q)-invariant proper subgroup of Z must be R.

Proof. Let D < Z be nontrivial and invariant under the SL3(q)-action, which is

given by XCXT for C ∈ Z and X ∈ SL3(q). Note that here we have made the

identifications

C ↔
(
I C
0 I

)
and X ↔

(
X 0
0 (X−1)T

)
.

Now, note that SL3(q) acts transitively on R \ 0, so D ∩ R must be either R or 0.

(Indeed, the action of SL3(q) on R is the second wedge Λ2(U) ' U∗ of the action on

the natural module U for SL3(q).) Moreover, SL3(q) acts transitively on (Z/R) \ 0,

so either DR/R = Z/R or DR = R. (Indeed, the action of SL3(q) on Z/R is the

Frobenius twist U (2) of the action of SL3(q) on the natural module U .) If R < D,

then D/R = Z/R, so D = Z, a contradiction. Hence either D = R or D ∩R = 0.

If D ∩ R = 0, then DR 6= R, so DR = Z and D is a complement in Z for R.

Hence no two elements of D can have the same diagonal. Let

g =

 1 a b
a 0 c
b c 0


be the element in D with diagonal (1, 0, 0), which must exist since SL3(q) acts transi-

tively on nonzero elements of DR/R = Z/R. If g is diagonal, then any matrix of the

form diag(a, 0, 0), diag(0, a, 0), or diag(0, 0, a) for a 6= 0 is in the orbit of g. Thus since

D is an SL3(q)-invariant subgroup, D contains the group of all diagonal matrices. As

D is a complement for R, it follows that in fact D is the group of diagonal matrices,

a contradiction since this group is not SL3(q)-invariant. Therefore, g has nonzero

nondiagonal entries. We claim that there is some X ∈ SL3(q) which stabilizes the

coset g + R but does not stabilize g. That is, g and XgXT have the same diagonal,

but are not the same element, yielding a contradiction. Indeed, if at least one of a, b

is nonzero, then any X = diag(1, s, s−1) with s 6= 1 satisfies the claim. If a = b = 0
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and c 6= 0, we can take X to be

X =

 1 r 0
0 1 0
0 0 1


with r 6= 0, proving the claim. We have therefore shown that D = R.

Theorem 5.5.14. Let G = Sp6(q) with q ≥ 4 even, and let V be an absolutely irre-

ducible G-module V which affords the Brauer character α̂3. Then V |H is irreducible

for some H < P3 if and only if H contains P ′3 = Z : SL3(q).

Proof. First, if H contains P ′3, then V |H is irreducible by Lemma 5.5.11. Conversely,

suppose that V |H is irreducible for some H < P3. Assume by way of contradiction

that H does not contain P ′3. By Lemma 5.5.12, HZ contains P ′3, so H ∩Z is SL3(q)-

invariant. Therefore, by Lemma 5.5.13, H ∩ Z must be 1, R, or Z. Since H does not

contain P ′3, it follows that H ∩ Z = 1 or R.

Write H1 := H ∩ P ′3. Then H1Z = P ′3. (Indeed, P ′3 ≤ ZH, so any g ∈ P ′3 can be

written as g = zh with z ∈ Z, h ∈ H. Hence z−1g = h ∈ H ∩ P ′3 = H1, and g ∈ H1Z.

On the other hand, H1Z ≤ P ′3Z = P ′3.)

Now, if H ∩ Z = 1, then H1 ∩ Z = 1 and H1
∼= P ′3/Z = SL3(q). Since V |H is

irreducible and H/H1 is cyclic of order q − 1, we see by Clifford theory that H1
∼=

SL3(q) has an irreducible character of degree α3(1)/d for some d dividing q−1. Then

SL3(q) has an irreducible character degree divisible by q(q3 − 1)/2, a contradiction,

as m(SL3(q)) < q(q3 − 1)/2.

Hence we have H ∩ Z = R. Then H1 ∩ Z = R as well, so (H1/R) ∩ (Z/R) = 1,

and H1/R is a complement for (Z/R) = [q3] in P ′3/R
∼= [q3] : SL3(q). As the first

cohomology group H1(SL3(q),F3
q) is trivial (see, for example [17, Table 4.5]), any

complement for Z/R in P ′3/R is conjugate in P ′3/R to H1/R. In particular, writing

K1 := R : L′3 = R : SL3(q), we see that K1/R is also a complement for Z/R in P ′3/R.
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Hence, K1/R is conjugate to H1/R in P ′3/R, so K1 is conjugate to H1 in P ′3, and we

may assume for the remainder of the proof that H1 = R : L′3 = R : SL3(q).

As H/H1 is cyclic of order dividing q − 1, we know by Clifford theory that if

α3|H is irreducible, then there is some d|(q − 1) so that each irreducible constituent

of α3|H1 has degree α3(1)/d. Let β ∈ Irr(H1) be one such constituent, and let µ

be a constituent of β|R. Then since L′3 = SL3(q) acts transitively on Irr(R) \ {1R},

IH1(µ) := stabH1(µ) = R : ([q2] : SL2(q)). By Clifford theory, we can write β|H1 =

ψH1 for some ψ ∈ Irr(IH1(µ)|µ). Hence β(1) = [H : IH(µ)] · ψ(1) = (q3 − 1)ψ(1).

We can view ψ as a character of IH(µ)/ kerµ, as ψ|R = e·µ for some integer e. But

IH(µ)/ kerµ ∼= C2× ([q2] : SL2(q)), as R is elementary abelian and µ is nontrivial. If

ψ is nontrivial on [q2], then ψ|[q2] is some integer times an orbit sum for some SL2(q)-

orbit of characters of [q2], again by Clifford theory. However, as SL2(q) is transitive

on [q2] \ 0, it follows that ψ(1) is divisible by q2− 1, a contradiction since β(1) is not

divisible by q2 − 1.

Hence ψ is trivial on [q2], so ψ can be viewed as a character of C2 × SL2(q). As

q ≥ 4, ψ(1) = q(q− 1)/2d is even. Now, the only even irreducible character degree of

SL2(q) is q, but q 6= q(q−1)/2d, which contradicts the existence of this β. Therefore,

α3|H cannot be irreducible, so neither is α̂3|H .

We have now completed the proof of Theorem 1.1.2.

5.6 The case q = 2

In this section, we prove Theorems 1.1.4 and 1.1.5. To do this, we use the computer

algebra system GAP, [24]. In particular, we utilize the character table library [11],

in which the ordinary and Brauer character tables for Sp6(2) and Sp4(2) ∼= S6, along

with all of their maximal subgroups, are stored. The maximal subgroups of Sp6(2)
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are as follows:

U4(2).2, A8.2, 25 : S6, U3(3).2, 26 : L3(2), 2.[26] : (S3×S3), S3×S6, L2(8).3,

and the maximal subgroups of Sp4(2) ∼= S6 are

A6, A5.2 = S5, O−4 (2) ∼= S5, S3 o S2, 2× S4, S2 o S3

The ordinary and Brauer character tables for each of these maximal subgroups are

stored as well, with the exception of 25 : S6 and 26 : L3(2), for which we only have the

ordinary character tables. In addition, the command PossibleClassFusions(c1,c2)

gives all possible fusions from the group whose (Brauer) character table is c1 and the

group whose (Brauer) character table is c2. Using this command, it is straightfor-

ward to find all Brauer characters which restrict irreducibly from c2 to c1. Below is

a sample of code utilizing this technique:

cth:=CharacterTable("[maxsubgroup]");

ctg:=CharacterTable("S6(2)");

#cth:=CharacterTable(cth, p);

#ctg:=CharacterTable(ctg,p); for p-Brauer character tables

irrg:=Irr(ctg);

irrh:=Irr(cth);

fus:=PossibleClassFusions(cth,ctg)[1];

for i in [1..Length(irrg)]

do

for j in [1..Length(irrh)]

do

if irrg[i][1]>1 and irrg[i][1]=irrh[j][1] then
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for m in [1..Length(fus)]

do

if not irrg[i][fus[m]]=irrh[j][m] then

irredsmatch:=false;

break;

else

irredsmatch:=true;

fi;

od;

fi;

od;

od;

From here, we note that for any given ` 6= 2, α̂3 , β̂3 − {0, 1}, and ρ̂1
3 − {0, 1} are

the only irreducible `-Brauer characters of Sp6(2) with their respective degrees. Also,

from [27, Lemma 3.8], we know ζ1
3 (g) = α3(g) +β3(g)−1 on 2-elements, which allows

us to distinguish between ζ1
3 and the other character of degree 21. We also know ρ2

3−1

should restrict to an irreducible 3-Brauer character, so from this we can distinguish

between ρ2
3 and the other character of degree 35, which restricts to `-regular elements

as an irreducible Brauer character for all ` (this is needed, for example, in the case

H = A8.2).

Now, in the case H = P3 = 26 : L3(2) or 25 : S6 and G = Sp6(2), we need

additional techniques, as the Brauer character tables for these choices of H are not

stored in the GAP character table library. However, in the case H = 25 : S6, we can

use the above technique to see that there are no ordinary irreducible characters of G

which restrict irreducibly toH, and moreover, there is no χ|H−λ for χ ∈ Irr(G), λ ∈ Ĥ

which is irreducible on H. But we can also see that m(H) = 45, and any ϕ ∈ IBr`(G)

with ϕ(1) ≤ 45 either lifts to a complex character or is χ̂ − 1 for some complex
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character χ. Thus by Lemma 5.1.3, there are no irreducible Brauer characters of G

which restrict to an irreducible Brauer character of H, for any choice of ` 6= 2.

We are therefore left with the case H = P3. In this case, it is clear from GAP that

the only ordinary characters which restrict irreducibly to H are α3 and χ4, where χ4

is the unique irreducible character of degree 21 which is not ζ1
3 . Moreover, there is

again no χ ∈ Irr(G), λ ∈ Ĥ such that χ|H − λ ∈ Irr(H). Referring to the notation of

Section 5.5, we have |O1| = 7, |O−2 | = 7, |O+
2 | = 14, and |O3| = 28. So any irreducible

Brauer character of H must have degree divisible by 7. Also, m(H) = 56. We can see

from the Brauer character table of G that if χ ∈ IBr`(G) has χ(1) ≤ 56, then either

χ or χ+ 1 lifts to C. Thus by Lemma 5.1.3, the only possibilities are α̂3 and χ̂4. Now

α̂3|H is irreducible since α3(1) = |O1| = |O−2 |, and these are the smallest orbits of

characters in Z3. Therefore it remains only to show that χ̂4 is indeed also irreducible

on H.

Since we know that χ4|H ∈ Irr(H), we know that χ4|Z3 must contain only one

H-orbit of Z3-characters as constituents, which means that χ4|Z3 = 3ω1 or 3ω−2 ,

continuing with the notation of Section 5.5. Since Z3 consists of 2-elements, we know

χ̂4|Z3 can be written in the same way. Moreover, since q = 2, stabL3(λ) is solvable for

λ 6= 1, so we know that if λ is a constituent of χ4|Z3 , then any ψ ∈ IBr`(I|λ) lifts to

an ordinary character. Since by Clifford theory, any irreducible constituent of χ̂4|H
can be written ψH for such a ψ, it follows that if χ̂4|H is reducible, then it can be

written as the sum of some ϕ̂i for ϕi ∈ Irr(H|λ). In particular, each of these ϕi must

have degree 7 or 14. By inspection of the columns of the ordinary character table of

H corresponding to 3-regular and 7-regular classes, it is clear that χ4|H cannot be

written as such a sum on `-regular elements, and therefore χ̂4|H is irreducible.

This completes the proof of Theorems 1.1.4 and 1.1.5, and therefore the classifi-

cation of triples as in Problem 1 when G = Sp6(q) or Sp4(q) with q even.
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Chapter 6

Restrictions of Complex Representations of

Finite Unitary Groups of Low Rank to Certain

Subgroups

In this short chapter, we begin a discussion of the pair (PSUn−1(q), PSUn(q)) in

Seitz’ list, as listed in Section 1.1. (We note, however, that this pair was omitted

from Seitz’ original list.) We consider triples (G, V,H) as in Problem 1 in the case

where G = SUn(q), H is a particular subgroup isomorphic to GUn−1(q), and V is an

ordinary representation of G. For the purposes of this chapter, it will be convenient

to alter our notation, letting S := SUn(q) and G := GUn(q). We will eventually deal

with two subgroups H and K of G with H ∼= GUn−1(q) ∼= K. The problem we focus

on in this chapter is the following:

Problem 2. Let S = SUn(q) and K ≤ G be the subgroup

K :=

{(
X 0
0 detX−1

)
: X ∈ GUn−1(q)

}
.

Classify all χ ∈ Irr(S) so that χ|K ∈ Irr(K).

While we conjecture that no triples as in Problem 1 exist for our choice of G and

H, this chapter serves merely as a start to the discussion for Problem 2, and we by

no means solve the problem here.

One of the main results of this chapter, which we prove in Section 6.1, shows that

no characters can exist as in Problem 2 except possibly in the case that (q+1) divides

n. (Note that we have included this condition in our version of Seitz’ list in Section

1.1.) In Section 6.2 we show that Problem 2 can be reduced to a question about

the irreducible characters of GUn(q). We study the problem in detail for n = 5 in

Section 6.3 and show that in this case, no such characters exist. In Section 6.4, we
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also mention the same result for the remaining 4 ≤ n ≤ 7 and begin considering the

case n = 8, 9.

Throughout this chapter, let G := GUn(q) and S := SUn(q). Recall that S C G

with G/S ∼= Cq+1, Z(G) = {cIn : c ∈ Fq2 ; cq+1 = 1} ∼= Cq+1, and Z(S) = S ∩ Z(G) ∼=

Cgcd(n,q+1). We will be interested in certain subgroups of G and S, which we now

define. Let K be the subgroup of SUn(q) given by:

K :=

{(
X 0
0 (detX)−1

)
: X ∈ GUn−1(q)

}
.

Define H̃ to be the subgroup of GUn(q) given by

H̃ :=

{(
X 0
0 a

)
: X ∈ GUn−1(q); a ∈ F×q2 s.t. aq+1 = 1

}
Clearly K is a subgroup of H̃, and in fact K = SUn(q) ∩ H̃. So, since SUn(q) is

normal in GUn(q), we have that K C H̃. Finally, let H be the subgroup of H̃ given

by

H :=

{(
X 0
0 1

)
: X ∈ GUn−1(q)

}
.

H is normal in H̃, since(
X 0
0 a

)(
Y 0
0 1

)(
X−1 0

0 a−1

)
=

(
XYX−1 0

0 1

)
∈ H.

So we have the following lattice of subgroups, where a double line denotes a normal

subgroup:

G

@@
@@

@@
@@

��
��

��
��

��
��

��
��

S

??
??

??
?? H̃

~~
~~

~~
~~

~~
~~

~~
~~

@@
@@

@@
@

@@
@@

@@
@

K H

.

We will keep the same notation for the subgroups K,H, H̃, as well as the notation

S = SUn(q), G = GUn(q) throughout this chapter.
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6.1 A Condition On (n, q)

Recall that our main problem in this chapter is to understand the irreducible complex

characters of S = SUn(q) which when restricted to K are still irreducible. In this

section, our goal is to show that if (q + 1) does not divide n, then no such characters

exist. We begin with two lemmas:

Lemma 6.1.1. Let S be any finite group and let K ≤ S be a subgroup. Suppose that

χ ∈ Irr(S) is a faithful irreducible character and that χ|K ∈ Irr(K). Then

CS(K) = Z(S).

Proof. Let V be an irreducible CS-module which affords the character χ. Since V |K
is also an irreducible CK-module, we have

EndS(V ) = C · 1 = EndK(V )

by Schur’s Lemma. Now let x ∈ CS(K). Then left multiplication by x is a K-

endomorphism of V , and therefore is also an S-endomorphism of V . Hence for any

s ∈ S and v ∈ V ,

sx(v) = x(sv) = xsv = xs(v).

If X is the representation of S affording V , then we know that X(x) is defined by the

multiplication of x on V , so that

X(x)X(s) = X(s)X(x).

In other words, X(x) commutes with all elements in the image X(S). Then we know

that X(x) = λI for some λ ∈ C, and it follows that x ∈ Z(χ) (see, for example,

[33, (2.25) and (2.27)]). Since χ is faithful, we know that Z(χ) = Z(S), so in fact

x ∈ Z(S). This yields the containment CS(K) ≤ Z(S) and therefore,

CS(K) = Z(S)
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since Z(S) is certainly contained in CS(K).

Lemma 6.1.2. Let S = SUn(q) and K =

{(
X 0
0 (detX)−1

)
: X ∈ GUn−1(q)

}
. If

CS(K) = Z(S), then (q + 1) divides n.

Proof. We prove the contrapositive. Suppose that (q + 1) does not divide n. Then

there exists α ∈ Fq2 such that αq+1 = 1 but αn 6= 1 (in particular, take α of order

q + 1 in F×q2). Then the element

A =

(
αIn−1 0

0 α1−n

)
commutes with the elements of K and is contained in S, as detA = αn−1α1−n = 1.

However, since

Z(S) = {λI : λ ∈ Fq2 , λq+1 = 1 = λn},

we know that A is not in Z(S), for this would imply that α = α1−n, and therefore

αn = 1, a contradiction. Then A ∈ CS(K) but A 6∈ Z(S), and therefore CS(K) 6=

Z(S).

Proposition 6.1.3. Let S = SUn(q) and K as above, with (n, q2) 6∈ {(2, 4), (2, 9), (3, 4)}.

If (q + 1) does not divide n, then there are no χ ∈ Irr(S) such that χ|K ∈ Irr(K).

Proof. For (n, q2) 6= (2, 4), (2, 9), (3, 4), we have that S is perfect and S/Z(S) =

PSUn(q) is a nonabelian simple group. Now if χ ∈ Irr(S) then we know that we

can view χ as a faithful character on S/ kerχ. Moreover, we have that kerχ ≤

Z(S) ≤ K ≤ S. Hence it suffices to show that CS/ kerχ(K/ kerχ) 6= Z(S/ kerχ), as

then Lemma 6.1.1 implies that χ is not irreducible when restricted to K/ kerχ, and

therefore that χ|K 6∈ Irr(K).

Now since q + 1 does not divide n, we have by Lemma 6.1.2 that CS(K) 6= Z(S).

Also, note that if A is the matrix from the proof of Lemma 6.1.2, then A 6∈ Z(S)
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by the proof of Lemma 6.1.2, and therefore A · Z(S) is nontrivial as an element of

S/Z(S). However, since this element commutes with all of K/Z(S), we see that

CS/Z(S)(K/Z(S)) 6= Z(S/Z(S)) = {1}.

Now suppose s ∈ S satisfies that s := s · ker(χ) ∈ S/ kerχ is an element of

Z(S/ kerχ). Then since kerχ ≤ Z(S), we know that

S/Z(S) ∼= (S/ ker(χ))/(Z(S)/ kerχ)

so S/Z(S) is a quotient of S/ ker(χ). Then s · (Z(S)/ kerχ) is contained in the center

of (S/ ker(χ))/(Z(S)/ kerχ), which is trivial since this is a simple group. This means

that s · Z(S) ∈ Z(S/Z(S)) = {1} and so s ∈ Z(S).

In particular, since our element A is not in the center of S, we know that A ·kerχ

is not in Z(S/ kerχ). But A · kerχ ∈ CS/ kerχ(K/ kerχ), which shows that

CS/ kerχ(K/ kerχ) 6= Z(S/ kerχ),

and therefore χ|K 6∈ Irr(K).

6.2 Reducing the Problem

As discussed above, we wish to find all χ ∈ Irr(SUn(q)) such that χ|K ∈ Irr(K). In

general, the character table for S = SUn(q) is not known. As significantly more is

known about the character table for G = GUn(q), we wish to reduce our problem to

one regarding this group instead, which is the goal of this section.

More specifically, in this section we show that if χ ∈ Irr(SUn(q)) such that χ|K
is an irreducible character of K, then there is a character θ ∈ Irr(GUn(q)) such that

θ|H = ϕ1 + ... + ϕm where m divides (n, q + 1), and each ϕi has the same degree.

Recall here that H ≤ GUn(q) is the subgroup

H :=

{(
X 0
0 1

)
: X ∈ GUn−1(q)

}
∼= GUn−1(q)
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This gives us hope of using this fact to prove our conjecture that no such χ ∈ Irr(S)

exists by showing that no θ ∈ Irr(G) exists with this property.

Proposition 6.2.1. Let S,K,G, and H be as above. If χ ∈ Irr(S) such that χ|K ∈

Irr(K), then there is some θ ∈ Irr(G) such that θ|H is the sum of m irreducible

characters of H, each of the same degree, where m|(n, q + 1).

Proof. Let χ ∈ Irr(S) with χ|K = ψ ∈ Irr(K) and let θ ∈ Irr(G) be an irreducible

constituent of χG. By Clifford’s theorem, we have

θ|S = e
∑

χg∈OrbG(χ)

χg.

Recall that G/S is cyclic, and thus e = 1 by [33, Corollary (11.22)]. Then θ|S is the

sum of all of the elements in the orbit of χ under G. Now, note that we can choose

the representatives {g : χg ∈ OrbG(χ)} from G/S. But we have

G/S ∼= {α ∈ (Fq2)× : αq+1 = 1}

where the isomorphism is given by g · S 7→ det(g). That is, there is a complete set of

coset representatives for G/S given by a set T of elements of G which satisfy

{det g : g ∈ T } = {α ∈ (Fq2)× : αq+1 = 1}.

In particular, we can choose

T :=

{(
In−1 0

0 α

)
: α ∈ (Fq2)×;αq+1 = 1

}
.

Then

θ|S =

[G:IG(χ)]∑
i=1

χgi and so θ|K =

[G:IG(χ)]∑
i=1

ψgi ,

where gi ∈ T . But for x =

(
X 0
0 detX−1

)
∈ K and g =

(
I 0
0 α

)
∈ T we have

gxg−1 =

(
I 0
0 α

)(
X 0
0 detX−1

)(
I 0
0 α−1

)
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=

(
X 0
0 a detX−1a−1

)
=

(
X 0
0 detX−1

)
= x.

In particular, this tells us that ψg = ψ for all g ∈ T , so θ|K = [G : IG(χ)]ψ.

Now consider the induced character ψH̃ , where we recall that H̃ ≤ G is the

subgroup

H̃ =

{(
X 0
0 a

)
: X ∈ GUn−1(q); a ∈ F×q2 s.t. aq+1 = 1

}
.

If ϕ ∈ Irr(H̃) is an irreducible constituent of ψH̃ , then since

H̃/K = H̃/(H̃ ∩ S) ∼= H̃S/S ≤ G/S

is cyclic, we have by [33, Corollary 11.22] and Clifford’s theorem that

ϕ|K =

[H̃:I
H̃

(ψ)]∑
i=1

ψhi .

But also, H̃ = K × T , which means that ϕ = β ⊗ λ where β ∈ Irr(K), λ ∈ Irr(T ).

Then ϕ|K = β ∈ Irr(K), and so we have that in fact, ϕ|K = ψ.

Now since
(
θ|H̃
)∣∣
K

= [G : IG(χ)]ψ and the irreducible constituents of ψH̃ are the

only irreducible characters of H̃ which contain ψ as a constituent when restricted to

K, we have that

θ|H̃ =
∑

aiϕi

where ai are some nonnegative integers and ϕi are the irreducible constituents of ψH̃ .

Note that each of these ϕi satisfy ϕi|K = ψ by the above argument. In particular, we

have

[G : IG(χ)]ψ = θ|K =
∑

aiϕi|K =
(∑

ai

)
ψ

so that
∑
ai = [G : IG(χ)]. Also, since H̃ = H × T , we have that ϕi = βi ⊗ λi where

βi ∈ Irr(H) and λi ∈ Irr(T ), so that ϕi|H = βi. Then

θ|H =
(
θ|H̃
)∣∣
H

=
∑

aiϕi|H =
∑

aiβi.
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Then θ|H is the sum of [G : IG(χ)] irreducible characters of H which each have the

same degree, since βi(1) = ϕi(1) = ψ(1) for each i. Hence, it just remains to show

that [G : IG(χ)] divides (n, q + 1).

Let J := IG(χ). Now, clearly we have that Z := Z(G) is contained in J , and

S ≤ J , so that ZS ≤ J . Then [G : J ] divides [G : ZS]. But

[G : ZS] = [G/S : ZS/S] =
q + 1

[ZS : S]

and

[ZS : S] = [Z : Z ∩ S] =
q + 1

(n, q + 1)
.

Thus we have that [G : ZS] = (n, q + 1), so [G : J ] divides (n, q + 1), completing the

proof.

6.3 The Case n = 5.

Proposition 6.2.1 implies that to show our conjecture that there are no χ ∈ Irr(S)

such that χ|K ∈ Irr(K), it suffices to show there are no irreducible characters χ of

G = GUn(q) such that when restricted to H ∼= GUn−1(q), χ can be written

χ|H = ϕ1 + ...+ ϕm

where m divides gcd(n, q+1), and the degrees ϕi(1) are the same for each i = 1, ...,m.

We now consider the case when n = 5 and show that in this case, no such χ exist.

Notice that the property m| gcd(5, q + 1) requires that m = 1, 5, and m can only

be 5 in the case that q ≡ 4 mod 5. If m = 1, then this is exactly when χ|H is

irreducible.

To characterize characters χ of G = GU5(q) which satisfy χ|H = ϕ1 + ... + ϕm

with m|(5, q+1) and ϕ1(1) = ... = ϕm(1), we will make use of the character tables for

GU5(q) and GU4(q) found by Sohei Nozawa in [59] and [58]. The following theorem

of Zsigmondy from elementary number theory will also be useful.
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Theorem 6.3.1 (Zsigmondy). Let q, n be integers with q ≥ 2, n ≥ 3. Then provided

that as pairs in Z2, (q, n) 6= (2, 6), there is a prime s such that s divides qn − 1 but s

does not divide qi − 1 for any i < n.

Using this theorem, we get the following lemma:

Lemma 6.3.2. Let G = GU5(q) and H ≤ G the subgroup as before. If χ ∈ Irr(G)

and q4 − q3 + q2 − q + 1 divides χ(1), then χ can not satisfy

χ|H = ϕ1 + ...+ ϕm

with m|(5, q + 1) and ϕi all the same degree.

Proof. We have that q5 + 1 = (q+ 1)(q4− q3 + q2− q+ 1), and so using Zsigmondy’s

theorem with q and n = 10, we have that there is a prime s dividing q10 − 1 but not

dividing qi − 1 for any i < 10. In particular, s does not divide q5 − 1, which means

that s must divide q5 + 1. Also, s must not divide q3 + 1 since then it divides q6 − 1

and s can’t divide q+ 1 since then it divides q2− 1. Thus we have that there exists a

prime s dividing q5 + 1 but not dividing q4 − 1, q3 + 1, q2 − 1, or q + 1. This prime s

must therefore divide q4− q3 + q2− q+ 1 (since it doesn’t divide q+ 1), and therefore

s|χ(1), but cannot divide |H| = |GU4(q)| = q6(q + 1)(q2 − 1)(q3 + 1)(q4 − 1). This

implies that s cannot divide ϕ(1) for any ϕ ∈ Irr(H), and hence χ|H is not irreducible.

Now, if q ≡ 4 mod 5, then suppose by way of contradiction that χ|H = ϕ1+...+ϕ5

with ϕi ∈ Irr(H) for 1 ≤ i ≤ 5, all of the same degree. Then χ(1) = 5ϕ(1) for ϕ = ϕ1.

As s divides χ(1) but not ϕ(1), we see s = 5. But this is a contradiction, since q ≡ 4

mod 5, and therefore s = 5 divides q + 1, but we have already seen that s does not

divide q + 1. Therefore, χ|H cannot be of this form.

The next lemma will be useful in bounding the degrees of characters for G and

H.
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Lemma 6.3.3. Let P (x) be a monic polynomial of degree r which is a product of

monic polynomials whose nonzero coefficients are from {±1}. Then

(q − 1)r ≤ P (q) ≤ (q + 1)r

for any integer q ≥ 2.

Proof. Without loss of generality, we may assume that P (q) is a monic polynomial of

degree r whose nonzero coefficients are all ±1, since if each factor of this form satisfies

the inequality, then the product will also. The second inequality, P (q) ≤ (q + 1)r, is

obvious, since the binomial expansion tells us that the coefficients of (q + 1)r are all

at least 1. For the first inequality, we proceed by induction.

If r = 2, then (q− 1)2 = q2 − 2q + 1 ≤ q2 − q− 1 ≤ P (q), and so the inequality is

satisfied. Now suppose that for polynomial degrees less than r, the inequality holds.

We know that P (q) ≥ qr−qr−1−qr−2−...−q−1. We claim that qr−qr−1−...−q−1 ≥

(q − 1)(qr−1 − qr−2 − ...− q − 1). We have that

(q − 1)(qr−1 − qr−2 − ...− q − 1) = qr − 2qr−1 + 1

and so qr − qr−1 − ... − q − 1 ≥ (q − 1)(qr−1 − qr−2 − ... − q − 1) exactly when

qr−1 − qr−2 − ... − q − 2 ≥ 0. We know that 2r−1 − 2r−2 − ... − 2 − 2 = 0, and by

Descartes rule of signs, this is the only positive real root of the polynomial. Then

since for q = 3, qr−1− qr−2− ...− q−2 ≥ 0, we know that this is true whenever q ≥ 2,

proving the claim.

This yields that

P (q) ≥ qr − qr−1 − qr−2 − ...− q − 1 ≥ (q − 1)(qr−1 − qr−2 − ...− q − 1)

≥ (q − 1)(q − 1)r−1 = (q − 1)r

by the induction hypothesis, and hence

(q − 1)r ≤ P (q) ≤ (q + 1)r,
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as stated.

Proposition 6.3.4. Let G = GU5(q) and H ∼= GU4(q) be the subgroup of G as above.

Suppose that χ ∈ Irr(G) satisfies χ|H = ϕ1 + ...+ ϕm with m|(5, q + 1) and ϕi all the

same degree. Then χ(1) = 1.

Proof. Assume that χ(1) > 1. From Lemma 6.3.2, we see that in the notation of

Nozawa [59], χ is a member of one of the following families of characters in Irr(G):

A11(i), A12(i), A14(i), A16(i), F (i), as these are the only irreducible characters of G

with degree not divisible by q4 − q3 + q2 − q + 1.

Moreover, from [59] and [58] we see that every character degree of GU5(q) or

GU4(q) is the product of monic polynomials in q whose nonzero coefficients are all ±1.

We will apply Lemma 6.3.3 to the situation where P (q) is the degree of χ ∈ Irr(G)

or ϕ ∈ Irr(H). From [58] we note that the highest degree of such a polynomial

P (q) = ϕ(1) where ϕ ∈ Irr(H) is 6, and hence m(H) ≤ (q + 1)6.

First, suppose χ ∈ Irr(G) is a member of the family A11(i). Then from [59] we

have χ(1) = q10, and thus if χ|H ∈ Irr(H), then we would have that there is some

ϕ ∈ Irr(H) with χ|H = ϕ, so

(q + 1)6 ≥ χ(1) = q10.

But for any q ≥ 2, this is impossible, and thus χ|H is not irreducible. Hence we must

have χ(1) = 5ϕ(1) for some ϕ ∈ Irr(H). Now if q ≡ 4 mod 5, then χ(1) = q10 ≡

410 ≡ 1 mod 5, and therefore 5 does not divide χ(1), a contradiction.

Now suppose that χ ∈ Irr(G) is a member of the family A12(i). [59] tells us that

χ(1) = q6(q − 1)(q2 + 1), which as a polynomial in q has degree 9. Then by Lemma

6.3.3, if χ|H = ϕ ∈ Irr(H), we have

(q − 1)9 ≤ χ(1) ≤ (q + 1)6,
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so that q must be 2 or 3. If q = 3, then we see that χ(1) = 14580 > 4096 =

46 = (q + 1)6, violating Lemma 6.3.3. Then it must be that q = 2, which we by

computation in GAP (see Section 6.3.1) is a contradiction. So χ|H 6∈ Irr(H), and it

must be that q ≡ 4 mod 5. Then χ(1) ≡ 1 mod 5 and therefore 5 cannot divide

χ(1), a contradiction.

For χ ∈ Irr(G) a member of the family A14(i), we have that χ(1) = q3(q2 − q +

1)(q2+1). We compare this degree to all 22 possible character degrees in Irr(H), given

in [58]. For each ϕ ∈ Irr(H), we use the rational roots test to help find any possible

integers q = pk which can satisfy ϕ(1) = χ(1). It turns out that for this family, no

such q exists for any ϕ, and therefore χ|H 6∈ Irr(H). Also, as in the cases above, when

q ≡ 4 mod 5 we have χ(1) is not divisible by 5, again yielding a contradiction.

If χ ∈ Irr(G) is a member of the family A16(i), then as above, when q ≡ 4

mod 5, 5 does not divide χ(1). Proceeding as in the family A14(i), we see that since

χ(1) = q(q − 1)(q2 + 1), the only possibility of ϕ ∈ Irr(H) such that ϕ(1) = χ(1) are

characters of H of the family χ17(i), which have degree q(q− 1)2(q2 + 1), when q = 2.

Again, computation in GAP (see Section 6.3.1) shows that these characters are not

the restriction of any character of G, and χ|H is reducible.

Finally, let χ be a member of the family F (i), we notice that χ(1) = (q + 1)(q2 −

1)(q3 +1)(q4−1), which is larger than (q+1)6 for all q ≥ 2. Hence χ is reducible when

restricted to H. Now for each ϕ ∈ Irr(H) given by [58], we again use the rational

roots test to determine which q allow for χ(1) = 5ϕ(1). It turns out that none of the

irreducible characters of H satisfy this condition for any q ≡ 4 mod 5, and therefore

χ cannot be in this family.

Hence, it must be that χ is a linear character of G.

We are now ready to solve Problem 2 in the case n = 5:
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Proposition 6.3.5. There are no nonlinear irreducible characters χ of S = SU5(q)

such that the restriction χ|K to K ∼= GU4(q), is irreducible.

Proof. This is immediate from Proposition 6.3.4 and Proposition 6.2.1.

We note that to prove Proposition 6.3.5, we could have noted that when q = 2, the

result follows from Proposition 6.1.3, so that the computations in GAP were not

necessary. However, we provide the discussion of these computations in the next

section for completion.

6.3.1 GAP Computation for q = 2

In order for χ ∈ Irr(G) to satisfy χ|H ∈ Irr(H), we must have that there is ϕ ∈ Irr(H)

so that χ(1) = ϕ(1). For q = 2, to find all such pairs of G- and H-characters, we use

the following code:

G:=GeneralUnitaryGroup(5,2);

H:=GeneralUnitaryGroup(4,2);

c:=CharacterTable(G);

d:=CharacterTable(H);

irrG:=Irr(c);

irrH:=Irr(d);

for k in [1..Length(irrG)]

do

if Degree(irrG[k])>1 then

for i in [1..Length(irrH)]

do

if Degree(irrG[k])=Degree(irrH[i]) then
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Print("X");Print(k);Print(",");

Print("Y");Print(i); Print(" \n");

fi;

od;

fi;

od;

This code compares all degrees of irreducible characters of G to all degrees of irre-

ducible characters of H, and prints out all pairs Xk,Yj (where Xk is the kth character

of G and Yj is the jth character of H) which have the same degree. The resulting

pairs are:

X4,Y13 X4,Y14 X4,Y15 X4,Y16 X4,Y17 X4,Y18

X5,Y13 X5,Y14 X5,Y15 X5,Y16 X5,Y17 X5,Y18

X6,Y13 X6,Y14 X6,Y15 X6,Y16 X6,Y17 X6,Y18

This means that the only possibilities for χ ∈ Irr(G) to be irreducible when

restricted to H are if χ is the 4th, 5th, or 6th irreducible character of G in GAP’s

library, and the corresponding character ofH must be the 13th, 14th, 15th, 16th, 17th,

or 18th. Now, in order for one of the pairs to actually satisfy Xk =: χ|H = ϕ := Yj, we

must have that every value in the character table for ϕ is also found in the character

table for χ. As it turns out, none of these pairs satisfy this condition, as we find using

the following code:

for k in [4..6]

do

for l in [13..18]
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do

Print("The ", l, "th character of H and ",

k, "th character of G \n");

Print("i’th character value of the H-char,

j’th character value of the G-char \n");

for i in [1..Length(irrH[l])]

do

for j in [1..Length(irrG[k])]

do

if irrG[k][j] = irrH[l][i] then

Print(i);Print(",");Print(j);

Print(" ");Print("\n"); break;

fi;

od;

od;

od;

od;

This code runs through all pairs of G-characters and H-characters which were found

to have the same degree above, and then for each such pair runs through all values

found in the character tables. If there is at least one character value of Xk which

matches the ith character value of Yl, then GAP will print “i, j” where j is the first

index of a character value of Xk which matches the character value of Yl. Then any

character value of Yl which is not printed is not found as a Xk character value, showing

that the H-character Yl is not equal to the G-character Xk restricted to H.

Indeed, running the code, we find that for each pair of H- and G- characters with

the same degree, there is at least one character value for the H-character which does
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not match any of the character values for the G-character. This shows that for q = 2,

no nonlinear irreducible character of G is irreducible when restricted to H. Moreover,

since (5, 3) = 1, this implies that when q = 2, n = 5 no nonlinear irreducible character

satisfies the condition in Proposition 6.2.1.

6.4 On the Remaining Cases 4 ≤ n < 10

So far what we have shown is that there are no nontrivial χ ∈ Irr(SUn(q)) such that

χ|K ∈ Irr(K) when (q+ 1) 6 |n or when n = 5. Certainly, Proposition 6.1.3 yields that

for n = 7, there are no nontrivial characters of SU7(q) which restrict irreducibly to K.

The following propositions show that for n = 4 or 6, there are also no χ ∈ Irr(SUn(q))

which restrict irreducibly to SUn−1(q).

Proposition 6.4.1. Let q be a prime power and let χ ∈ Irr(SU4(q)) such that χ|K ∈

Irr(K), where K is as above. Then χ = 1SU4(q).

Proof. Let G = SU4(q) and suppose χ ∈ Irr(G) is nontrivial and χ|K ∈ Irr(K).

Then by Proposition 6.1.3, we see that q must be 3. From GAP, we see that the

only character degree that K ∼= GU3(3) and G ∼= SU4(3) share is 21, and that the

character of this degree in G is integer-valued, yielding only two possibilities for χ|K .

Now, observing the character values on classes consisting of elements of order 12, we

see that these integer-valued characters of K of degree 21 cannot be the restriction

of a degree-21 character of G. Hence we have that χ = 1G, as stated.

Proposition 6.4.2. Let q be a prime power and let χ ∈ Irr(SU6(q)) such that χ|L ∈

Irr(L), where L ≤ K is the subgroup isomorphic to SU5(q). Then χ = 1SU6(q).

Proof. Let G = SU6(q) and suppose χ ∈ Irr(G) is nontrivial and χ|L ∈ Irr(L). Then

by Proposition 6.1.3, we see that q must be 2 or 5.
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First suppose that G = SU6(2) and L ∼= SU5(2). In this case, the only character

degree that these groups share is 440. Now, G has exactly one character of this degree,

χ6 in the notation of GAP, and this character is integer-valued. L has 3 characters

of this degree, but only one which is integer-valued. However, this integer-valued

character of L with degree 440 takes the value 88 on a class of involutions, while no

involutions g of G satisfies χ6(g) = 88. Hence in this case, we must have χ = 1G.

Now let G = SU6(5) and L ∼= SU5(5). Then the only degree in common is

1693250, which has multiplicity 1 in G and 5 in L. Observing the character tables for

GU6(q) and GU5(q) in CHEVIE [26], we see that these restrict from characters in the

family χ|8 of GU6(q) and χ|14 of GU5(q), respectively. Observing the values of these

characters on unipotent classes, we see that a character in the family χ|14 of GU5(q)

cannot be the restriction of a character in the family χ|8 of GU6(q). Hence, we again

see that χ = 1G.

We now mention that if n = 8 or 9, then there is exactly one possibility for

χ ∈ Irr(SUn(q)) which could restrict to a character in Irr(SUn−1(q)). (Though of

course, we conjecture that this character does not restrict irreducibly.)

Indeed, if n = 8, then by Proposition 6.1.3, we have that q = 2 or 7. From [49], we

see that the only irreducible character degree that SU8(2) and SU7(2) share is 211904,

which has multiplicity 1 for SU8(2) and multiplicity 4 for SU7(2). Similarly, the only

irreducible character degree in common for SU8(7) and SU7(7) is 1450393913575299,

with multiplicity 1 in SU8(7) and 14 in SU7(7).

If n = 9, then Proposition 6.1.3 yields that q = 2 or 8. From [49],only irreducible

character degree shared by SU9(2) and SU8(2) is 29240, which has multiplicity 1 in

either group. The only degree shared by SU9(8) and SU8(8) is 31771439198720, which

also has multiplicity 1 in either group.
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Chapter 7

Sp6(2
a) is “Good” for the McKay, Alperin

Weight, and Related Local-Global Conjectures

In this Chapter, we prove Theorem 1.2.1, which shows that Sp6(q) and Sp4(q), with q

even, satisfy the conditions for the reductions to the McKay, Alperin weight, blockwise

Alperin weight, and Alperin-McKay conjectures. Recall the discussion in Section 1.2

in Chapter 1 of these conjectures and the reductions.

7.1 Preliminaries and Notation

Throughout this chapter, ` denotes a prime, thought of as the characteristic for a

representation. As usual, Irr(X) will denote the set of irreducible ordinary characters

of X and IBr`(X) will denote the set of irreducible `-Brauer characters of X. Further,

Bl(X|χ) denotes the block of the group X containing χ ∈ Irr(X)∪IBr`(X), Irr0(X|D)

denotes the set of height-zero characters of X which lie in any block with defect group

D, and dz(X) denotes the set of defect-zero characters of X. Given χ ∈ Irr(X), recall

that we denote the central character associated to χ by ωχ. Further, we will denote

by ∗ a fixed isomorphism from the set of `′-roots of unity in C to F×` and set λB = ω∗χ

for B = Bl(X|χ), as in [33, Chapter 15]. Given a set S, write S+ :=
∑

x∈S x. If

Y ≤ X is a subgroup, and b ∈ Bl(Y ), then the induced block bX is the unique block

B so that λXb (K+) = λB(K+) for all conjugacy classes K of X, if such a B exists. (In

this situation, recall that bX is said to be defined.) Recall that λXb (K+) is given by

λb ((K ∩ Y )+) .

If a group X acts on a set S and s ⊆ S, then we denote by Xs or stabX(s) the

subgroup of X stabilizing s. If X acts on a group Y , we denote by Y : X or Y oX

the semidirect product of Y with X. We may also say this is the extension of Y by
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X. In such situations, if r is a positive integer and p is a prime, we will write Y : r if

X = Cr is the cyclic group of order r and Y : pr if X is elementary abelian of order

pr.

For the remainder of the chapter, ` is an odd prime and q is a power of 2. Recall

that |Sp6(q)| = q9(q2 − 1)(q4 − 1)(q6 − 1), so if ` is a prime dividing |Sp6(q)| and

` 6= 3, then ` must divide exactly one of q− 1, q + 1, q2 + 1, q2 + q + 1, or q2 − q + 1.

If ` = 3, then it divides q − 1 if and only if it divides q2 + q + 1, and it divides q + 1

if and only if it divides q2 − q + 1. When ` divides q6 − 1, we will write ε ∈ {±1}

for the number such that `|(q3 − ε). If ` 6= 3, we write d for the integer such that

(q6 − 1)` = `d. (Here r` is the `-part of the integer r.) If ` = 3, we write d for the

integer such that 3d = (q − ε)3, so that (q3 − ε)3 = 3d+1. In any case, we will denote

by m the integer (q − ε)`′ .

We will also borrow from CHEVIE [26] the notation for characters of Sp6(q) and

the roots of unity ζi := exp
(

2π
√
−1

qi−1

)
and ξi := exp

(
2π
√
−1

qi+1

)
. We will sometimes also

use ζ̃i or ξ̃i to denote a corresponding root of unity in F×q .

The following sets for indices will be useful. For ε ∈ {±1}, let I0
q−ε be the set

{i ∈ Z : 1 ≤ i ≤ q − ε − 1}, and let Iq−ε be a set of class representatives on I0
q−ε

under the equivalence relation i ∼ j ⇐⇒ i ≡ ±j mod (q − ε). Let I0
q2+1 := {i ∈

Z : 1 ≤ i ≤ q2} and I0
q2−1 := {i ∈ Z : 1 ≤ i ≤ q2 − 1, (q − 1) 6 |i, (q + 1) 6 |i},

and let Iq2−ε be a set of representatives for the equivalence relation on I0
q2−ε given by

i ∼ j ⇐⇒ i ≡ ±j or ±qj mod (q2 − ε). Similarly, let I0
q3−ε := {i ∈ Z : 1 ≤ i ≤

q3 − ε; (q2 + εq + 1) 6 |i} and Iq3−ε a set of representatives for the equivalence relation

on I0
q3−ε given by i ∼ j ⇐⇒ i ≡ ±j,±qj, or ±q2j mod (q3 − ε). Given one of these

indexing sets, I∗, we write Ik∗ for the elements (i1, ..., ik) of I∗ × I∗... × I∗ (k copies)

with none of i1, i2, ..., ik the same and Ik∗∗ for the set of equivalence classes of Ik∗ under

(i1, ..., ik) ∼ (ρ(i1), ..., ρ(ik)) for all ρ ∈ Sk.

Let G := Sp6(q) and let E1 denote the set of unipotent characters and Ei(J)

denote the Lusztig series E(G, (s)) for G, where s is conjugate in G∗ to the semisimple
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element gi(J) in the notation of [47]. Here J denotes the proper indices (for example,

for the family g6, J = (i) for i ∈ Iq−1, and for the family g32, J = (i, j, k) where

(i, j, k) ∈ I3∗
q+1).

D. White [76] has calculated the decomposition numbers for the unipotent blocks

of G, up to a few unknowns in the case `|(q+1), and we have used this information in

Section 4.3 to describe the irreducible Brauer characters in these blocks. Moreover,

recall that in Section 4.4, we have used the theory of central characters, which are

available in the CHEVIE system [26] for G, to determine the block distribution of the

remaining complex characters and that we have described the Brauer characters of G

in terms of the restrictions of ordinary characters to G◦. In particular, recall that the

set E (G, (gi(J))) forms a basic set for the blocks of E` (G, (gi(J))) for the semisimple

`′-elements gi(J).

As in Section 4.4, when `|(q2−1), we will denote by Bi(J) the `-blocks (or, in some

situations, just the irreducible Brauer characters) in E`(G, (s)) where s is conjugate

in G∗ to the semisimple element gi(J) in the notation of [47]. In most cases, CG∗(s)

has only one unipotent block, and therefore E`(G, (s)) is a single block. However,

when multiple such blocks exist, which occurs for i = 6, 7, 8, 9 when `|(q2 − 1), we

will denote by Bi(J)(0) the (Brauer characters in) the block corresponding in the

Bonnafé-Rouquier correspondence to the principal block of CG∗(s) and by Bi(J)(1)

the (characters in the) block corresponding to the unique other block of positive

defect. Further, B0 and B1 will denote the (Brauer characters in the) principal block

and the cyclic unipotent block, respectively, as described in [76].

7.2 Radical Subgroups of Sp6(2
a) and Sp4(2

a)

In this section we describe the radical subgroups of Sp6(q) with q even and their

normalizers. In [6], J. An describes the radical subgroups for Sp2n(q) with odd q, and

his results in the first two sections extend to Sp6(q) when q is even and `|(q2 − 1),
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so we will often refer the reader there. We begin by setting some notation for the

subgroups of Sp6(q) that will be of interest.

Let G = Sp2n(q) with q even and let {e1, e2, ..., en, f1, f2, ..., fn} be the standard

symplectic basis for the natural module F2n
q for G. For r ≤ n, we can view Sp2r(q)

as a subgroup of G by identification with the pointwise stabilizer

Sp2r(q) ∼= stabG(er+1, ..., en, fr+1, .., fn),

and by iterating this, we see that for integers r1 ≥ r2 ≥ ... ≥ rn ≥ 0 so that

s :=
∑n

i=1 ri ≤ n, we may view the direct product
∏

i Sp2ri(q) as a subgroup of G

which stabilizes (point-wise) a 2(n − s)-dimensional subspace of F2n
q . Moreover, we

may further view GL±r (q) as a subgroup of Sp2r(q), so that
∏

iGL
±
ri

(q) ≤ G under this

embedding. We will also require the embeddings GL±1 (q3) ≤ GL±3 (q) and GU1(q2) ≤

GL2(q). (Here we use the notation GL+
r (q) := GLr(q) and GL−r (q) := GUr(q).)

Now specialize n = 3, so G = Sp6(q), and write H := Sp4(q) = stabG(e3, f3). Sup-

pose first that `|(q2−1), and let ε ∈ {±1} be such that `|(q−ε), with (q−ε)` = `d. (We

will also write ε for the corresponding sign ±.) Let r1 ≥ r2 ≥ r3 ≥ 0 be as in our dis-

cussion above, and define Qr1,r2,r3 := O`

(
Z
(∏3

i=1GL
ε
ri

(q)
))

, viewed as an `-subgroup

of G under the embedding described above. Then CG(Qr1,r2,r3) = Sp2(n−s)(q) ×∏3
i=1GL

ε
ri

(q), and if ci is the number of times ri appears, then NG(Qr1,r2,r3) =

Sp2(n−s)(q) ×
∏(

GLεri(q) : 2
)
o Sci , where the product is now taken over the i so

that each distinct ri appears only once. (This can be seen from direct calculation, or

by arguments similar to those in [6, Sections 1 and 2].) Here we can view GLεri(q)

as its image under the map A 7→ diag(A, TA−1), possibly viewed in the overgroup

Sp2ri(q
2), with the C2 extension inducing the graph automorphism τ : A 7→ TA−1 on

GLεri(q). When ri = 0 for some i, we will suppress the notation, so that we will write,

for example, Q1 rather than Q1,0,0, and Q1,1 rather than Q1,1,0. Hence Q1, Q2, and

Q3 are cyclic groups of order `d, Q1,1 and Q2,1 are isomorphic to C`d ×C`d , and Q1,1,1

is isomorphic to C`d × C`d × C`d . Moreover, notice that Q1,1 ∈ Syl`(H), and when
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` 6= 3, Q1,1,1 ∈ Syl`(G).

If ` = 3, let P denote the Sylow subgroup, which is Q1,1,1 oC3, or C`d oC3, which

we can view inside Sp2(q) o S3 ≤ G. Write Z := Q3 and let R ≤ GLε3(q) be the

embedding of the symplectic-type group which is the central product of Z and an

extraspecial group E of order 27 with exponent 3, as in [6, (1A) and (1B)]. That is,

E = 〈x1, x2〉 with x3
i = 1 for i = 1, 2, [x1, x2] = y, and {z ∈ Z : z3 = 1} = Z(E) = 〈y〉.

Moreover, the group of automorphisms of R which commute with Z is isomorphic to

Inn(E) o Sp2(3). (See [6, (1.1)].)

Now suppose that `|(q4 + q2 + 1), and let ε be so that `|(q2 + εq + 1). Write

Q(3) := O`(Z(GLε1(q3))). When ` 6= 3, Q(3) is a cyclic Sylow `-subgroup of G of order

(q2 + εq + 1)`. When ` = 3, we have 3|(q − ε) as well, and (q2 + εq + 1)3 = 3. In this

case, Q(3) is a cyclic group of order 3d+1 where (q − ε)3 = 3d. When `|(q2 + 1), write

Q(2) := O`(Z(GU1(q2))) so that Q(2) is a cyclic Sylow `-subgroup of G.

Let s := s3, s2 be a generator of Q(3), Q(2), respectively. Write N := NG(〈s〉) and

C := CG(〈s〉). From the description in [47] of semisimple classes of G, we see that

s is conjugate to si if and only if i ∈ {±q, ...,±qj}, where j = 3, 2 respectively, so

that N/C = 〈τ, β〉 is generated by τ : s 7→ s−1, β : s 7→ sq. Moreover, CG(s3) = Cq3−ε

and CG(s2) = CH(s2) × Sp2(q) = Cq2+1 × Sp2(q), so NG(Q(3)) = Cq3−ε : 6 and

NG(Q(2)) = NH(Q(2))× Sp2(q) = Cq2+1 : 22 × Sp2(q).

Proposition 7.2.1. 1. Let G = Sp6(q) with q even and let Q be a nontrivial

`-radical subgroup of G for a prime ` 6= 2 dividing |G|. Then:

• If 3 6= `|(q2 − 1), then Q is G-conjugate to one of Q1, Q2, Q3, Q1,1, Q2,1 or

Q1,1,1.

• If ` = 3|(q2 − 1), then Q is G-conjugate to one of Q1, Q2, Q3, Q1,1, Q2,1,

Q1,1,1, Q
(3), P or R.

• If 3 6= `|(q4 + q2 + 1), then Q is G-conjugate to Q(3).
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• If `|(q2 + 1), then Q is G-conjugate to Q(2).

2. Let H = Sp4(q) with q even (viewed as stabG(e3, f3)) and let Q be a nontrivial

`-radical subgroup of H for a prime ` 6= 2 dividing |H|. Then:

• If `|(q2 − 1), then Q is H-conjugate to one of Q1, Q2, or Q1,1.

• If `|(q2 + 1), then Q is H-conjugate to Q(2).

Moreover, no two of the subgroups listed are G-conjugate.

To prove Proposition 7.2.1, we will make use of many arguments in [6], and we

present here some of the useful lemmas and arguments found there, specialized to our

situation.

As above, when ε ∈ {±1}, we abuse notation by using ε to denote the appropriate

sign ± as well, and GL±r (q) denotes GUr(q) in case ε = − and GLr(q) in case ε = +.

Lemma 7.2.2 ((1A) of [6]). Let q be any prime power and let ` be a prime with

`|(q − ε) for ε ∈ {±1}. Let E be an extraspecial group of order `2γ+1 and write

G = GLε`γ (q). Then G contains a unique conjugacy class of subgroups isomorphic to

E. Moreover, if `|(q − 1), then Fq is a splitting field of E.

Lemma 7.2.3 ((1B) of [6]). Let q be any prime power and let ` be a prime with `|(q−ε)

for ε ∈ {±1}. Let E be an extraspecial group of order `2γ+1 and write G = GLε`γ (q).

Let R = ZE be an `-subgroup of symplectic type of G, with Z = O`(Z(G)). Write

C := CG(R) and N := NG(R). Then C = Z(G) = Z(N) and if E has exponent

`, then N/RC ∼= Sp2γ(`). In addition, if R is radical in G, then E has exponent

`. Moreover, each linear character of Z(N) acting trivially on O`(Z(N)) has an

extension to N which is trivial on R.

As the reader may have inferred, the above lemmas will be primarily useful in the

case ` = 3, with R as described above (so γ = 1), viewed through the embedding

of GL3(q) in Sp6(q). However, we will formulate our discussion more generally for
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`|(q2 − 1). Given a semisimple s ∈ G = Sp2n(q), we will call s primary, as in [6],

if the characteristic polynomial for s acting on the natural module F2n
q is of the

form f(t)k ∈ Fq[t], where f is either (t − 1), self-check, or the product g(t)gX(t) of

a pair of non-self-check polynomials, as in Section 2.4. (Hence if s is primary, then

CG(s) ∼= Spk(q), GUk(q
d/2), or GLk(q

d/2), respectively, where d = deg f.) As usual,

when `|(q2 − 1), let `d = (q2 − 1)`. The next lemma is [6, (1C)], adapted for our

purposes.

Lemma 7.2.4. Let G = Sp2n(q) with n ≤ 3 and q even, let `|(q − ε) with ε ∈ {±1},

and let Z = 〈z〉 be cyclic of order `d+α for α ≥ 0. Let E be extraspecial of order

`2γ+1, and let R = ZE a symplectic-type group with Z(R) = Z. Suppose that ·̃ and ·

are two embeddings of R into G such that z̃ and z are primary. Then n = m`α+γ for

some m ≥ 1 and R̃ and R are conjugate in G. (Observing the structure of the Sylow

`-subgroups, note that α = 0 unless ` = 3 = n, in which case α = 0 or 1.)

Identifying R with R̃, let C := CG(R), N := NG(R), and N0 := {g ∈ N : [g, Z] =

1}. Then C ∼= GLεm(q`
α
). Further, if R is a radical subgroup of G, then E has

exponent ` and N0 = LC, where R C L, L ∩ C = Z(C) = Z(CG(z)) = Z(L),

L/RZ(L) ∼= Sp2γ(`), and [C,L] = 1. Moreover, each linear character of Z(L) acting

trivially on O`(Z(L)) can be extended as a character of L which is trivial on R. Also,

N/N0 ∼= NG(Z)/CG(Z) is cyclic of order 2`α.

Proof. We largely follow the proof of [6, (1C)]. Since z̃ and z are both primary

elements of G, they must be conjugate. (This can be seen, for example, from the

conjugacy class descriptions in [21] and [47].) Hence we may assume Z(R̃) = Z(R),

so Ẽ and E are subgroups of H := CG(z̃). Write fk for the characteristic polynomial

of z̃, in the notation of the above discussion, so that H ∼= GLεk(q
`α). (Indeed, note

that if `|(q − 1), then a root of f is an element of Fq and f is a product of non-self-

check polynomials, but if `|(q+ 1), then a root of f is in Fq2 \ Fq, and f is a self-check

polynomial.)
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Now, Ẽ and E can be viewed as embeddings of E into H, with Z(Ẽ) and Z(E)

generated by scalar multiples of the identity matrix Ik. Hence Ẽ and E are conjugate

in H, and k = m`γ for some m ≥ 1, by Lemma 7.2.2 and [6, Remark (1) after (1A)].

Note that in our case n ≤ 3, we have H ∼= GLεn(q), unless n = 3 = ` and α = 1, in

which case H ∼= GLε1(q3). (In particular, note that γ = 0, unless possibly if n = ` = 3

and α = 0, in which case γ = 0 or 1.)

This yields that, R̃ and R are conjugate in G. Now, identify H with GLεm`γ (q
`α).

Then direct calculation and the discussion so far shows that C ∼= CH(R) ∼= GLεm(q`
α
).

Now, certainly if γ = 0, then R = Z, N0 = C and the remainder of the statement

follows trivially, with L := Z(C). Henceforth, we may assume n = 3 = ` and γ = 1,

so that α = 0, m = 1 and C ∼= GLε1(q).

Now, let Ê denote the embedding of E in GLε3(q) given by Lemma 7.2.2, and

write L for the normalizer of Ê in GLε3(q). Note that L = NH(Ẽ). Then certainly

R C L ≤ N0 = NH(R), since L normalizes E and centralizes Z. Moreover, CH(L) =

CH(E) = C, and [C,L] = 1. (Indeed, from above, CG(R) = CH(R), which is CH(E)

since H = CG(Z). Then C = CH(E) ≤ CH(L), since C = Z(H) and CH(L) ≤ CH(E)

since E ≤ L.)

Suppose R is a radical subgroup of G. We claim that R has exponent 3, so that

R is in fact the 3-group R as defined for Sp6(q) at the beginning of this section.

By way of contradiction, assume R has exponent 9, so we may assume R = E, as

otherwise we can replace R by the central product of Z and an extraspecial group

of exponent 3. Now, from [6, Proof of (1B)], there is a 3-element x ∈ L \ Ê which

induces an element of Z(Aut◦(E)/Inn(E)), where Aut◦(E) is the subgroup of auto-

morphisms which commute with Z, so we may view x as an element of L\Ẽ. Note that

Aut◦(E)/Inn(E) ∼= C3, by [6, (1.1)]. Let Q := 〈x, Ẽ〉. Then CH(Ẽ) = CH(Q) = C,

from above.

Now, since N0 C N , we see that Ẽ = O3(N0), since [E,Z] = 1 and Ẽ = O3(N)

as Ẽ is radical in G. Also, each element of N0 induces an element of Aut◦(E). We
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claim that Q ≤ O3(N0), which contradicts that R has exponent 9.

Indeed, let h ∈ N0, and by replacing with an appropriate element h · e for e ∈ Ẽ,

we may assume h induces an element of Aut◦(E)/Inn(E). Hence [h, x] is trivial on

E (as x induces an element of Z(Aut◦(E)/Inn(E))), so c := [h, x] is an element of

the cyclic group C = Z(H). Moreover, since C = CH(Q), we know xh = cx and x

commute and are both 3-elements, so c is a 3-element. Hence c ∈ O3(Z(H)) ≤ Ẽ, so

h normalizes Q. Therefore, Q ≤ O3(N0) = Ẽ, contradicting that x 6∈ Ẽ.

This yields that E has exponent 3. Identifying R with R̃, we see LC/C ∼= L/(C ∩

L) = L/Z(L) ∼= Aut◦(E) = Aut◦(R), and hence L/RZ(L) ∼= Sp2(3) (see [6, Proof of

(1C) and discussion before (1.1)]). Moreover, N0/C induces a subgroup of Aut◦(R),

so we see that N0/C ≤ LC/C ≤ N0/C, so N0 = LC. Hence Z(H) ≤ Z(N0) ≤

Z(L) · Z(C) = Z(L) · C, since C centralizes L. Also, Z(L) ≤ C = Z(H), so Z(L) =

Z(H) = Z(C) = C = C ∩ L. (Recall here that C is cyclic.) Now, by Lemma

7.2.3, since N0 = NH(R) and Z(N0) = Z(L) from above, each linear character of

Z(L)/O3(Z(L)) extends to L/R, as L ≤ N0.

Finally, NG(Z)/CG(Z) is cyclic of order 2. Let g ∈ NG(Z) generateNG(Z)/CG(Z).

(Recall that CG(Z) ∼= GLε3(q), and that g induces the automorphism τ : A 7→ TA−1 on

GLε3(q).) Then E and Eg are subgroups of H = CG(Z) = GLε3(q), each extraspecial

of order 27, so must be conjugate in H, by Lemma 7.2.2. Hence E = Egh for some

h ∈ H, and gh ∈ N = NG(R), since certainly gh ∈ NG(Z) and gh ∈ NG(E).

Hence we see that NG(Z)/CG(Z) can be embedded in N/N0. Moreover, N ≤ NG(Z)

and N0 = N ∩ CG(Z), so we have N/N0 = N/(N ∩ CG(Z)) ∼= NCG(Z)/CG(Z) ≤

NG(Z)/CG(Z), and we have N/N0 ∼= NG(Z)/CG(Z), completing the proof.

The next lemma is [6, (2A)], again adapted to our situation. As in [6], given

R ≤ Sp2n(q), by a nondegenerate or isotropic R-module, we mean an R-module

which is nondegenerate or isotropic as a subspace of the natural module V = F2n
q
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with symplectic form (·, ·), for Sp2n(q).

Lemma 7.2.5. Let G = Sp2n(q) with q even, and let Q ≤ G be an `-subgroup for a

prime ` 6= 2. Then the natural module V = F2n
q for G has a Q-module decomposition

V = V1⊥V2⊥ . . .⊥Vν⊥(Uν+1 ⊕ U ′ν+1)⊥ . . .⊥(Uω ⊕ U ′ω),

where Vi is a nondegenerate simple Q-module for 1 ≤ i ≤ ν and Ui, U
′
i are totally

isotropic simple Q-modules for ν + 1 ≤ i ≤ ω, with Ui ⊕ U ′i nondegenerate and

containing no proper nondegenerate Q-submodules.

Proof. The proof is exactly as in [5, (1B)], but we present it here for completion.

We induct on dimV . Let W be a simple Q-submodule of V of minimal dimension.

Then {v ∈ W : (v,W ) = 0} is a submodule of W , so must be either trivial or all of

W . That is, either W is nondegenerate or totally isotropic.

If W is nondegenerate, we have V = W⊥W⊥, where W⊥ := {v ∈ V : (v,W ) =

0} (see, for example, [37, Lemma 2.1.5(v)]). Then as W⊥ is a nondegenerate Q-

submodule, we see by induction that W⊥ has such a decomposition, so V also has

such a decomposition and the statement holds.

Now assume W is totally isotropic. Then W⊥ ⊇ W is an Q-submodule of V ,

and dimV = dimW + dimW⊥ (see, for example, [37, Lemma 2.1.5(ii),(iv)]). Since

(2, `) = 1, Maschke’s theorem yields that V is a completely reducible Q-module, so

we have V = W⊥ ⊕W ′, where W ′ is a Q-submodule of V with dimW ′ = dimW .

Moreover, W ⊕ W ′ is nondegenerate. (Indeed, if (w + w′,W ⊕ W ′) = 0 for some

w ∈ W,w′ ∈ W ′, then in particular, (w+w′,W ) = 0, so (w′,W ) = 0 since W ⊆ W⊥,

so w′ ∈ W⊥, a contradiction unless w′ = 0. Now, as V is nondegenerate, there is

x ∈ W ′ with (w, x) 6= 0, unless w = 0 as well.) Hence W ′ is either a totally isotropic

or nondegenerate simple Q-submodule of V . If W ′ is nondegenerate, we may use

the preceding paragraph, with W replaced with W ′, to see that V has the desired

decomposition.
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So, we may assume both W and W ′ are totally isotropic simple Q-modules. Sup-

pose that Y ⊂ W ⊕W ′ is a proper nondegenerate Q-submodule. Then Y must be

simple, and we may again appeal to the earlier case, with W replaced with Y , to

see that V has the desired decomposition. Hence we can assume that W ⊕W ′ has

no proper nondegenerate Q-submodules and is of the desired form Ui ⊕ U ′i in the

statement. Then since V = (W ⊕ W ′)⊥(W ⊕ W ′)⊥, we may apply the induction

hypothesis to (W ⊕W ′)⊥ to see that V can be decomposed as claimed.

Let `|(q2 − 1) with ε, as usual, such that `|(q − ε) and `d = (q − ε)`. By a basic

`-subgroup of Sp2n(q) with n ≤ 3, we mean a group Rm,α,γ,c as in [6]. That is, we

begin with the embedding Rα,γ of the symplectic-type group ZαEγ, where Zα is cyclic

of order `d+α and Eγ is extraspecial of order `2γ+1, into Sp2`α+γ (q) via the embedding

into GLε`γ (q
`α) with Zα = O`(Z(GLε`γ (q

`α))). Rm,α,γ is the m-fold diagonal embedding

of Rα,γ into Sp2m`α+γ (q), and Rm,α,γ,c is the wreath product Rm,α,γ oC`c in Sp2m`α+γ+c .

(Note that in our situation, the groups Ac in [6] must be trivial, unless ` = n = 3, in

which case it can be C3, so we have simplified the notation here.)

The next lemma is [6, (2D)] in our situation.

Lemma 7.2.6. Let G = Sp2n(q) with q even and n ≤ 3, and let Q ≤ G be an `-

radical subgroup for a prime `|(q2 − 1). As usual, write `|(q − ε). Then the natural

module V = F2n
q for G has a Q-module decomposition

V = V0⊥V1⊥ . . .⊥Vt

and Q can be decomposed into a direct product

Q = R0 ×R1 × · · · ×Rt,

where R0 is the trivial subgroup of Sp(V0) and Ri for 1 ≤ i ≤ t is a basic subgroup of

Sp(Vi). Moreover, the extraspecial components of Ri have exponent `.
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Proof. Again, we will follow the proof of [6, (2D)] very closely.

Write V0 := CV (Q) and let V+ denote the set of vectors of V which are moved by

Q, so that V = V0⊥V+ and Q = R0×R+ where R0 is the subgroup of elements trivial

on V0 and R+ ≤ Sp(V+). Then NG(Q) = Sp(V0) × NSp(V+)(R+), and R+ must be

`-radical in Sp(V+). Hence we may assume inductively that V = V+ and CV (R) = 0.

Now, by Lemma 7.2.5, we can write V = m1V1⊥m2V2⊥ . . .⊥mωVω, where each Vi

is either a nondegenerate simple Z(Q)-submodule or the sum Vi = Ui ⊕ U ′i , were Ui

and U ′i are totally isotropic simple Z(Q)-submodules, and mi is the multiplicity of Vi

in V for 1 ≤ i ≤ ω. (Note that Z(Q) = Q except possibly in the case n = 3 = `. Also,

note that as dimVi ≥ 2 for each 1 ≤ i ≤ ω, we must have ω ≤ n.) The commuting

algebra Di := EndZ(Q)(Vi) of Z(Q) on Vi is Fq2`αi for some αi ≥ 0, in the case Vi is

nondegenerate, and Di := EndZ(Q)(Ui) is Fq`αi for some αi ≥ 0 if Vi = Ui ⊕ U ′i is the

sum of totally isotropic spaces. In either case, we note that dimVi = 2`αi . Note that

we must have αi = 0, except possibly in the case ` = 3 = n, in which case αi = 0 or

1. In the latter situation, we have V = V1.

Write N0 := {g ∈ NG(Q) : [g, Z(Q)] = 1} and H := CG(Z(Q)), so N0 = NG(Q)∩

H = NH(Q). (Then N0 = CG(Q) except in the case ` = 3.) For h ∈ H, 1 ≤ i ≤ ω,

we have h(miVi) = miVi. (Indeed, for g ∈ Z(Q), gh(miVi) = hg(miVi) = h(miVi), so

h(miVi) is a Z(Q)-submodule of V , but similarly, gh(Vi) = h(Vi), so h(Vi) is either

trivial or a Z(Q)-submodule isomorphic to Vi (by Schur’s lemma), and hence miVi is

preserved by h.)

Let Fi denote the representation of Z(Q) on Vi. If Vi is nondegenerate, then

since D×i is cyclic and Fi(Z(Q)) ≤ D×i , we see that Fi(Z(Q)) is cyclic, generated

by some gi ∈ Sp(Vi). Similarly, the representation of Z(Q) on U ′i is (up to a field

automorphism) the contragredient of the representation of Z(Q) on Ui, so we see

that Fi(Z(Q)) is again cyclic generated by some gi ∈ Sp(Vi) in this case. Then Vi

or Ui, in the respective cases, is a simple 〈gi〉-module. Hence the action of Z(Q)

on miVi is generated by the mi-fold diagonal action of gi, which we will denote g̃i.
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In particular, by the description of conjugacy classes and centralizers of `-elements

elements in [47] (see also Section 2.4), we see that H has a decomposition H1×· · ·Hω,

where Hi
∼= GLεmi(q

`αi ) ≤ Sp(miVi) for 1 ≤ i ≤ ω.

Now, since Q is `-radical and N0 C N , we see that O`(N
0) ≤ O`(NG(Q)) = Q.

But also, Q C N0, since N0 = NH(Q). Therefore Q ≤ O`(N
0), and we see that in

fact, Q = O`(N
0) = O`(NH(Q)), so Q is `-radical in H.

First, suppose that n = ` = 3 and that αi = 1, so that V = V1, and α1 = 1. Then

Z(Q) = 〈g〉 acts cyclicly on V and H = GL1(q3). (In fact, we see that g belongs a

the class c28,0 or c31,0 in the notation of [47], in the case ε = 1 and −1, respectively.)

Here Q = O3(H) = O3(Z(H)) ∼= C3d+1 and Q = Z(Q) is cyclic and is certainly a

basic subgroup of Sp(V ). (In fact, Q is conjugate to Q(3) in our notation.)

In the other cases, αi = 0 for each i, so V is the orthogonal sum of miVi, where

mi ≤ 3, and Vi are 2-dimensional spaces. For each i, let Ri := 〈g̃i〉.

If each mi = 1, then as Q ≤ H and each Hi is cyclic, we see that Q must

be abelian and Q =
∏
Ri. If m1 = 2, we have H1

∼= GLε2(q) and (for n = 3)

H2
∼= GLε1(q). Again, we see that Q is abelian, since an `-subgroup of H is abelian,

and Q = R1 × R2 (or just R1 if n = 2). In either case, letting Ni := NHi(Ri), we see

that certainly Ri ≤ O`(Ni) for each i, and
∏

i O`(Ni) ≤ O`(NH(Q)) = Q =
∏
Ri,

so that Ri = O`(Ni), and Ri
∼= C`d for each i. Certainly in these cases, each Ri is a

basic subgroup of Sp(Vi). (Note that the case mi = 1 us Q1,1 for Sp4(q) and Q1,1,1

for Sp6(q) and the case m1 = 2 gives Q2,1 for Sp6(q), or Q2 for Sp4(q).)

If m1 = 3, (i.e. V = 3V1 and n = 3), then H ∼= GLε3(q), and since Q is radical in

H, we know by [4, (4A)] or [6, (2B)] that Q is a basic subgroup of H with extraspecial

part of exponent `. Now, G has a basic subgroup Q′ of the same form as Q, with

extraspecial part having exponent `. Then Z(Q) and Z(Q′) are both generated by

primary elements of order `d in G, and hence are conjugate in G. Then we may

suppose that Q′ ≤ H, so Q and Q′ are conjugate in H. Then Q is a basic subgroup

of G, as desired. (We note that this case yields Q = Q3 when ` 6= 3, and Q = Q3, P,
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or R if ` = 3.)

Proof of Proposition 7.2.1. First, it is clear from the description in [47] of the

semisimple classes of G that the listed subgroups each lie in a different conjugacy

class of subgroups.

On the other hand, when `|(q2 − 1), the remainder of the statement can be ex-

tracted from Lemma 7.2.6.

When ` 6 |(q2 − 1), a Sylow `-subgroup is cyclic, say generated by the semisimple

element s. Then any power si of s has the same centralizer, which can be seen from

Theorem 2.4.2. Moreover, this centralizer is a cyclic group containing 〈s〉, unless

`|(q2 +1) for the group G = Sp6(q). In the latter case, CG(s) ∼= Cq2+1×Sp2(q), which

has automorphism group Aut(Cq2+1) × Aut(Sp2(q)) since (q2 + 1, |Sp2(q)|) = 1. So,

CG(s) contains an Aut(CG(s))-invariant cyclic direct factor C containing 〈s〉. Hence

in either case, 〈s〉 is characteristic in the centralizer of any proper, nontrivial subgroup

〈si〉 of the Sylow subgroup 〈s〉, so 〈si〉 cannot be `-radical.

7.3 Characters of NG(Q)

Let G = Sp6(q). In this section, we describe the characters of NG(Q) that will be of in-

terest, and in particular the defect-zero characters of NG(Q)/Q, for radical subgroups

Q of G. Recall that for `|(q2 − 1), we have radical subgroups Q1, Q2, Q3, Q1,1, Q2,1,

and Q1,1,1, with the additional subgroups Q(3), P, and R when ` = 3. So, when refer-

ring to Q1, Q2, Q3, Q1,1, Q2,1, and Q1,1,1 we will assume `|(q2− 1), without necessarily

assuming that ` 6= 3, unless otherwise stated. When referring to P or R, we assume

` = 3, when referring to Q(3), we assume `|(q4 + q2 + 1) (with the possibility that

` = 3), and when referring to Q(2), we assume `|(q2 + 1). Throughout this section,



176

we continue to let ε ∈ {±1} be such that `|(q3 − ε), if such an ε exists, and let d and

m be as in Section 7.1.

Let Q be an `-radical subgroup, and write N := NG(Q) and C := CG(Q). The

characters of N that we are interested in are those which are defect-zero characters

of N/Q or height-zero characters of N with defect group Q. In either case, these

characters will be χ ∈ Irr(N) with χ(1)` = |N/Q|`. So if Q = Q1, Q2, or Q3, we

have χ(1)` = `2d, except in the case Q3 when ` = 3, in which case χ(1)3 = 32d+1.

If Q = Q1,1 or Q2,1, then χ(1)` = `d, and if Q is a Sylow subgroup, χ(1)` = 1. If

Q = Q1,1,1, Q
(3) or R when ` = 3|(q2−1), then χ(1)3 = 3. In most cases, it will suffice

for our purposes to describe the constituents of χ when restricted to C, and to keep

in mind the action of N/C on C and its characters.

In many of the groups we are concerned with, we have an extension of a subgroup

by C2. Suppose that X = Y : 2, with the order-two automorphism on Y denoted by

τ . By Clifford theory, a character χ ∈ Irr(X) satisfies χ|Y = θ + θτ if an irreducible

constituent θ of χ|Y is not invariant under the automorphism τ , and in this case,

χ = θX = (θτ )X . Since X/Y is cyclic, if a constituent θ is invariant under τ , then

χ|Y = θ. In this case, Gallagher’s theorem tells us that there are two such characters

χ, namely χ and χλ where λ is the nonprincipal character of X/Y ∼= C2. In particular,

χ ∈ Irr(X) has degree χ(1) = 2θ(1) or θ(1) for some θ ∈ Irr(Y ). In general, when a

character θ of Y CX extends to X, we will sometimes write θ(ν) for the character θν

of X with ν ∈ X/Y by Gallagher’s theorem.

We note that from the discussions below for NG(Q), it will also be easy to see the

characters of interest for NH(Q) with H = Sp4(q) by similar arguments.

7.3.1 Characters of Some Relevant Subgroups

From Section 7.2, we see that when `|(q4−1), the characters of the groups GLεr(q) : 2,

for r = 1, 2, 3, Sp4(q), and SL2(q) = Sp2(q) will play a large role for many of the



177

radical subgroups, so we discuss the characters of these groups here. Recall that the

C2 extension of GLεr(q) acts on GLεr(q) via τ : A 7→ TA−1.

First let `|(q − ε) for ε ∈ {±1}. Let ϕi ∈ Irr(Cq−ε) = Irr(GLε1(q)) denote the

linear character which maps ζ̃ 7→ ζ i, where (ζ, ζ̃) = (ζ1, ζ̃1) or (ξ1, ξ̃1), in the cases

ε = 1 or −1, respectively. Then ϕτi = ϕ−i, so ϕi is invariant under τ exactly when

(q − ε)|i, i.e., when ϕi = 1. Hence an irreducible character of GLε1(q) : 2 which is

nontrivial on GLε1(q) can be identified by a constituent of its restriction to GLε1(q),

and therefore can be labeled by ϕi for i ∈ Iq−ε. Moreover, there are two characters

of GLε1(q) : 2 which are trivial on GLε1(q), corresponding to the two characters {±1}

of C2, by Gallagher’s theorem, which we will sometimes denote by 1(1) and 1(−1).

As 2 6 |q − ε, we may write GLε2(q) ∼= Cq−ε × SL2(q) and note that τ induces an

inner automorphism of SL2(q), so fixes all characters of SL2(q), and the action of

τ on Cq−ε is the same as above. So, we will write ϕ = (ϕi, ψ) for the character of

GLε2(q) ∼= Cq−ε × SL2(q), with ϕi as above, and ψ ∈ Irr(SL2(q)). Now, the only

series of characters of SL2(q) = Sp2(q) with degree divisible by ` is χ4(j) when ε = 1

and χ3(j) when ε = −1, with degrees q − ε and indexing j ∈ Iq+ε (see, for example,

the character table information in CHEVIE [26]). When the context is clear, we will

write χ∗(j) for the proper character χ4(j) or χ3(j) of SL2(q). (Also, when `|(q2 + 1),

note that no character of SL2(q) has degree divisible by `.)

Now consider GLε3(q) : 2. The characters χ8(i) of GLε3(q) (in the notation of

CHEVIE [26]), indexed by 1 ≤ i ≤ q3 − ε with (q2 + εq + 1) 6 |i and χ8(i) = χ8(qi) =

χ8(q2i), each have degree (q − ε)2(q + ε) and are the only characters of GLε3(q) of

degree divisible by `2d when `|(q2 − 1). Inspection of the character table in CHEVIE

reveals that χ8(i)τ = χ8(−i) and no character in this series is invariant under τ . So,

the characters we will be concerned with for this group are of the form χ8(i) +χ8(−i)

on GLε3(q) and are indexed by i ∈ Iq3−ε.

Finally, when `|(q− ε), the irreducible characters θ of Sp4(q) with θ(1)` = `2d are

those in the families (in the notation of CHEVIE) χ5, χ18(i), χ19(i, j) when ε = 1 and
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χ2, χ15(i, j), χ18(i) when ε = −1. We note that χ2 and χ5 are the Weil characters

ρ2
2 and α2, respectively, in the notation of [27] (see Table 4.2). Also, note that the

indexing for the families χ15(i, j) is (i, j) ∈ I2∗
q−1, for χ18(i) is i ∈ Iq2+1, and for χ19(i, j)

is i, j ∈ I2∗
q+1.

When Q ∈ Syl`(G), all characters of NG(Q) have defect group Q (see for example

[33, Corollary (15.39)]), since Q is an `−radical subgroup and Q ∈ Syl`(NG(Q)).

Hence in this case, Irr0(NG(Q)|Q) = Irr`′(NG(Q)).

7.3.2 Q = Q1

Let Q := Q1 with `|(q − ε). Then N := NG(Q) = (Cq−ε : 2) × Sp4(q) and C :=

CG(Q) = Cq−ε × Sp4(q) from Section 7.2. Note that a defect-zero character of N/Q

or a height-zero character of N with defect group Q will be of the form (ϕ, θ) ∈

Irr(Cq−ε : 2)× Irr(Sp4(q)) with ϕ(1)`θ(1)` = |N/Q|` = (q − ε)2
` = `2d.

Now, with respect to the basis {e1, f1, e2, e3, f2, f3} we may identify Sp4(q) with

its image under the map

A 7→
(
I2 0
0 A

)
in G = Sp6(q) and Cq−ε : 2 with the subgroup

〈diag(ζ, ζ−1, I4)〉o

〈 0 1
1 0

I4

〉 ,
where ζ = ζ̂1 or ξ̂1 is a primitive (q−ε) root of unity in F×q2 . (Note that for ε = −1, this

is an identification in the overgroup Sp6(q2) rather than Sp6(q).) By the discussion

in Section 7.3.1, we have q−ε−1
2

characters of Cq−ε : 2 of the form ϕi, with i ∈ Iq−ε,

which have degree 2, and 2 characters 1(1) and 1(−1) of degree 1. So, ϕ(1)` = 1 for

any ϕ ∈ Irr(Cq−ε : 2). Hence it must be that θ(1)` = `2d.

Therefore, if χ is nontrivial on GLε1(q), Clifford theory and the discussion in Sec-

tion 7.3.1 yield that χ is uniquely determined by a constituent (ϕi, ψ) of χ|C , where
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i ∈ Iq−ε and ψ ∈ Irr(Sp4(q)) is one of the characters α2, χ18(i)(with i ∈ Iq2+1),

or χ19(i, j)(with i, j ∈ I2∗
q+1) when ε = 1 and ρ2

2, χ15(i, j)(with (i, j) ∈ I2∗
q−1), or

χ18(i)(with i ∈ Iq2+1) when ε = −1. If χ is trivial on GLε1(q) then χ|C = (1, ψ) (with

ψ again as above) is irreducible, and there are two choices (1(1), ψ) and (1(−1), ψ) for

χ for each such choice of ψ.

Now, to be a character of N/Q, we require that Q be in the kernel. As Q =

O`(GL
ε
1(q)), we see that this means dz(N/Q) is comprised of the two characters with

constituent (1, ψ) on C and the characters with constituent (ϕi, ψ) on C with ψ as

above and i ∈ Iq−ε such that `d|i.

7.3.3 Q = Q2

Let Q := Q2. Recall that N := NG(Q) = (GLε2(q) : 2) × Sp2(q), and that C :=

CG(Q) = GLε2(q) × Sp2(q). With respect to the basis {e1, e2, f1, f2, e3, f3}, we can

identify GLε2(q)×Sp2(q) as the subgroup of matrices of the form diag(A,A−T , B), with

A ∈ GLε2(q) and B ∈ Sp2(q). (Note that again when ε = −1, this is an identification

in Sp6(q2).) We also identify the order-2 complement of GLε2(q) in GLε2(q) : 2 with

the group  0 I2 0
I2 0 0
0 0 I2

 ,

which induces the automorphism A 7→ A−T on GLε2(q). (Note that viewing GU2(q) ≤

Sp6(q2), this is the automorphism (aij) = A 7→ A = (aqij).) Let τ represent the

automorphism of C which fixes Sp2(q) and yields the above action on GLε2(q). Recall

that we view GLε2(q) as Cq−ε × SL2(q), so that τ actually acts as inversion on Cq−ε

as in the case Q = Q1 above, and fixes SL2(q) and Sp2(q). (We remark, however,

that now Cq−ε is identified with the subgroup 〈diag(ζ, ζ, ζ−1, ζ−1, I2)〉 as opposed to

〈diag(ζ, ζ−1, I4)〉 from the case Q = Q1.)

Recall that by Clifford theory, χ ∈ Irr(N) has degree χ(1) = 2θ(1) or θ(1) for some
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θ ∈ Irr(C), and recall that again in this case, a defect-zero character of N/Q or a

height-zero character of N with defect group Q will have degree satisfying χ(1)` = `2d.

The characters of N satisfying this condition therefore have constituents on C of

the form ((ϕi, χ∗(j)), χ∗(k)), with ϕi ∈ Irr(Cq−ε) and χ∗ ∈ Irr(SL2(q)) = Irr(Sp2(q))

as in Section 7.3.1. If χ is nontrivial on Cq−ε, then again it is uniquely determined

by a choice of i ∈ Iq−ε and (j, k) ∈ Iq+ε × Iq+ε. Here χ|C = ((ϕi, χ∗(j)), χ∗(k)) +

((ϕ−i, χ∗(j)), χ∗(k)). If χ is trivial on Cq−ε, then χ|C is irreducible and there are again

two choices of χ with χ|C = ((1, χ∗(j)), χ∗(k)), which we may write (1(1), χ∗(j), χ∗(k))

and (1(−1), χ∗(j), χ∗(k)).

This yields q+ε−1
2

characters of the form (1(ν), χ∗(j), χ∗(j)) for each ν = ±1;

(q+ε−1)(q+ε−3)
4

of the form (1(ν), χ∗(j), χ∗(k)) (with j 6= ±k) for each ν = ±1; and

(q+ε−1)2(q−ε−1)
8

which have constituent on C of the form (ϕi, χ∗(j), χ∗(k)) (with the

possibility j = k). Note that as 2 6 |(q± 1), characters of the form (1(ν), χ∗(2j), χ∗(k))

or (ϕi, χ∗(2j), χ∗(k)) have the same indexing and number of characters of each type

as above. (For example, the indexing and number of characters (1(1), χ3(2i), χ3(i)) is

the same as for characters of the form (1(1), χ3(i), χ3(i)).)

Now, to be a character of N/Q, we require that Q be in the kernel. As Q =

O`(Cq−ε), we see that this means dz(N/Q) is comprised of the two characters with con-

stituent ((1, χ(j)), χ(k)) on C and the characters with constituent ((ϕi, χ∗(j)), χ∗(k))

on C with `d|i ∈ Iq−ε and (j, k) ∈ Iq+ε × Iq+ε.

7.3.4 Q = Q3

Let Q := Q3 with `|(q− ε). Then NG(Q) = GLε3(q) : 2 = CG(Q) : 2 from Section 7.2.

When ε = 1, we identify the subgroup GL3(q) with its image in G = Sp6(q) given

by A 7→
(
A 0
0 A−T

)
with respect to the basis {e1, e2, e3, f1, f2, f3}. When ε = −1,

GU3(q) is conjugate in the overgroup Sp6(q2) to the subgroup given by the image

under the same map. In both cases, we identify the extension by C2 with the group
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〈(
0 I3

I3 0

)〉
, which induces the automorphism τ : A 7→ A−T on GLε3(q) under the

above identification. (Note that viewing GU3(q) ≤ Sp6(q2), this is the automorphism

(aij) = A 7→ A = (aqij).)

As before, a character χ ∈ Irr(N) has χ(1) = 2θ(1) or θ(1) for some θ ∈ Irr(C).

Now, a defect-zero character of N/Q or a height-zero character of N with defect

group Q will be a χ ∈ Irr(N) satisfying χ(1)` = |N/Q|`, which is (q − ε)2
` = `2d when

` 6= 3 and 32d+1 when ` = 3. Using the character table in CHEVIE [26], we see that

when ` = 3, there are no such characters for GLε3(q), (and hence there are no such

characters for N). Hence dz(N/Q) and Irr0(N |Q) are empty in this case.

For the remainder of our discussion of Q = Q3, we assume ` 6= 3 and χ ∈ Irr(N)

with χ(1)` = `2d. Then χ|C = χ8(i) + χ8(−i) with i ∈ Iq3−ε, from the discussion

in Section 7.3.1. To be a character of N/Q, χ must be trivial on Q, which under

our identification is the subgroup O`(Z(C)), which consists of representatives of the

conjugacy classes C1(k) for m|k of GLε3(q) in the notation of CHEVIE. Now, on the

class C1(k) of GL3(q), the character χ8(i) takes the value (q − 1)2(q + 1)ζ ik1 , and on

the class C1(k) of GU3(q), χ8(i) takes the value (q + 1)2(q − 1)ξik1 . (Recall that ζ1

and ξ1 are the (q − 1)st and (q + 1)st roots of unity exp
(

2π
√
−1

q−1

)
and exp

(
2π
√
−1

q+1

)
,

respectively.) Hence we see that Q is in the kernel of χ8(i) exactly when `d|i. So

dz(N/Q) is comprised of the q(q+ε)m
6

characters of N with χ|C = χ8(i) + χ8(−i),

i ∈ Iq3−ε with `d|i.

7.3.5 Q = Q1,1

Let Q = Q1,1 with `|(q − ε). Then N := NG(Q) = (GLε1(q) : 2) o S2 × Sp2(q) and

C := CG(Q) = GLε1(q)×GLε1(q)×Sp2(q) from Section 7.2. With respect to the basis

{e1, f1, e2, f2, e3, f3}, we identify N with the image under the map

(A,B) 7→
(
A 0
0 B

)
,
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where A ∈ (Cq−ε : 2) o S2 and B ∈ Sp2(q), again extending to the group Sp6(q2) in

the case ε = −1. The two copies of Cq−ε : 2 are viewed as in the case Q = Q1, namely

the subgroups

〈diag(ζ, ζ−1, I4)〉o

〈 0 1
1 0

I4

〉
and

〈diag(I2, ζ, ζ
−1, I2)〉o

〈
I2

0 1
1 0

I2


〉
,

where ζ is a primitive (q − ε) root of unity in F×q2 . The S2 factor is generated by

the matrix

 0 I2

I2 0
I2

. Let L := (GLε1(q) : 2) × (GLε1(q) : 2) × Sp2(q) and let

ω denote the action of S2 on L, which fixes Sp2(q) and switches the two copies of

GLε1(q) : 2 = Cq−ε : 2, so that diag(ζ, ζ−1, ζ ′, (ζ ′)−1, X) ∈ C is mapped under ω

to diag(ζ ′, (ζ ′)−1, ζ, ζ−1, X). Note that a character (ϕ, ϕ′, θ) ∈ Irr(L) = Irr(Cq−ε :

2) × Irr(Cq−ε : 2) × Irr(Sp2(q)) is invariant under ω if and only if ϕ = ϕ′. So, the

irreducible characters of N may be described as follows:

(ϕi, ϕj, θ); i 6= ±j ∈ Iq−ε; degree 8θ(1)

(ϕi, ϕi, θ)
(1), (ϕi, ϕi, θ)

(−1); i ∈ Iq−ε; degree 4θ(1)

(ϕi, 1
(1), θ), (ϕi, 1

(−1), θ); i ∈ Iq−ε; degree 4θ(1)

(1(1), 1(1), θ)(1), (1(1), 1(1), θ)(−1), (1(−1), 1(−1), θ)(1), (1(−1), 1(−1), θ)(−1); degree θ(1)

(1(1), 1(−1), θ); degree 2θ(1)

where in each case, θ ∈ Irr(Sp2(q)), a character (ϕ, ϕ′, θ) with ϕ 6= ϕ′ is (ϕ, ϕ′, θ)+

(ϕ′, ϕ, θ) on L, we have abused notation to denote by ϕi the character of Cq−ε : 2

which restricts to Cq−ε as ϕi + ϕ−i, and (ϕ, ϕ, θ)(ν) for ν ∈ {±1} represent the two

extensions of (ϕ, ϕ, θ) ∈ Irr(L) to N .
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Now, a defect-zero character of N/Q or a height-zero character of N with defect

group Q will be a χ ∈ Irr(N) satisfying χ(1)` = |N/Q|`, which is (q − ε)` = `d,

which means that θ(1)` = `d. As established above, this means that θ = χ∗(k) where

χ∗ = χ4 when ε = 1 and χ∗ = χ3 for ε = −1. Hence the characters χ of N with

χ(1)` = `d can be described as follows.

There is a unique such character of N whose restriction to C contains the con-

stituent (ϕi, ϕj, χ∗(k)) for i 6= j ∈ Iq−ε, k ∈ Iq+ε and two whose restriction to C

contains the constituent (ϕi, ϕi, χ∗(k)) or (ϕi, 1, χ∗(k)) for i ∈ Iq−ε, k ∈ Iq+ε. Fi-

nally, there are five such characters which have constituent (1, 1, χ∗(k)) for each

k ∈ Iq+ε, so are trivial on GLε1(q)×GLε1(q). (These correspond to the five characters

of C2 o S2, which we will later write as (1(1), 1(−1)), (1(1), 1(1))(λ), and (1(−1), 1(−1))(λ),

where λ ∈ {±1} = Irr(C2).)

Since Q = O` ((GLε1(q))2), to be trivial on Q, the characters as listed above must

satisfy that in addition, `d|i for all of the ϕi occurring in the restriction to C.

7.3.6 Q = Q2,1

When Q := Q2,1, we have N := NG(Q) = (GLε2(q) : 2) × (GLε1(q) : 2) and C :=

CG(Q) = GLε2(q)×GLε1(q). With respect to the basis {e1, e2, f1, f2, e3, f3}, the identi-

fication of GLε2(q) : 2 in G is the same as in the case Q = Q2, and GLε1(q) : 2 = Cq−ε : 2

is identified like in the case Q = Q1, with

Cq−ε : 2 = 〈diag(I4, ζ, ζ
−1)〉o

〈 I4

0 1
1 0

〉 .
Here characters of N/Q of defect zero or height-zero characters of N with defect

group Q will have χ(1)` = `d. Hence χ must be of the form ((ϕ, χ∗(j)), ϕ
′) where

(ϕ, χ∗(j)) ∈ Irr(GLε2(q) : 2) is as in the case Q = Q2 and ϕ′ is any member of

Irr(Cq−ε : 2) as described in Section 7.3.1. This yields (q+ε−1)(q−ε−1)2

8
characters of

the form ((ϕi, χ∗(j)), ϕk) (with the possibility i = k), (q+ε−1)(q−ε−1)
4

of each form
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(
(ϕi, χ∗(j)), 1

(ν)
)

and
(
(1(ν), χ∗(j), ϕi

)
for each ν ∈ {±1} (where we have again abused

notation by writing ϕi for the character of Cq−ε : 2 which restricts to Cq−ε as ϕi+ϕ−i),

and q+ε−1
2

of the form (1(ν), χ∗(j), 1
(µ)) for each (ν, µ) ∈ {±1} × {±1}.

To be trivial on Q, we again only further require `d|i for any ϕi occurring in the

restriction to C.

7.3.7 Q = Q1,1,1

Let Q := Q1,1,1, with `|(q− ε), so N := NG(Q) = (GLε1(q) : 2) oS3 and C := CG(Q) =

(GLε1(q))3. Also, write L := (GLε1(q) : 2)3 to denote the normal subgroup of N with

quotient S3. With respect to the basis {e1, f1, e2, f2, e3, f3}, we identify C with the

subgroup of elements of the form diag(a1, a
−1
1 , a2, a

−1
2 , a3, a

−1
3 ) with ai ∈ Cq−ε, and

the order-two automorphisms on each Cq−ε acts as before, sending a 7→ a−1. Here

the S3 acts on L via diag(A1, A2, A3)σ = diag(Aσ−1(1), Aσ−1(2), Aσ−1(3)) for σ ∈ S3 and

Ai ∈ Cq−ε : 2.

Let θ = (ϕ, ϕ′, ϕ′′) ∈ Irr(L) = Irr(Cq−ε : 2)3 be a constituent of χ ∈ Irr(N) when

restricted to L. Then θ is invariant under the S3 action if and only if it is invariant

under the A3 action, if and only if ϕ = ϕ′ = ϕ′′. In this case, θ extends to a character

of N and we get three such characters, corresponding to the three characters of the

quotient N/L = S3, by Gallagher’s theorem, with degrees θ(1), θ(1), and 2θ(1). (This

extension can be seen, for example, using [33, (11.31) and (6.20)].)

Moreover, θ has a stabilizer T := Nθ in N with |T/L| = 2 precisely when exactly

two of ϕ, ϕ′, and ϕ′′ are the same. In this case, we get two extensions to T , and the

character χ of N is determined by a constituent on T by Clifford correspondence [33,

(6.11)]. Let ω denote a 3-cycle in S3. Then the two characters of N with constituent

θ on L have restriction to L as θ + θω + θω
2

and have degree 3θ(1).

Finally, if ϕ 6= ϕ′ 6= ϕ′′, then the irreducible character θ = (ϕ, ϕ′, ϕ′′) of L has

stabilizer Nθ = L. Hence such a character is uniquely determined by a constituent θ
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on L, restricts to L as
∑

ρ∈S3
θρ, and has degree 6θ(1).

From here, the number and indexing of each type of character can be seen easily

from the description of characters of Cq−ε : 2.

The degree χ(1) of a defect-zero character of N/Q or hight-zero character of N

with defect group Q must satisfy χ(1)` = |N/Q|`, which is 1 when ` 6= 3 and 3 when

` = 3. Since the characters of Cq−ε : 2 have degree 1 and 2, we see by the above

discussion that if ` 6= 3, then all characters of N satisfy this condition. If ` = 3, all

except those characters whose restriction χ|L to L has a constituent (ϕ, ϕ, ϕ) satisfy

this condition. Now, to be trivial on Q, we again just need to further require that

`d|i for any ϕi appearing in the restriction to a copy of Cq−ε : 2.

7.3.8 Q = P

Now suppose Q := P with ` = 3|(q − ε). Write N := NG(Q) and C := CG(Q).

Note that since P ∈ Syl3(G), all characters of NG(P ) have defect group P and

Irr0(NG(P )|P ) = Irr3′(NG(P )).

Write P1 := Q1,1,1, and note that P = P1 o C3. Then C ≤ CG(P1) = (Cq−ε)
3,

and since C must commute with the C3-action, we see that in fact C ∼= Cq−ε is the

subgroup consisting of (x, x, x) ∈ (Cq−ε)
3 for x ∈ Cq−ε.

Now, by [1, Theorem 2], P1 is the unique maximal normal abelian subgroup in P .

Hence, N must normalize P1, so N ≤ NG(P1) = (GLε1(q) : 2) o S3.

Denote an element of NG(P1) by (X, Y, Z) · h for X, Y, Z ∈ Cq−ε : 2 ≤ Sp2(q) and

h ∈ S3. Here as an element of G, (X, Y, Z) is given by diag(X, Y, Z), and we view

S3 ≤ G with generators

ρ1 :=

 0 I2 0
0 0 I2

I2 0 0

 , and ρ2 :=

 0 I2 0
I2 0 0
0 0 I2

 .

Note that P/P1 is also generated by ρ1. We wish to determine the conditions on

(X, Y, Z) · h which ensure that it is an element of N . That is, we must decide what
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conditions ensure that (X, Y, Z) ·h sends ρ1 to another element of P . Now, observing

that

(X, Y, Z) · hρ1h
−1 · (X−1, Y −1, Z−1) = (Z, Y, Z) · ρ1 · (X−1, Y −1, Z−1)

=

 0 XY −1 0
0 0 Y Z−1

ZX−1 0 0

 ,

we see that this is an element of P if and only if X, Y, and Z all belong to the same

coset of Cq−1 : 2 module C3d .

Hence, we see that N is as in [6, Formula (2.5)] and can be written as a semidirect

product K o S3, where K ≤ (Cq−ε : 2)3 is comprised of elements (X, Y, Z) where

X, Y, Z ∈ Cq−ε : 2 belong to the same coset modulo C3d . Let ϕ ∈ Irr0(N |P ) =

Irr3′(N). Since P1 is normal in N , we know by Clifford theory that ϕ|P1 is the sum of

N -conjugates of some (µi, µj, µk), with µ the character of C3d that sends a generator

to a fixed primitive 3d root of unity in C and 0 ≤ i, j, k ≤ 3d − 1. If the i, j, k are

not all the same, then the S3 action will cause the number of distinct conjugates in

this decomposition to be a multiple of 3, and hence ϕ will have degree divisible by 3,

contradicting the fact that ϕ has height zero. Hence an irreducible constituent of the

restriction of ϕ to P1 is of the form θi := (µi, µi, µi) for some 0 ≤ i ≤ 3d − 1.

Now, we can write K = (P1×Cm) : 2 (here Cm ≤ C), and let J := P1×Cm be the

index-2 subgroup. The extensions of θi to J are of the form θiφ where φ ∈ Irr(Cm),

and each θiφ is invariant under the S3 action, so extends to J o S3. (This can be

seen, for example, from [33, (11.31) and (6.20)].)

Further, θiφ restricts to C as ϕj for some 0 ≤ j ≤ q − ε − 1, and this restriction

uniquely determines i and φ (indeed, ϕj = µiφ). From here, we see that if ϕ|C
contains a nontrivial constituent, then ϕ|K is uniquely determined by a constituent

ϕj for j ∈ Iq−ε of the restriction to C, and for each such choice of j there are 3

characters ϕ of N , by Gallagher’s theorem. (By an abuse of notation, we will write

ϕ = ϕjβ for these characters of N , with β ∈ Irr(S3).) Moreover, there are 6 characters
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ϕ ∈ Irr0(N |P ) with C ≤ kerϕ, also by Gallagher’s theorem. (These we will denote

by 1(1)β and 1(−1)β for β ∈ Irr(S3).)

Moreover, since NS3(A3)/A3 = S3/A3
∼= C2, the fact that [6, Formula (2.5)] holds

for Q yields N/Q ∼= (Cm : 2) × C2. Certainly, any character of N/Q has defect zero

since P is a Sylow 3-subgroup of G. We can view Cm : 2 as a quotient of

Cq−ε : 2 = 〈diag(a, a, a, a−1, a−1, a−1)〉o
〈(

0 I3

I3 0

)〉
,

with respect to the basis {e1, e2, e3, f1, f2, f3}, and as such, the characters of Cm : 2

are of the form 1(1), 1(−1), and Ind
Cq−ε:2
Cq−ε

ϕi, where 3d|i, as before. For the C2 factor,

let 〈λ〉 = Irr(C2).

7.3.9 Q = R

Let ` = 3|(q − ε) with (q − ε)3′ = m, (q − ε)3 = 3d, and let Q = R be the

group Z · E27 ≤ GLε3(q) viewed as a subgroup of G as in Section 7.2. Then by

Lemma 7.2.4, we see N := NG(R) has an index two subgroup N◦ satisfying N/N◦ ∼=

NG(Z)/CG(Z) = C2. Further, R C N◦, and we have N/R = (N◦/R).2, with the

order-2 automorphism given by the action of the map τ : A 7→ (AT )−1 on GLε3(q).

Also, Sp2(3) ∼= N◦/(RZ(N◦)) ∼= (N◦/R)/(RZ(N◦)/R), so N◦/R contains a quo-

tient group isomorphic to Sp2(3). Moreover, each linear character of RZ(N◦)/R ∼=

Z(N◦)/(R ∩ Z(N◦)) = Z(N◦)/O3(Z(N◦)) ∼= Cm is extendable to a character of

N◦/R (again by Lemma 7.2.4). Hence by Gallagher’s theorem, the characters of

N◦/R are exactly the characters θβ with θ ∈ Irr(RZ(N◦)/R) = Irr(Cm) and β ∈

Irr(N◦/(RZ(N◦)) = Irr(Sp2(3)).

Since |N/R| = 2m|Sp2(3)|, we have that a defect-zero character of N/R will have

χ(1)3 = 3. Since N◦/R has index 2 in N/R, the constituents of the restriction of χ

to N◦/R must satisfy this degree condition as well, so we require that β have degree

divisible by 3. Since Sp2(3) has exactly one such character (namely, the Steinberg

character, of degree 3), we will henceforth use β to denote this Steinberg character.
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Note that β is invariant under the action of τ , and that as before, the principal

character is the only character of Cm invariant under τ .

This yields m−1
2

+ 2 defect-zero characters of N/R, which we will denote by

1(1)β, 1(−1)β, and ϕiβ for i ∈ Iq−ε with 3d|i, where by an abuse of notation, ϕiβ

represents the defect-zero character whose restriction to RZ(N◦)/R ∼= Cm contains

ϕi as a constituent and 1(1)β, 1(−1)β are the two extensions to N/R of defect-zero

characters of N◦/R trivial on RZ(N◦)/R.

7.3.10 Q = Q(3)

Let Q := Q(3) with `|(q2 + εq + 1). Writing N := NG(Q) and C := CG(Q), we

have N = C : 6, and C = Cq3−ε. Viewing Q as a subgroup of GLε3(q) with the

inclusion A 7→ diag(A,A−T ) in Sp6(q), with respect to the standard basis, C is also

the centralizer of Q in GLε3(q). Let τ : s 7→ s−1, β : s 7→ sεq so that N/C = 〈τ, β〉

by Section 7.2. Let φi ∈ Irr(C) for 0 ≤ i < q3 − ε denote the character which maps

ζ̃ 7→ ζ i, where ζ̃ is a fixed generator of C and ζ = exp
(

2π
√
−1

q3−ε

)
. Let χ ∈ Irr(N)

and let φi be a constituent of χ|C . Note that φi is invariant under the action of β

if and only if (q2 + εq + 1)|i. (Indeed, if (q2 + εq + 1)|i, then φi is a character of

Cq−ε = Z(GLε3(q)), so is invariant under β. Conversely, if φi is invariant under the

action of β, then ζ i = ζεqi = ζq
2i, and hence ζ i is a (q − ε)th root of unity, meaning

that (q2 + εq + 1)|i.)

Now, since φi 6= φ−i for any i 6= 0, it follows that if (q2 + εq + 1) 6 |i, then φi has

stabilizer C in N , and χ is uniquely determined by a constituent φi on C for i ∈ Iq3−ε,

yielding q(q2−1)/6 characters of this form. (This character restricts to C as the sum

φi + φ−i + φqi + φ−qi + φq2i + φ−q2i.)

If i 6= 0 and (q2+εq+1)|i, then φi has [N : stabN(φi)] = 2, and [stabN(φi) : C] = 3.

In this case, there are three choices of χ that restrict to C as the sum φi+φ−i. That is,

we obtain three characters χ for each choice of constituent φi for i ∈ Iq−ε. (Note that
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there are q−ε−1
2

such choices of i.) Finally, there are six characters χ with C ≤ kerχ.

When ` 6= 3, Q is a Sylow `-subgroup of G and every character of N has degree

prime to `, and hence Irr0(N |Q) = Irr`′(N) = Irr(N).

When ` = 3, recall that a defect-zero character of N/Q or a height-zero character

of N with defect group Q will have χ(1)3 = |N/Q|3 = 3. Let χ be such a character,

with constituent φi on C. Then |stabN(φi)| cannot be divisible by 3, so φi must not

be stabilized by β and we see (q2 + εq + 1) 6 |i. Hence the characters with χ(1)3 = 3

are exactly those with constituent φi on C with (q2 + εq + 1) 6 |i. To be trivial on Q,

we just further require that 3d+1|i, which yields m(n− 1)/6 defect-zero characters of

N/Q, where n = (q2 + εq + 1)3′ .

7.3.11 Q = Q(2)

Now let `|(q2 +1) and let Q := Q(2) be a Sylow `-subgroup of G. Write C := CG(Q) =

Cq2+1 × Sp2(q) and N := NG(Q). Then again all characters of N have defect group

Q, so Irr0(N |Q) is exactly the set of characters of N with degree relatively prime to

`. However, N = (Cq2+1 : 22)×Sp2(q), so every character of N satisfies this condition

and Irr0(N |Q) = Irr(N).

Fix a generator ξ̃2 of Cq2+1 and let ϑi denote the character of Cq2+1 so that

ϑi(ξ̃2) = ξi2, where ξ2 = exp
(

2π
√
−1

q2+1

)
. Then since ξi2 6= ξ−i2 or ξiq2 for i 6= 0, we see

that stabN(ϑi) = C. (Recall that N/C is generated by τ : s 7→ s−1 and β : s 7→ sq as

in Section 7.2.)

Hence if χ ∈ Irr(N) is nontrivial on Cq2+1, then χ is of the form ϑ × θ where

ϑ ∈ Irr(Cq2+1 : 22) with ϑ|Cq2+1
= ϑi + ϑ−i + ϑqi + ϑ−qi for some i ∈ Iq2+1 and

θ ∈ Irr(Sp2(q)). (Note that there are q2/4 such ϑ.) That is, χ is uniquely determined

by a constituent ϑi × θ of χ|C , for i ∈ Iq2+1 and θ ∈ Irr(Sp2(q)). For each choice of

θ ∈ Irr(Sp2(q)), we also have 4 characters of N whose restriction to Cq2+1 is trivial.
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7.4 The Maps

In this section, we describe maps which later will be used to show that Sp6(2a)

and Sp4(2a) are “good” for the McKay, Alperin-McKay, Alperin weight, and block-

wise Alperin weight conjectures. In Section 7.4.1, for radical subgroups Q with nor-

malizer N := NG(Q), we describe disjoint sets Irr0(G|Q) and Irr0(N |Q) and bi-

jections ΩQ : Irr0(G|Q) ↔ Irr0(N |Q). In Section 7.5 below, we show that in fact

Irr0(G|Q) = Irr0(G|Q) and Irr0(N |Q) = Irr0(N |Q), and that these are the required

maps for the reduction of the Alperin-McKay conjecture in [69]. In Section 7.4.2

we also define maps ∗Q : IBr`(G|Q) → dz(NG(Q)/Q), which we show in Section 7.5

are the required maps for the reduction of the (B)AWC in [70]. (We define the sets

IBr`(G|Q), Irr0(G|Q), and Irr0(N |Q) to be the sets of characters involved in the maps

described here.) Also, in most cases, the characters for N here will be given by the

description of an irreducible constituent on the centralizer C := CG(Q). That is, the

maps we describe will be from a given set of characters of G to the set of characters of

N with a given restriction to C. In these situations, the choice of bijection between

these two sets does not matter, as long as the choice of image for a given family of

characters is consistent throughout the choices of indexes J . In Section 7.4.3, we give

similar maps for Sp4(q).

We note that we only define maps for `-radical subgroups of positive defect. In the

case Q := {1}, it is clear that the maps Ω{1} and ∗{1} sending defect-zero characters

of G (or their restriction to G◦) to themselves will be the desired bijections.

7.4.1 The maps ΩQ

As usual, N will denote NG(Q) for the `-radical subgroup Q when the group Q

we are discussing is evident, and ε is such that `|(q3 − ε). Below are the maps

ΩQ : Irr0(G|Q)↔ Irr0(N |Q) for each `-radical conjugacy class representative Q.

First, let `|(q2 − 1). The bijections ΩQ1 : Irr0(G|Q1)↔ Irr0(N |Q1) are as follows:
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ΩQ1 :

{
{χ5, χ11} 7→ (1, α2) ε = 1
{χ4, χ9} 7→ (1, ρ2

2) ε = −1{
χ17(i) 7→ (ϕi, α2) ε = 1
χ20(i) 7→ (ϕi, ρ

2
2) ε = −1

i ∈ Iq−ε{
E23(i, j) 7→ (1, χ19(i, j)) ε = 1
E17(i, j) 7→ (1, χ15(i, j)) ε = −1

(i, j) ∈ I2∗
q+ε

E24(i) 7→ (1, χ18(i)) (for ε = 1 or −1), i ∈ Iq2+1{
E28(i, j, k) 7→ (ϕi, χ19(j, k)) ε = 1
E26(j, k, i)) 7→ (ϕi, χ15(j, k)) ε = −1

i ∈ Iq−ε, (j, k) ∈ I2∗
q+ε{

E30(i, j) 7→ (ϕi, χ18(j))
ε = 1

E33(j, i) ε = −1
i ∈ Iq−ε, j ∈ Iq2+1.

We note that our notation means that every character lying in a Lusztig series

indexed by a semisimple element of G∗ in any of the families g23, g24, g28, g30 in the

case `|(q − 1) and g17, g24, g26, g33 in the case `(q + 1) lies in Irr0(G|Q1).

The bijection ΩQ2 : Irr0(G|Q2)↔ Irr0(N |Q2) is as follows:

ΩQ2 :

{
E9(i) \ {χ29(i)} 7→ (1, χ∗(2i), χ∗(i))

ε = 1
E8(i) \ {χ26(i)} ε = −1

i ∈ Iq+ε{
E22(i, j) 7→ (1, χ∗(2i), χ∗(j))

ε = 1
E16(i, j) ε = −1

(i, j) ∈ I2
q+ε{

E29(i, j) 7→ (ϕ2i1 , χ∗(2i2), χ∗(j))
ε = 1

E27(i, j) ε = −1
i = i1(q + ε) + i2(q − ε) ∈ Iq2−1,

j ∈ Iq+ε

Here recall that χ∗ = χ4 in the case `|(q − 1) and χ3 in the case `|(q + 1). The

exceptions of χ29(i) ∈ E9(i) of degree q(q− 1)3(q2 + q+ 1)(q2 + 1) when `|(q− 1) and

χ26(i) ∈ E8(i) of degree q(q + 1)3(q2 − q + 1)(q2 + 1) when `|(q + 1) are necessary, as

they have defect zero. (Note that this leaves 2 elements of E9(i), E8(i) to map to the

two characters of N with constituent (1, χ∗(2i), χ∗(i)) on C.) All members of Lusztig

series indexed by elements in the families g22, g29 when `|(q − 1) and g16, g27 when

`|(q + 1) lie in Irr0(G|Q2)..
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When Q = Q3, there are no blocks with defect group Q when ` = 3|(q2 − 1),

but we have the additional radical subgroup Q(3) in this case, which does appear as

a defect group. So, letting ` 6= 3, the bijection ΩQ3 : Irr0(G|Q3) ↔ Irr0(N |Q3) is as

follows:

ΩQ3

(` 6= 3)
:

{
E31(i) 7→ χ8(i)

ε = 1
E34(i) ε = −1

i ∈ Iq3−ε

When ` = 3, the map ΩQ(3) is as follows:

ΩQ(3)

(` = 3)
:

{
E31(i) 7→ φi

ε = 1
E34(i) ε = −1

i ∈ Iq3−ε

We note that when `|(q2 − 1), E31(i) and E34(i) contain only one character, as

CG∗(g31(i)) ∼= Cq3−1 and CG∗(g34(i)) ∼= Cq3+1.

The bijection ΩQ1,1 : Irr0(G|Q1,1)↔ Irr0(N |Q1,1) is as follows:

ΩQ1,1 :

{
E7(i) \ {χ23(i)} 7→ (1, 1, χ∗(i))

ε = 1
E6(i) \ {χ14(i)} ε = −1

i ∈ Iq+ε{
E20(i, j) 7→ (ϕi, 1, χ∗(j))

ε = 1
E20(j, i) ε = −1

i ∈ Iq−ε, j ∈ Iq+ε{
E18(i, j) 7→ (ϕi, ϕi, χ∗(j))

ε = 1
E21(i, j) ε = −1

i ∈ Iq−ε, j ∈ Iq+ε{
E26(i, j, k) 7→ (ϕi, ϕj, χ∗(k))

ε = 1
E28(k, i, j) ε = −1

(i, j) ∈ I2∗
q−ε, k ∈ Iq+ε

Recall that χ∗ = χ4 when `|(q − 1) and χ3 when `|(q + 1). Also, note that χ23(i)

has defect zero when `|(q− 1), and χ14(i) has defect zero when `|(q+ 1), so they have

been excluded here.

The bijection ΩQ2,1 : Irr0(G|Q2,1)↔ Irr0(N |Q2,1) is as follows:
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ΩQ2,1 :

{
E13(i) 7→ (1, χ∗(2i), 1)

ε = 1
E11(i) ε = −1

i ∈ Iq+ε{
E21(i, j) 7→ (1, χ∗(2i), ϕj)

ε = 1
E18(i, j) ε = −1

i ∈ Iq+ε, j ∈ Iq−ε

E19(i) 7→ (ϕ2i1 , χ∗(2i2), 1) (for ε = 1 or −1), i = i1(q + ε) + i2(q − ε) ∈ Iq2−1{
E27(i, j) 7→ (ϕ2i1 , χ∗(2i2), ϕj)

ε = 1
E29(i, j) ε = −1

i = i1(q + ε) + i2(q − ε) ∈ Iq2−1, j ∈ Iq−ε

Again in this case, recall that χ∗ = χ4 when `|(q − 1) and χ3 when `|(q + 1).

Now, when Q = Q1,1,1, we must again distinguish between the cases ` 6= 3 and

` = 3. First, suppose ` 6= 3 so that Q1,1,1 ∈ Syl`(G). The map ΩQ1,1,1 in this case is:

ΩQ1,1,1

(` 6= 3)
:

{
E1 \ {χ5, χ11} 7→ (1, 1, 1)

ε = 1
E1 \ {χ4, χ9} ε = −1{
E6(i) \ {χ17(i)} 7→ (ϕi, 1, 1)

ε = 1
E7(i) \ {χ20(i)} ε = −1

i ∈ Iq−ε{
E8(i) 7→ (ϕi, ϕi, ϕi)

ε = 1
E9(i) ε = −1

i ∈ Iq−ε{
E11(i) 7→ (ϕi, ϕi, 1)

ε = 1
E13(i) ε = −1

i ∈ Iq−ε{
E17(i, j) 7→ (ϕi, ϕj, 1)

ε = 1
E23(i, j) ε = −1

(i, j) ∈ I2∗
q−ε{

E16(i, j) 7→ (ϕi, ϕi, ϕj)
ε = 1

E22(i, j) ε = −1
(i, j) ∈ I2

q−ε{
E25(i, j, k) 7→ (ϕi, ϕj, ϕk)

ε = 1
E32(i, j, k) ε = −1

(i, j, k) ∈ I3∗
q−ε

Here recall that E1 is the set of unipotent characters and that the excluded characters

{χ5, χ11, χ17(i)} when `|(q − 1) and {χ4, χ9, χ20(i)} when `|(q + 1) lie in Irr0(G|Q1).
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Now suppose that ` = 3. The map ΩQ1,1,1 in this case is:

ΩQ1,1,1

(` = 3)
:

{
E6(i) \ {χ17(i)} 7→ (ϕi, 1, 1)

ε = 1
E7(i) \ {χ20(i)} ε = −1

i ∈ Iq−ε,m 6 |i{
E11(i) 7→ (ϕi, ϕi, 1)

ε = 1
E13(i) ε = −1

i ∈ Iq−ε,m 6 |i{
E17(i, j) 7→ (ϕi, ϕj, 1)

ε = 1
E23(i, j) ε = −1

(i, j) ∈ I2∗
q−ε;m does not divide one of i, j{

E16(i, j) 7→ (ϕi, ϕi, ϕj)
ε = 1

E22(i, j) ε = −1
(i, j) ∈ I2

q−ε; i 6≡ ±j mod m{
E25(i, j, k) 7→ (ϕi, ϕj, ϕk)

ε = 1
E32(i, j, k) ε = −1

(i, j, k) ∈ I3∗
q−ε;

i 6≡ ±j 6≡ ±k 6≡ ±i mod m

Again, recall that χ17(i) ∈ E6(i) and χ20(i) ∈ E7(i) are in the sets Irr0(G|Q1) in the

respective cases ε = 1,−1. In the case that ` = 3, we have excluded the cases when

m divides all indices, since then the Ei(J) given above actually lie in the principal

block, so have defect group P . Similarly, if m divides i, then ϕi maps a q − ε root of

unity to an `d root, so if m divides all indices, then the image ω∗θ in F×` of the central

character for the character θ of N is the same as that for the principal character 1N .

Hence they lie in the same block and θ has defect group P , which is also a Sylow

`-subgroup of N .

Moreover, in the cases of E16(i, j), E25(i, j, k) (resp. E22(i, j), E32(i, j, k)) (for 3|(q−

1), respectively 3|(q + 1)), we must also exclude any case where the indices are all

equivalent (but nonzero) modulo m, as then these series lie in the block B8(k) (re-

spectively B9(k)) for some k ∈ Iq−ε with 3d|k, which also has defect group P .

Now, when ` = 3, let P ∈ Syl3(G). Then C = CG(P ) ∼= Cq−ε is the subgroup

Z(GLε3(q)) viewed as a subgroup of G in the usual way. Hence the notation for the

constituents of a character of N restricted to C are 1 and ϕi as before. The map ΩP

is as follows:
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ΩP :

{
{χ1, χ3, χ4, χ9, χ10, χ12} 7→ (1)

ε = 1
{χ1, χ2, χ5, χ8, χ11, χ12} ε = −1{
E8(i) 7→ (ϕ3i)

ε = 1
E9(i) ε = −1

, i ∈ Iq−ε

We will see that the 3-radical subgroup R when ` = 3|(q2− 1) does not appear as

a defect group for any block of G, which is why we have no map ΩR. (See part (2) of

the proof of Proposition 7.5.4.)

Suppose now that 3 6= `|(q4 + q2 + 1) so that Q(3) ∈ Syl`(G) is the unique (up to

conjugacy) radical subgroup. Let `|(q2 + εq + 1). The map ΩQ(3) in this case is:

ΩQ(3)

(` 6= 3)
:

{
{χ1, χ3, χ4, χ9, χ10, χ12} 7→ (1)

ε = 1
{χ1, χ2, χ5, χ8, χ11, χ12} ε = −1{
E8(i) 7→ φ(q2+εq+1)i

ε = 1
E9(i) ε = −1

i ∈ Iq−ε{
E31(i) 7→ φi

ε = 1
E34(i) ε = −1

i ∈ Iq3−ε

Now let `|(q2 + 1). Then Q := Q(2) ∈ Syl`(G) and Irr0(G|Q) = Irr`′(G). Let b0

and b1 be the unipotent `-blocks of G, as in [76], and let U(b) denote the unipotent

characters in the block b. The map ΩQ(2) is as follows:
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ΩQ(2) : U(b0) 7→ (1, 1)

U(b1) 7→ (1, χ2)

E6(i) \ {χ15(i), χ16(i)} 7→ (1, χ3(i)) i ∈ Iq−1

E7(i) \ {χ21(i), χ22(i)} 7→ (1, χ4(i)) i ∈ Iq+1

χ55(i) 7→ (ϑi, 1) i ∈ Iq2+1

χ56(i) 7→ (ϑi, χ2) i ∈ Iq2+1

χ62(j, i) 7→ (ϑi, χ3(j)) i ∈ Iq2+1; j ∈ Iq−1

χ65(i, j) 7→ (ϑi, χ4(j)) i ∈ Iq2+1; j ∈ Iq+1

We remark that here we have used the notation of CHEVIE [26] for the characters of

Sp2(q).

We also remark that the fact that in all of the above maps, the number of charac-

ters of N with the same constituents on CG(Q) matches the number of χ ∈ Irr(G) that

we have mapped to them, follows from the discussion in Section 7.3 and the Bonnafé-

Rouquier correspondence together with the knowledge of CG∗(s) and its unipotent

blocks for semisimple s ∈ G∗. The indexing sets for the Ei(J) are evident from [47]

- note that they match the indexing sets for the images under ΩQ, as described in

Section 7.3.

7.4.2 The maps ∗Q

Let `|(q2 − 1). We now define bijections ∗Q : IBr`(G|Q) ↔ dz(N/Q) for each `-

radical Q of G = Sp6(q). (We will see in Section 7.5 that when ` 6 |(q2 − 1), it is

not necessary to define a bijection here.) In this section, we will abuse notation by

denoting by simply B the irreducible `-Brauer characters IBr`(B) in a block B of G.

The bijections ∗Q1 : IBr`(G|Q1)↔ dz(N/Q1) are as follows:
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∗Q1 :

{
B1 7→

(1, α2) ε = 1
(1, ρ2

2) ε = −1{
B6(i)(1) 7→ (ϕi, α2) ε = 1
B7(i)(1) 7→ (ϕi, ρ

2
2) ε = −1

i ∈ Iq−ε, `d|i{
B23(i, j) 7→ (1, χ19(i, j)) ε = 1
B17(i, j) 7→ (1, χ15(i, j)) ε = −1

(i, j) ∈ I2∗
q+ε

B24(i) 7→ (1, χ18(i)) (for ε = 1 or −1) i ∈ Iq2+1{
B28(i, j, k) 7→ (ϕi, χ19(j, k)) ε = 1
B26(j, k, i)) 7→ (ϕi, χ15(j, k)) ε = −1

i ∈ Iq−ε, `d|i; (j, k) ∈ I2∗
q+ε{

B30(i, j) 7→ (ϕi, χ18(j))
ε = 1

B33(j, i) ε = −1
i ∈ Iq−ε, `d|i; j ∈ Iq2+1.

The bijection ∗Q2 : IBr`(G|Q2)↔ dz(N/Q2) is as follows:

∗Q2 :

{
B9(i)(0)

7→ (1, χ∗(2i), χ∗(i))
ε = 1

B8(i)(0) ε = −1
, i ∈ Iq+ε{

B22(i, j) 7→ (1, χ∗(2i), χ∗(j))
ε = 1

B16(i, j) ε = −1
, i 6= j ∈ Iq+ε{

B29(i, j) 7→ (ϕ2i1 , χ∗(2i2), χ∗(j))
ε = 1

B27(i, j) ε = −1
i = i1(q + ε) + i2(q − ε) ∈ Iq2−1,

`d|i; j ∈ Iq+ε

Recall that when Q = Q3, there are no defect-zero characters of N/Q when ` =

3|(q2− 1). So, letting ` 6= 3, the bijection ∗Q3 : IBr`(G|Q3)↔ dz(N/Q3) is as follows:

∗Q3

(` 6= 3)
:
{

B31(i) 7→ χ8(i)
ε = 1

B34(i) ε = −1 i ∈ Iq3−ε, `d|i

When ` = 3, we have the additional cyclic 3-radical subgroup Q(3). The map ∗Q(3)

is as follows:

∗Q(3)

(` = 3)
:

{
B31(i) 7→ φi

ε = 1
B34(i) ε = −1

i ∈ Iq3−ε, 3d+1|i

The bijection ∗Q1,1 : IBr`(G|Q1,1)↔ dz(N/Q1,1) is as follows:
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∗Q1,1 :

{
B7(i)(0)

7→ (1, 1, χ∗(i))
ε = 1

B6(i)(0) ε = −1
i ∈ Iq+ε{

B20(i, j) 7→ (ϕi, 1, χ∗(j))
ε = 1

B20(j, i) ε = −1
i ∈ Iq−ε, `d|i; j ∈ Iq+ε{

B18(i, j) 7→ (ϕi, ϕi, χ∗(j))
ε = 1

B21(i, j) ε = −1
i ∈ Iq−ε, `d|i; j ∈ Iq+ε{

B26(i, j, k) 7→ (ϕi, ϕj, χ∗(k))
ε = 1

B28(k, i, j) ε = −1
(i, j) ∈ I2∗

q−ε, `
d|i, j; k ∈ Iq+ε

The bijection ∗Q2,1 : IBr`(G|Q2,1)↔ dz(N/Q2,1) is as follows:

∗Q2,1 :

{
B13(i) 7→ (1, χ∗(2i), 1)

ε = 1
B11(i) ε = −1

i ∈ Iq+ε{
B21(i, j) 7→ (1, χ∗(2i), ϕj)

ε = 1
B18(i, j) ε = −1

i ∈ Iq+ε; j ∈ Iq−ε, `d|j

B19(i) 7→ (ϕ2i1 , χ∗(2i2), 1) (for ε = 1 or −1), i = i1(q + ε) + i2(q − ε) ∈ Iq2−1, `
d|i{

B27(i, j) 7→ (ϕ2i1 , χ∗(2i2), ϕj)
ε = 1

B29(i, j) ε = −1
i = i1(q + ε) + i2(q − ε) ∈ Iq2−1;

j ∈ Iq−ε; `d|i, j
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Suppose ` 6= 3 so that Q1,1,1 ∈ Syl`(G). The map ∗Q1,1,1 in this case is:

∗Q1,1,1

(` 6= 3)
: B0 7→ (1, 1, 1){

B6(i)(0)

7→ (ϕi, 1, 1)
ε = 1

B7(i)(0) ε = −1
i ∈ Iq−ε, `d|i{

B8(i) 7→ (ϕi, ϕi, ϕi)
ε = 1

B9(i) ε = −1
i ∈ Iq−ε, `d|i{

B11(i) 7→ (ϕi, ϕi, 1)
ε = 1

B13(i) ε = −1
i ∈ Iq−ε, `d|i{

B17(i, j) 7→ (ϕi, ϕj, 1)
ε = 1

B23(i, j) ε = −1
(i, j) ∈ I2∗

q−ε, `
d|i, j{

B16(i, j) 7→ (ϕi, ϕi, ϕj)
ε = 1

B22(i, j) ε = −1
(i, j) ∈ I2

q−ε, `
d|i, j{

B25(i, j, k) 7→ (ϕi, ϕj, ϕk)
ε = 1

B32(i, j, k) ε = −1
(i, j, k) ∈ I3∗

q−ε; `d|i, j, k

Now suppose that ` = 3. In this case, we will distribute B0 between the three

sets IBr3(G|Q1,1,1), IBr3(G|P ), and IBr3(G|R). Of the 10 Brauer characters in B0,

we require that four of these belong to IBr3(G|Q1,1,1) (to map to the characters

(1(1), 1(1), 1(−1))(1), (1(1), 1(1), 1(−1))(−1), (1(1), 1(−1), 1(−1))(1), and (1(1), 1(−1), 1(−1))(−1)

of NG(Q1,1,1)/Q1,1,1), another four belong to IBr3(G|P ) (to map to the characters

(1(1), 1), (1(−1), 1), (1(1), λ), and (1(−1), λ) of NG(P )/P ), and the final two belong to

IBr3(G|R) (to map to the characters 1(1)β and 1(−1)β of NG(R)/R).

In fact, the choice of this partition is arbitrary, as long as the number of characters

assigned to each subgroup is correct, so we will simply write B0 = B0(Q1,1,1)∪B0(P )∪

B0(R) for an appropriate partition. Similarly, of the three Brauer characters of the

block B8(i) with 3d|i (resp. B9(i)) when `|(q − 1) (resp. `|(q + 1)), we require that

two of these are members of IBr3(G|P ) and the other is a member of IBr3(G|R).

Again, the partition is arbitrary, and we will write B8(i) = B8(i, P ) ∪B8(i, R) (resp.

B9(i) = B9(i, P )∪B9(i, R)) for an appropriate partition. Below are the corresponding

maps.
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∗Q1,1,1

(` = 3)
: B0(Q1,1,1) 7→ (1(ν), 1(ν), 1(µ)), ν 6= µ ∈ {±1}{

B6(i)(0)

7→ (ϕi, 1, 1)
ε = 1

B7(i)(0) ε = −1
i ∈ Iq−ε, 3d|i{

B11(i) 7→ (ϕi, ϕi, 1)
ε = 1

B13(i) ε = −1
i ∈ Iq−ε, 3d|i{

B17(i, j) 7→ (ϕi, ϕj, 1)
ε = 1

B23(i, j) ε = −1
(i, j) ∈ I2∗

q−ε, 3
d|i, j{

B16(i, j) 7→ (ϕi, ϕi, ϕj)
ε = 1

B22(i, j) ε = −1
(i, j) ∈ I2

q−ε, 3
d|i, j{

B25(i, j, k) 7→ (ϕi, ϕj, ϕk)
ε = 1

B32(i, j, k) ε = −1
(i, j, k) ∈ I3∗

q−ε, 3d|i, j, k

Note that for the image of B0(Q1,1,1), we have used the notation for the constituent

when restricted to L rather than C. To describe the maps ∗P and ∗R, we use the

notation of characters of N described in Section 7.3.

∗P
(` = 3)

: B0(P ) 7→ {(1(ν), λµ) : ν, µ ∈ {±1}}{
B8(i, P ) 7→ {(ϕ3i, λ

µ) : µ ∈ {±1}} ε = 1
B9(i, P ) ε = −1

i ∈ Iq−ε, 3d|i

∗R
(` = 3)

: B0(R) 7→ {1(µ)β : µ ∈ {±1}}{
B8(i, R) 7→ ϕ3iβ

ε = 1
B9(i, R) ε = −1

i ∈ Iq−ε, 3d|i
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7.4.3 The Maps for Sp4(2a)

Here we will use the notation of [75] for blocks of H = Sp4(q), with q even. As in the

case of Sp6(q), we will use maps ∗Q for the (B)AWC and maps ΩQ for the (Alperin-

)McKay reductions. The images are again given by a constituent on the centralizer

CH(Q). We will also write simply B for the irreducible Brauer characters IBr`(B) in

a block B of H when defining our maps ∗Q.

First let `|(q2 − 1). The maps ∗Q are as follows:

∗Q1 :

{
B9(i) 7→ (χ∗(i), 1)

ε = 1
B7(i) ε = −1

i ∈ Iq+ε{
B17(j, i) 7→ (χ∗(i), ϕj)

ε = 1
B17(i, j) ε = −1

i ∈ Iq+ε; j ∈ Iq−ε, `d|j

∗Q2 :

{
B13(i) 7→ (χ∗(2i), 1)

ε = 1
B11(i) ε = −1

i ∈ Iq+ε{
B16(i) 7→ (χ∗(2i1), ϕ2i2)

ε = 1
B16(i) ε = −1

i = i1(q − ε) + i2(q + ε) ∈ Iq2−1, `
d|i

Recall that NH(Q1) ∼= (GLε1(q) : 2) × Sp2(q) and NH(Q2) ∼= GLε2(q) : 2 ∼=

(SLε2(q) × Cq−ε) : 2 with [NH(Q) : CH(Q)] = 2 in either case, and that χ∗ ∈

Irr(SL2(q)) is χ4 and χ3 in the cases ε = 1 and −1, respectively. Also, recall that

NH(Q1,1) ∼= (GLε1(q) : 2) o S2 and CH(Q1,1) ∼= (GLε1(q))2.
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∗Q1,1 : B0 7→ (1, 1){
B7(i) 7→ (ϕi, 1)

ε = 1
B9(i) ε = −1

i ∈ Iq−ε, `d|i{
B11(i) 7→ (ϕi, ϕi)

ε = 1
B13(i) ε = −1

i ∈ Iq−ε, `d|i{
B15(i, j) 7→ (ϕi, ϕj)

ε = 1
B19(i, j) ε = −1

(i, j) ∈ I2∗
q−ε, `

d|i, j

Continuing to let `|(q2 − 1), the maps ΩQ are as follows:

ΩQ1 :

{
{χ9(i), χ10(i)} 7→ (χ∗(i), 1)

ε = 1
{χ7(i), χ8(i)} ε = −1

i ∈ Iq+ε{
χ17(j, i) 7→ (χ∗(i), ϕj)

ε = 1
χ17(i, j) ε = −1

i ∈ Iq+ε; j ∈ Iq−ε

ΩQ2 :

{
{χ13(i), χ14(i)} 7→ (χ∗(2i), 1)

ε = 1
{χ11(i), χ12(i)} ε = −1

i ∈ Iq+ε{
χ16(i) 7→ (χ∗(2i1), ϕ2i2)

ε = 1
χ16(i) ε = −1

i = i1(q − ε) + i2(q + ε) ∈ Iq2−1

ΩQ1,1 : {χ1, χ3, χ4, χ5, χ6} 7→ (1, 1){
{χ7(i), χ8(i)} 7→ (ϕi, 1)

ε = 1
{χ9(i), χ10(i)} ε = −1

i ∈ Iq−ε{
{χ11(i), χ12(i)} 7→ (ϕi, ϕi)

ε = 1
{χ13(i), χ14(i)} ε = −1

i ∈ Iq−ε{
χ15(i, j) 7→ (ϕi, ϕj)

ε = 1
χ19(i, j) ε = −1

(i, j) ∈ I2∗
q−ε
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Now let `|(q2 + 1), so Q = Q(2) ∈ Syl`(H) and NH(Q) ∼= Cq2+1 : 22 with CH(Q) ∼=

Cq2+1. In this case we only define a map ΩQ:

ΩQ(2) : {χ1, χ2, χ5, χ6} 7→ (1)

χ18(i) 7→ (ϑi) i ∈ Iq2+1

7.5 Sp6(2
a) and Sp4(2

a) are Good for the Conjectures

In this section, we prove Theorem 1.2.1. We begin with a discussion regarding the

automorphisms of G = Sp6(2a) and H = Sp4(2a) before proving a few propositions,

which describe some properties of the maps and sets defined in Section 7.4.

Let Q be an `-radical subgroup of G = Sp6(2a), where ` 6= 2 is a divisor of |G|.

Let σ2 be the field automorphism of G induced by the Frobenius map F2 : x 7→ x2.

That is, (aij)
σ2 = (a2

ij) for (aij) some matrix in G. Then Aut(G) = 〈G, σ2〉. Let Q be

an `-radical subgroup of G. If Q is generated by diagonal matrices and matrices with

entries in F2, then Qσ2 = Q, and we will write σ := σ2. Otherwise, Q is conjugate

in G := Sp6(Fq) to a group D of this form. Moreover, the G-conjugacy class of Q

is determined by D. If Q = 〈x〉 is cyclic, then x is conjugate in G to a generator,

y for D. But y is also conjugate in G to yσ2 , so x is conjugate to xσ2 in G. But

since two semisimple elements of G are conjugate whenever they are conjugate in G

(see, for example, the description in [47] of conjugacy classes of G), we see that Q is

conjugate in G to Qσ2 . If Q is abelian but not cyclic, we can view Q as a subgroup

of the product of lower-rank symplectic groups (e.g. Q2,1 ≤ Sp4(q)× Sp2(q)), and a

similar argument on the direct factors shows that Q is G-conjugate to Qσ2 . Finally,

if Q is nonabelian, then ` = 3 and Q must be either R or P , in which case Qσ2 must

be G-conjugate to Q since Q is the unique (up to G-conjugacy) `-radical subgroup of

its isomorphism type.
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Hence in any case, we know that there is some σ ∈ Aut(G) (obtained by mul-

tiplying σ2 by an inner automorphism) so that Qσ = Q and Aut(G) = 〈G, σ〉. For

the remainder of this section, given the `-radical subgroup Q, σ will denote this

automorphism.

Now let H = Sp4(2a). Then Out(H) is still cyclic, generated by a graph automor-

phism γ2. Now, the action of γ2 switches the fundamental roots of the root system

of type B2, and the action on the elements of H can be seen from [15, Proposition

12.3.3]. We see that γ2 satisfies γ2
2 = σ2. We may then replace γ2 with some γ which

fixes a Sylow `-subgroup and satisfies γ2 = σ.

Our first two propositions show that the maps defined in Section 7.4 commute

with the automorphism groups of G and H.

Proposition 7.5.1. Let G = Sp6(q), with q = 2a, ` 6= 2 a prime dividing |G|, and

Q ≤ G a nontrivial `-radical subgroup. Then the maps ΩQ and ∗Q (for `|(q2 − 1))

described in Section 7.4 are Aut(G)-equivariant.

Proof. Let χ ∈ Irr0(G|Q) (resp. χ ∈ IBr`(G|Q)) as defined in Section 7.4. Since

Out(G) = Aut(G)/G ∼= Ca is cyclic, it suffices to show that (ΩQ(χ))σ = ΩQ(χσ)

(resp. (χ∗Q)σ = (χσ)∗Q) for a generator, σ, of Out(G). In particular, let σ be the

automorphism of G described above and note that we can write σ = yσ2 for some

y ∈ G.

As usual, let N := NG(Q) and C := CG(Q) denote the normalizer and centralizer

of the `-radical subgroup Q.

(1) Note that σ fixes the unipotent classes of G. Now, a semisimple class of G is

determined by its eigenvalues (possibly in an extension field of Fq) on the action of the

natural module 〈e1, e2, e3, f1, f2, f3〉Fq of G. Hence, as the action of σ on semisimple

classes of G is to square the eigenvalues, we see that σ sends the class Ci(j1, j2, j3)

of G (in the notation of CHEVIE [26], with the possibility of some of the indices jk

being null) to the class Ci(2j1, 2j2, 2j3) (which we mention is also equal to the class
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Ci(−2j1,−2j2,−2j3)).

Let θ ∈ Irr(G). Then θσ(g) = θ(gσ
−1

) for g ∈ G. From the observations in

the above paragraph and careful inspection of the character values for irreducible

characters of G in CHEVIE and [47], we see that the character χi(j1, j2, j3) (again in

the notation of CHEVIE) is mapped under σ to χi(2j1, 2j2, 2j3). That is, σ preserves

the family of a character, and in the notation of Section 7.4, Ei(J)σ = Ei(2J), where

2J = (2j1, .., 2jk) for an indexing set J = (j1, ..., jk).

Now, as discussed in Section 7.1, the set Ei(J) forms a basic set for the block

Bi(J), so by writing ϕ ∈ Bi(J) as a linear combination of the θ̂ for θ ∈ Ei(J), we see

that Bi(J)σ = Bi(2J), with the character families preserved. Also, note that both

Brauer and ordinary characters of unipotent blocks of G are fixed under σ.

(2) Now, by similar argument to part (1), the action of σ on the irreducible

ordinary characters of Sp4(q), SL2(q), and GL±3 (q) that we require in the descrip-

tions of dz(N/Q) and Irr0(N |Q) is analogous to the action on Irr(G). That is, these

characters are indexed in a similar fashion {χi(j1, j2, j3)} in CHEVIE, and we have

χi(j1, j2, j3)σ = χi(2j1, 2j2, 2j3).

(3) From the description of the action of σ on semisimple and unipotent classes of

G, we see that σ squares the elements of GLε1(q) and commutes with τ . (Recall that

τ is the involutory automorphism ζ 7→ ζ−1 on GLε1(q) ∼= Cq−ε.) Hence when it occurs

in N , the character of GLε1(q) : 2 with ϕi as a constituent on GLε1(q) is mapped under

σ to the character with ϕ2i as a constituent. (When i = 0, the choice ±1 of extension

is fixed as well. That is, σ fixes 1(1) and 1(2).)

Similarly, the action of σ on Irr(Cq3−ε : 6) (resp. Irr(Cq2+1 : 22)) is to send the

character with φi (resp. ϑi) as a constituent on Cq3−1 (resp. Cq2+1) to the one with

φ2i (resp. ϑ2i) as a constituent and fix the characters with i = 0, since σ squares

elements of Cq3−ε or Cq2+1 and commutes with the action of the generators of the

order-6 or 4 complement.

(4) The observations in (1)− (3) imply that (ΩQ(χ))σ = ΩQ(χσ) (resp. (χ∗Q)σ =
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(χσ)∗Q) for our choice of generator σ, except possibly when Q = P or R and ` =

3|(q2 − 1).

Now, when Q = P , the discussion on height-zero characters of NG(P ), combined

with (3) and the fact that σ commutes with the action of the S3-subgroup of N yields

that the character ϕiβ of N (in the notation from Section 7.3.8) is mapped to ϕ2iβ

under σ. Hence again in this case, the maps are equivariant.

Finally, let Q = R. Since ΩR is trivial, we need only consider the map ∗R, and

therefore the members of dz(NG(R)/R). By Section 7.3.9, this set is comprised of the

characters ϕiβ with 3d|i, where β ∈ Irr(Sp2(3)) is the Steinberg character and (recall

the abuse of notation) ϕi = ϕ−i is the character whose restriction to Cq−ε contains ϕi

as a constituent. Now, β, 1(1), and 1(−1) are fixed by σ, and ϕσi = ϕ2i as before, so

we see that ∗R is again equivariant.

Proposition 7.5.2. Let H = Sp4(q), with q = 2a, ` 6= 2 a prime dividing |H|, and

Q ≤ H a nontrivial `-radical subgroup. Then the maps ΩQ and ∗Q (for `|(q2 − 1))

described in Section 7.4 are Aut(H)-equivariant.

Proof. Again, it suffices to show that ∗Q and ΩQ commute with the generator γ

of Out(H). We will use the notation of classes and characters from CHEVIE, [26].

From comparing notation of CHEVIE, [21], and [15], we deduce that the action of

γ on the unipotent classes of H is to switch C2 and C3 and fix the other unipotent

classes. Moreover, C7(i)γ = C11(i) and C11(i)γ = C7(2i). Similarly, C9(i)γ = C13(i)

and C13(i)γ = C9(2i). Hence γ switches Q1 and Q2. Also, C15(i, j)γ = C15(i+j, i−j),

C19(i, j)γ = C19(i+j, i−j), and Q1,1 is stabilized by γ. Moreover, C17(i, j) = C16(i(q+

1)+j(q−1)), C16(i)γ = C17(i mod (q−1), j mod (q+1)), and C18(i)γ = C18((q+1)i).

From this, using the character table for H in CHEVIE [26], we can see the action

of γ on the relevant characters (and blocks) of H. Namely, B7(i)γ = B11(i), B11(i)γ =

B7(2i), B9(i)γ = B13(i), B13(i)γ = B9(2i), B15(i, j)γ = B15(i + j, i − j), B19(i, j)γ =

B19(i+ j, i− j), and χ18(i)γ = χ18((q+ 1)i). Also, B0 is fixed, except that χ3 and χ4



207

are switched.

Let ϕi for i ∈ Iq−ε be as usual. Considering the action of γ on elements of

NH(Q1) and NH(Q2), we see that the characters (ϕi, χ∗(j)) of CH(Q1) are mapped

under γ to the corresponding character (ϕi, χ∗(j)) in CH(Q2). Applying γ again

yields (ϕ2i, χ∗(2j)) in CH(Q1). Moreover, for ν ∈ {±1}, (1(ν), χ∗(j)) ∈ Irr(NH(Q1))

is mapped to the corresponding character (1(ν), χ∗(j)) ∈ Irr(NH(Q2)), which is then

mapped to (1(ν), χ∗(2j)) ∈ Irr(NH(Q1)).

Inspecting the values of the characters of NH(Q1,1)/CH(Q1,1) ∼= C2 o S2, we see

that they are fixed under γ, aside from (1(1), 1(1))(−1) and (1(−1), 1(−1))(1), which are

switched. So, choosing {χ3, χ4} 7→ {(1(1), 1(1))(−1), (1(−1), 1(−1))(1)}, we see that this

is consistent with our maps.

Also, the characters θ of NH(Q1,1) which are nontrivial on CH(Q1,1) satisfy that if

(ϕi, ϕj) is a constituent of θ|CH(Q1,1), then (ϕi+j, ϕi−j) is a constituent of θγ|CH(Q1,1),

where i, j ∈ Iq−ε ∪ {0}, and ϕ0 := 1Cq−ε . Moreover, in the case i = 0, the action on

C2 oS2 yields that the choice of extension is fixed under γ (i.e. (ϕi, 1
(ν))γ = (ϕi, ϕi)

(ν)

where ν ∈ {±1}).

Finally, ϑi ∈ Irr(CG(Q(2)) is mapped under γ to ϑ(q+1)i, and when i = 0 the choice

of extension to NG(Q(2)) is fixed by γ.

Altogether, these discussions yield that (χ∗Q)γ = (χγ)∗Q for each χ ∈ IBr`(H|Q),

as desired, and similar for ΩQ.

We now show that our maps send a block in G to its Brauer correspondent in

NG(Q).

Proposition 7.5.3. Let G = Sp6(2a) or Sp4(2a), ` an odd prime dividing |G|, and

Q a nontrivial `-radical subgroup of G. Let the sets Irr0(G|Q), Irr0(NG(Q)|Q), and

IBr`(G|Q) and the maps ΩQ, ∗Q be as described in Section 7.4. Then

• If χ ∈ Irr0(G|Q) with B ∈ Bl(G|χ) and b ∈ Bl(NG(Q)|ΩQ(χ)), then bG = B.
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• If χ ∈ IBr`(G|Q) with B ∈ Bl(G|χ) and b ∈ Bl(NG(Q)|χ∗Q), then bG = B.

Proof. Let N := NG(Q) and C := CG(Q). As b ∈ Bl(NG(Q)), bG is defined and

bG = B if and only if λB(K+) = λb ((K ∩ C)+) for all conjugacy classes K of G (see,

for example, [33, Lemma 15.44]). Let χ ∈ Irr(G|B). The central character ωχ for G

can be computed in CHEVIE, and the values of ϕ ∈ Irr(N |b) on C can be computed

by their descriptions and using the character tables for Sp4(q), SL2(q), and GL±3 (q)

available in CHEVIE. Hence it remains only to determine the fusion of classes of C

into G in order to compute ωϕ ((K ∩ C)+) = 1
ϕ(1)

∑
C⊆K ϕ(g)|C|, where g ∈ C and the

sum is taken over classes C of C which lie in K, and compare the image of this under

∗ with ωχ(K+)∗.

We present here the complete discussion for ∗R when G = Sp6(q), ` = 3|(q − ε).

The other situations are similar, though quite tedious.

When Q = R, we have C = Cq−ε = Z(GLε3(q)), embedded in G in the usual way.

The set IBr3(G|R) consists of two Brauer characters in a unipotent block and one

Brauer character in each set B8(i) if ε = 1 or B9(i) if ε = −1 with i ∈ Iq−ε divisible

by 3d. Choosing χ = 1G for B = B0, χ = χ27(i) for B the block containing B8(i), and

χ = χ30(i) for B the block containing B9(i), we have ω1G(K+)∗ = 0 = ωχ27(i)(K+)∗

when ε = 1 for every nontrivial conjugacy class K 6= C25(j) of G (in the notation of

CHEVIE) for any j ∈ Iq−1 and ω1G(K+)∗ = 0 = ωχ30(i)(K+)∗ when ε = −1 for every

nontrivial conjugacy class K 6= C28(j) for any j ∈ Iq+1.

Now, let ζ generate C ∼= Cq−ε, so ζ i is identified in G with the semisimple element

with eigenvalues ζ̃ and ζ̃−1, each of multiplicity 3, where ζ̃ is a fixed primitive (q− ε)

root of unity in Fq
×

. Then {ζ i, ζ−i} = C25(i)∩C if ε = 1 and = C28(i)∩C if ε = −1.

Let ζ = exp
(

2π
√
−1

q−ε

)
in C× and let χ := χ27(i) or χ30(i) and K = C25(j) or

C28(j), in the cases ε = 1,−1, respectively. Then ωχ(K+)∗ = (ζ
3ij

+ ζ
−3ij

)∗ from

CHEVIE, since (q − ε)∗ = 3∗ = 0. But the value of ϕ := ϕ3iβ on ζj is ζ
3ij

, so

ωϕ(K ∩ C)+) = (ζ
3ij

+ζ
−3ij

)2
2

= ζ
3ij

+ ζ
−3ij

. Hence we have bG = B in this case.
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Moreover, ω1G(K)∗ = 2, so bG = B in this case as well, since if ϕ = 1(ν)β for

ν ∈ {±1}, then ωϕ(K ∩ C)+) = 2, completing the proof for Q = R.

The next proposition shows that the sets defined in Section 7.4.1 are in fact the

height-zero characters of Sp6(2a).

Proposition 7.5.4. Let G = Sp6(2a) or Sp4(2a) and Q ≤ G a nontrivial `-radical

subgroup with ` an odd prime dividing |G|. The sets Irr0(G|Q) and Irr0(NG(Q)|Q)

defined in Section 7.4 are exactly the sets Irr0(G|Q) and Irr0(NG(Q)|Q) of height-zero

characters of G and NG(Q), respectively, with defect group Q.

Proof. (1) LetN := NG(Q), ϕ ∈ Irr0(N |Q), and χ ∈ Irr0(G|Q) such that ΩQ(χ) = ϕ.

Let b ∈ Bl(N |ϕ), so that bG is the block B containing χ, by Proposition 7.5.3. Let Db

and DB denote defect groups for b and B, respectively, so we may assume Db ≤ DB.

Then as Q is `-radical, we know that Q ≤ Db ≤ DB (see, for example, [33, Corollary

15.39]). Now, since |G|`/|DB| must be the highest power of ` dividing the degree of

every member of Irr(B), inspection of the character degrees in B yields that |DB| =

|Q|, so in fact Q = Db = DB. Hence by inspection of the degrees of characters in our

constructed sets, we see that Irr0(G|Q) ⊆ Irr0(G|Q) and Irr0(N |Q) ⊆ Irr0(N |Q).

(2) Moreover, we have constructed the set Irr0(G|Q) to contain all characters

χ′ ∈ Irr(B) whose degrees satisfy χ′(1)` = [G : Q]`. (That is to say, given any

block in Bl(G), if we included in Irr0(G|Q) one irreducible ordinary character of the

block whose degree satisfies this condition, then we included all such members of the

block.) Further, every block B′ ∈ Bl(G) of positive defect intersects the set Irr0(G|Q′)

for some `-radical subgroup Q′, so we see that in fact Irr0(G|Q) = Irr0(G|Q). Note

that when ` = 3, this means R does not occur as a defect group for any block of

G = Sp6(2a).

(3) Now, except in the case G = Sp6(q) with ` = 3 and Q = Q1,1,1 or P , from

the discussion in Section 7.3 we see that in fact every character θ of N with θ(1)` =
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|N |`/|Q| has been included in Irr0(N |Q), so Irr0(N |Q) = Irr0(N |Q). Hence we are

left with the case ` = 3 and Q = Q1,1,1 or P . However, by the discussion after

the description of the map ΩQ1,1,1 in the case ` = 3, we see that Irr0(N |Q1,1,1) =

Irr0(N |Q1,1,1) in this case as well. Finally, for Q = P , we have already described

Irr0(N |P ) in Section 7.3.8.

We note that Proposition 7.5.4 is consistent with Brauer’s height-zero conjecture,

which says that an `-block B of a finite group has an abelian defect group if and

only if every irreducible ordinary character in B has height zero. It is also consistent

with a consequence of [36, Theorem 7.14], which implies that the defect group for a

block which is not quasi-isolated (i.e. satisfies the conditions for Bonnafé-Rouquier’s

theorem) is isomorphic to the defect group of its Bonnafé-Rouquier correspondent.

We are now prepared to show that Sp6(q) and Sp4(q) are (B)AWC-good.

Theorem 7.5.5. Let G = Sp6(2a) with a ≥ 1 or Sp4(2a) with a ≥ 2. Then G is

“good” for the Alperin weight and blockwise Alperin weight conjectures for all primes

` 6= 2.

Proof. 1) Let ` 6= 2 be a prime dividing |G|. Since Out(G) is cyclic, we know G

is BAWC-good for any prime ` such that a Sylow `-subgroup of G is cyclic, by [70,

Proposition 6.2]. Hence, G is BAWC-good for ` as long as ` 6 |(q2 − 1). Moreover,

considerations in GAP show that the statement is true for ` = 3 when G = Sp6(2).

(The main tools here were the PrimeBlocks command, the Brauer character table for

the double cover 2.Sp6(2) in the Character Table Library [11], as well as the faithful

permutation representation of 2.Sp6(2) on 240 points given in the online ATLAS [77].)

Henceforth, we shall assume `|(q2 − 1) and a ≥ 2.

2) As a ≥ 2, the Schur multiplier of G is trivial, so G is its own Schur cover, so

in the notation of [53, Section 3], we may assume S is just G itself. Furthermore,
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[70, Lemma 6.1] implies that it suffices to show that G is AWC-good for ` in the

sense of [53] and that the maps used satisfy condition 4.1(ii)(3) of [70]. For the

trivial group Q = {1}, the map ∗{1} : {χ̂|χ ∈ dz(G)} → dz(G), χ̂ 7→ χ sending

the restriction of defect-zero characters to G◦ to the original defect-zero character

satisfies the conditions trivially. Hence, it suffices to show that our sets IBr`(G|Q)

and maps ∗Q defined in Section 7.4.2 satisfy the conditions of [53, Section 3] and that

for χ ∈ IBr`(G|Q), χ is a member of the induced block bG, where b ∈ Bl(NG(Q)|χ∗Q).

By Proposition 7.5.3, the latter condition is satisfied.

3) Since Z(G) = 1 and our sets IBr`(G|Q) depend only on the conjugacy class of Q,

we know that our sets satisfy [53, Condition 3.1.a]. Our sets IBr`(G|Q) are certainly

disjoint, since distinct Lusztig series or blocks are disjoint, and the union of all of these

with the set {χ̂|χ ∈ dz(G)} is all of IBr`(G), by Chapter 4 and the results of [76] and

[75], so our sets also satisfy [53, Condition 3.1.b]. Moreover, by Propositions 7.5.1

and 7.5.2, our maps and sets also satisfy the final partition condition and bijection

condition, [53, Conditions 3.1.c, 3.2.a].

4) Let Q be an `-radical subgroup, and fix θ ∈ IBr`(G|Q). Identify G with Inn(G),

so that we can write G C Aut(G). Write X := Aut(G)θ and let B := XQ be the

subgroup of Aut(G) stabilizing both Q and θ. Then certainly, GCX, Z(G) ≤ Z(X),

θ is X-invariant, and B is exactly the set of automorphisms of G induced by the

conjugation action ofNX(Q) onG. Moreover, CX(G) is trivial and sinceX/G is cyclic,

so is the Schur multiplier H2(X/G,F×` ). Hence the normally embedded conditions

[53, Conditions 3.3.a-d] are trivially satisfied, completing the proof.

Before proving the corresponding statement for the (Alperin-)McKay conjecture,

we need the following lemma.

Lemma 7.5.6. Let ` be a prime, S be a simple group with universal `′ covering

group G, and Q be an `-radical subgroup satisfying Conditions (i) and (ii) of [69,

Definition 7.2] with MQ = NG(Q). Let χ ∈ Irr0(G|Q) be such that Aut(S)χ/S is
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cyclic and let η ∈ Aut(G)χ with Aut(S)χ = 〈S, η〉. Then there are χ̃ ∈ Irr(A(χ)) and

Ω̃Q(χ) ∈ Irr(NA(χ)(Q)), where A(χ) := 〈G, η〉, such that:

1. χ̃|G = χ

2. Ω̃Q(χ)|NG(Q) = ΩQ(χ)

3. b̃A`′ = B̃, where b̃ is the block of NA`′
(Q) containing Ω̃Q(χ)|NA`′ (Q), B̃ is the

block of A`′ containing χ̃|A`′ , and G ≤ A`′ ≤ A(χ) so that A`′/G is the Hall

`′-subgroup of A(χ)/G.

Proof. First, note that χ extends to A(χ) since A(χ)/G is cyclic and χ is invariant

under A(χ). Let ϕ := ΩQ(χ). Since the map ΩQ is Aut(G)Q-equivariant, we have

ϕ = ΩQ(χα) = ϕα for any α ∈ NA(χ)(Q), so ϕ is invariant under NA(χ)(Q) and

therefore extends to some ϕ̃ ∈ Irr
(
NA(χ)(Q)

)
since NA(χ)(Q)/NG(Q) is cyclic. Let b̃

be the block of NA`′
(Q) containing the restriction ϕ̃|NA`′ (Q)

and let B be the block of

G containing χ. Then b̃A`′ is defined, by [33, Lemma 15.44], and we claim that b̃A`′

covers B, so that by [52, Theorem 9.4], we can choose an extension χ̃ of χ to A(χ)

so that χ̃|A`′ is contained in b̃A`′ .

To prove the claim, first note that by [52, Theorem 9.5], b̃A`′ covers B if and only if

the central functions satisfy λb̃A`′ (K+) = λB(K+) for all classes K of A`′ contained in

G. Let b be the block of NG(Q) containing ϕ, so that bG = B by Condition (ii) of [69,

Definition 7.2] and λb̃ covers λb by [52, Theorem 9.2]. Let K1, . . . ,Kk be the classes

of G so that K =
⋃
iKi. Notice that Ki ∩NA`′

(Q) = Ki ∩NG(Q) can be viewed as a

union of classes of NA`′
(Q) contained in NG(Q) and

⋃
i(Ki∩NA`′

(Q)) = K∩NA`′
(Q),

so

λB(K+) =
∑
i

λB(K+
i ) =

∑
i

λbG(K+
i ) =

∑
i

λb
(
(Ki ∩NG(Q))+

)
=
∑
i

λb̃
(
(Ki ∩NA`′

(Q))+
)

= λb̃
(
(K ∩NA`′

(Q))+
)

= λb̃A`′ (K
+),

which proves the claim.
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Theorem 7.5.7. Let G = Sp6(2a) or Sp4(2a) with a ≥ 2. Then G is “good” for the

McKay and Alperin-McKay conjectures for all primes ` 6= 2.

Proof. 1) Again, notice that G is its own Schur cover, so G = S in the notation

of either [69, Definition 7.2] or [34, Section 10]. Also, note that reasoning similar

to part (4) of the proof of Theorem 7.5.5 implies that G satisfies conditions (5)-(8)

of the definition of McKay-good in [34, Section 10]. Hence, if G is “good” for the

Alperin-McKay conjecture (i.e. satisfies the inductive-AM-condition described in [69,

Definition 7.2]), then G satisfies conditions (1)-(4) of the definition of McKay-good,

so is also “good” for the McKay conjecture. (Indeed, in the case Q is a Sylow `-

subgroup of G, the set Irr`′(G) is exactly the set of height-zero characters of G with

defect group Q.) Again, when Q = {1}, the map sending defect-zero characters to

themselves satisfies the conditions trivially.

2) Let Q 6= 1 be an `-radical subgroup of G which occurs as a defect group for some

`-block of G. Hence by replacing with a conjugate subgroup, we may assume that Q

is one of the groups described in Section 7.2 aside from R. The group MQ := NG(Q)

satisfies condition (i) of [69, Definition 7.2]). Moreover, Propositions 7.5.1, 7.5.2,

7.5.3, and 7.5.4 imply that the map ΩQ from Section 7.4 satisfies condition (ii) of [69,

Definition 7.2]. (Again note that Z(G) is trivial.)

3) Now, let A := Aut(G) and let χ ∈ Irr0(G|Q). Write Aχ := stabA(χ) and write

AQ,χ for the subgroup NAχ(Q) of elements of A which stabilize both Q and χ. Write

χ′ := ΩQ(χ) and let χ̃ and χ̃′ be the extensions of χ to Aχ and χ′ to AQ,χ as in

Lemma 7.5.6, since A/G is cyclic. Say P and P ′, respectively, are the representations

affording these extensions. Then certainly, these representations satisfy the first three

subconditions of condition (iii) of [69, Definition 7.2] and it suffices to show that they

satisfy the final subcondition. (Note that here rep: S → G is simply the identity

map.)

4) Let x be an `-regular element of MQAQ,χ = AQ,χ with Q ∈ Syl`(CG(x)). If
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x ∈ MQ, we are done by [69, Proposition 7.4]. So, suppose that x 6∈ MQ. That is,

x ∈ NAχ(Q)\NG(Q). Since x is an `′-element, we see that in fact x ∈ NA`′
(Q), where

G ≤ A`′ ≤ Aχ is as in Lemma 7.5.6. Let K be the conjugacy class of x in A`′ . Since

Q ∈ Syl`(CG(x)), we also have Q ∈ Syl`(CA`′ (x)), since [A`′ : G] is prime to `. Hence

K∩CA`′ (Q) is the class of NA`′
(Q), containing x (see, for example, [52, Lemma 4.16]).

Let B̃ and b̃ be the blocks of A`′ and NA`′
(Q) containing χ̃ and χ̃′, respectively, so

that b̃A`′ = B̃. Then we have λB̃(K+) = λb̃
(
(K ∩ CA`′ (Q))+

)
, which implies that(

|A`′ |χ̃(x)

|CA`′ (x)|χ(1)

)∗
=

(
|NA`′

(Q)|χ̃′(x)

|CNA`′ (Q)(x)|χ′(1)

)∗
.

Moreover, except possibly in the case G = Sp4(q) and Q = Q1 or Q2, we can choose

η as in Lemma 7.5.6 to stabilize Q, by the discussion preceding Proposition 7.5.1,

and therefore [A`′ : G] = [NA`′
(Q) : NG(Q)] and [CA`′ (x) : CG(x)] = [CNA`′ (Q)(x) :

CNG(Q)(x)]. However, note that if Q = Q1 or Q2 when G = Sp4(q), then γ 6∈ Aχ (see

the proof of Proposition 7.5.2), but γ2 = σ fixes Q, so the same is true in this case.

This yields (
|G|χ̃(x)

|CG(x)|χ(1)

)∗
=

(
|NG(Q)|χ̃′(x)

|CNG(Q)(x)|χ′(1)

)∗
.

Now, since χ ∈ Irr0(G|Q) and χ′ ∈ Irr0(NG(Q)|Q), we see [G : Q]` = χ(1)` and

[NG(Q) : Q]` = χ′(1)`, so(
|G|`′χ̃(x)

|CG(x)|`′χ(1)`′

)∗
=

(
|NG(Q)|`′χ̃′(x)

|CNG(Q)(x)|`′χ′(1)`′

)∗
,

and

([G : NG(Q)]`′χ̃(x)χ′(1)`′)
∗

=
(

[CG(x) : CNG(Q)(x)]`′χ̃′(x)χ(1)`′
)∗
.

Now, note that CNG(Q)(x) = CG(x) ∩ NG(Q) = NCG(x)(Q), so by Sylow’s theorems,

[CG(x) : CNG(Q)(x)]`′ = [CG(x) : CNG(Q)(x)] ≡ 1 mod `, and hence ε∗χχ(1)∗`′χ̃(x)∗ =

([G : NG(Q)]`′χ̃(x)χ′(1)`′)
∗ =

(
χ̃′(x)χ(1)`′

)∗
, where εχ is as in [69, Definition 7.2],

and finally ε∗χTr(P(x))∗ = Tr(P ′(x))∗, as desired.
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To finish the proof of Theorem 1.2.1, we need to prove that when q = 2, the

groups Sp6(2) and Sp4(2)′ are AM-good.

Theorem 7.5.8. Let S = Sp6(2) or Sp4(2)′ ∼= A6. Then S is “good” for the Alperin-

McKay conjecture for all primes.

Proof. Let G := 6.A6 be the universal covering group of S := A6 and ` a prime

dividing |A6|. We can construct G in GAP using the generators given in the online

ATLAS [77] for the faithful permutation representation of G on 432 letters. Using the

PrimeBlocks function to calculate the sizes of the defect groups and calculating the

Sylow subgroups of centralizers of `′-elements, we see that the only noncentral defect

group of G are Sylow `-subgroups. Fix P ∈ Syl`(G). Again using the PrimeBlocks

function, the knowledge of the action of the outer automorphism group of A6 on the

conjugacy classes of A6, and the character information for 6.A6, 6.A6.21, and 6.A6.22

in the GAP Character Table Library [11], we see that we can construct bijections

satisfying conditions (i) and (ii) of the Inductive AM-condition [69, Definition 7.2],

with MP := NG(P ). Further, by [69, Proposition 4.2], for χ ∈ Irr0(G|P ), there exist

P ,P ′ satisfying the first three requirements of condition (iii), so it remains to show

that they fulfill the final requirement, [69, (7.4)].

Now, if ` = 3 or 2, then calculating with the automorphism group in GAP yields

that the centralizer CAut(S)(PZ(G)/Z(G)) is an `-group, so this final requirement is

satisfied by [69, Proposition 7.4].

If ` = 5, then |CAut(S)(PZ(G)/Z(G))| = 10 and this centralizer is cyclic. Let

g be the order-2 element in CAut(S)(PZ(G)/Z(G)). Now, 〈S, g〉 has order 720, and

comparing the character table with those of A6.21, A6.22, and A6.23, we see that

〈S, g〉 = A6.22. Moreover, the height-zero characters (in the notation of the GAP

Character Table Library) of G = 6.A6 which are fixed under g are χ1, χ4, χ5, χ6, χ10,

and χ11 of degrees 1, 8, 8, 9, 8, and 8, respectively, and hence all other characters

satisfy the final condition again by [69, Proposition 7.4].
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Our constructed bijections map these characters to characters of NG(P ) with

degree 1, 2, 2, 1, 2, and 2, respectively, and we see that for these characters, εχ ≡ −1

mod 5, except in the case χ = χ1 = 1G, in which case ε1G = 1. (Here εχ is as defined

following [69, (7.4)].) Further, Aut(S)χ = Aut(S) for χ = χ1 or χ6 and Aut(S)χ =

〈S, g〉 for the four characters of degree 8 under consideration. Also, χ1, χ4, χ5, and

χ6 lie in the principal block of G, and can be viewed as characters of S = G/Z(G).

Similarly, the characters of NG(P ) that they map to lie in the principal block of

NG(P ) and can be viewed as characters of NG(P )/Z(G). Considering the character

tables for Aut(S)χ and Aut(S)P,χ, we see that these characters lift to characters of

Aut(S)χ and (NG(P )/Z(G)) Aut(S)P,χ satisfying the final condition of [69, Definition

7.2].

The remaining two characters of G and NG(P ) under consideration are trivial

on the elements of Z(G) of order 3 and are nontrivial on the element z ∈ Z(G) of

order 2. Moreover, the values of χ4 and χ10 are identical on 2′-elements and satisfy

χ4(x) = −χ10(x) when 2 divides |x|. The same is true for χ5 compared with χ11, and

similarly for the corresponding pairs of characters of NG(P ). Hence if rep: S → G

is the Z(G)-section used for condition (iii) of [69, Definition 7.2] for the character

χ = χ4, respectively χ5, then replacing rep with

rep′ : y 7→
{

rep(y) if 2 6 ||y|
rep(y) · z if 2||y|

yields that condition (iii) of [69, Definition 7.2] is satisfied when χ = χ10, respectively

χ11, using the same extensions as in the case χ = χ4, respectively χ5.

Now let G := 2.Sp6(2) be the universal covering group of S := Sp6(2) and let

` be a prime dividing |G|. Then Aut(G) ∼= Aut(S) ∼= S, and in this case, the

inductive AM-condition [69, Definition 7.2] is satisfied as long as the usual Alperin-

McKay conjecture is satisfied. The following considerations in GAP similar to the

case A6 above and the situation for the BAWC yield that we can construct the desired

bijections.
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Let P ∈ Syl`(G). Using the PrimeBlocks function to calculate the sizes of the

defect groups and calculating the Sylow subgroups of centralizers of `′-elements, we

see that the only noncentral defect group of G are Sylow `-subgroups when ` 6= 3.

For ` = 7, each of NG(P ) and G have 2 blocks with defect group P , and in each

case, both blocks have 7 height-zero characters. For ` = 2, each of NG(P ) and G have

one bock with defect group P , and these blocks have 16 characters. This verifies the

Alperin-McKay conjecture in these cases.

When ` = 5, NG(P ) and G both have 5 blocks with defect group P . In each

case, all but one of these blocks has 5 height-zero characters, and the last has 4. The

blocks with 4 characters are both nontrivial on Z(G). For each of G and NG(P ), one

of the blocks with 5 height-zero characters is nontrivial on Z(G), and the height-zero

characters of the remaining blocks with defect group P are trivial on Z(G). Inspection

of the central character values available yields that the blocks with 4 height-zero

characters are in Brauer correspondence, so the Alperin-McKay is satisfied in this

case.

In the case ` = 3, calculating the sizes of the defect groups and studying the defects

of the blocks of the normalizers of the Sylow subgroups of centralizers of `′-elements

yields that we have two noncentral defect groups, namely the Sylow subgroup P and

a cyclic defect group Q1 of size 3. (Indeed, for the other Sylow subgroups D for

centralizers of `′-elements, NG(D) has no defect group D, but Brauer’s first main

gives a bijection between Bl(NG(D)|D) and Bl(G|D).)

Now, G and NG(P ) both have two blocks with defect group P , and each block in

each case has 9 height-zero characters. NG(Q1) and G have two blocks with defect

group Q1, and in each case, each block as 3 height-zero characters, and the Alperin-

McKay conjecture is satisfied.

Theorems 7.5.5, 7.5.7, and 7.5.8 complete the proof of the main theorem, Theorem
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1.2.1.
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[59] Sôhei Nozawa. Characters of the finite general unitary group U(5, q2). J. Fac.
Sci. Univ. Tokyo Sect. IA Math., 23(1):23–74, 1976.

[60] Tetsuro Okuyama and Katsushi Waki. Decomposition numbers of Sp(4, q). J.
Algebra, 199(2):544–555, 1998.

[61] Tetsuro Okuyama and Katsushi Waki. Decomposition numbers of SU(3, q2). J.
Algebra, 255(2):258–270, 2002.

[62] Amanda A. Schaeffer Fry. Cross-characteristic representations of Sp6(2a) and
their restrictions to proper subgroups. J. Pure Appl. Algebra, 2012. doi:
10.1016/j.jpaa.2012.11.011 (in press). Available: arXiv:1204.5514v1.

[63] Gary M. Seitz. The maximal subgroups of classical algebraic groups. Mem.
Amer. Math. Soc., 67(365):iv+286, 1987.

[64] Gary M. Seitz. Cross-characteristic embeddings of finite groups of Lie type. Proc.
London Math. Soc. (3), 60(1):166–200, 1990.

[65] Gary M. Seitz and Donna M. Testerman. Extending morphisms from finite to
algebraic groups. J. Algebra, 131(2):559–574, 1990.

[66] Josephine Shamash. Blocks and Brauer trees for groups of type G2(q). In The
Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986),
volume 47 of Proc. Sympos. Pure Math., pages 283–295. Amer. Math. Soc., Prov-
idence, RI, 1987.



224

[67] Josephine Shamash. Brauer trees for blocks of cyclic defect in the groups G2(q)
for primes dividing q2 ± q + 1. J. Algebra, 123(2):378–396, 1989.

[68] Josephine Shamash. Blocks and Brauer trees for the groups G2(2k), G2(3k).
Comm. Algebra, 20(5):1375–1387, 1992.
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