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Abstract. We classify finite groups whose principal blocks have at most five height-
zero ordinary irreducible characters. This classification, together with the recently-shown
principal block case of Héthelyi-Külshammer’s conjecture, allows us to obtain a lower
bound for the number of height-zero ordinary irreducible characters in the principal p-
block of a finite group of order divisible by p.

1. Introduction

In order to better understand the relationship between complex and p-modular represen-
tations of a finite group G, Brauer partitioned the set of ordinary and p-Brauer irreducible
characters of G into naturally defined subsets called p-blocks of G. Brauer’s idea has de-
veloped into what is now known as block theory, a fundamental tool in the study of finite
group representation theory. In a p-block B of a finite group, height-zero characters, which
are ordinary characters in B whose degrees have minimal p-part, play an important role
because of their direct involvement in several central problems in the area, notably Brauer’s
height zero conjecture [Bra63, Problem 12] and the Alperin-McKay conjecture [Alp75].

The principal p-block of a group G, which we will denote by B0pGq, or sometimes just
by B0, is the one containing the trivial character 1G of G. Therefore, the height-zero
characters in B0pGq are simply those characters with degree not divisible by p. The problem
of determining the structure of the Sylow p-subgroups of finite groups whose principal p-
block has a given number of irreducible characters can be seen as the modular analogue of
the classical problem of classifying finite groups with a given number of conjugacy classes
[VV85]. Thanks to recent contributions in [KS21] and [RSV21], those Sylow p-subgroups
have been determined for principal p-blocks with up to five irreducible characters. This
determination in turn has contributed to the positive solution of the Héthelyi-Külshammer
conjecture for principal blocks in [HSF21]. The purpose of this paper is to generalize the
results of the afore-mentioned papers from the perspective of height-zero characters.
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We write kpBq to denote the number of ordinary irreducible characters in a block B and
k0pBq to denote the number of height-zero characters in B. Our first main result classifies
principal blocks with at most five height-zero irreducible characters.

Theorem 1.1. Let G a finite group and p a prime. Let P be a Sylow p-subgroup and B0

denote the principal p-block of G. We have:

(A) For k P t2, 3u, k0pB0q “ k if, and only if, P has order k.
(B) k0pB0q “ 4 if, and only if, exactly one of the following happens:

(i) rP : P 1s “ 4,
(ii) |P | “ 5 and rNGpP q : CGpP qs “ 2.

(C) k0pB0q “ 5 if, and only if, exactly one of the following happens:
(i) |P | “ 5 and rNGpP q : CGpP qs P t1, 4u,
(ii) |P | “ 7 and rNGpP q : CGpP qs P t2, 3u.

Theorem 1.1 suggests that the prime p is bounded from above in terms of the number
of height-zero characters in the principal p-block. Our second main result confirms this,
showing that p ď k0pB0q

2{4` 1.

Theorem 1.2. Let G be a finite group of order divisible by a prime p and B0 denote the
principal p-block of G. Then

k0pB0q ě 2
a

p´ 1 .

We remark that Theorem 1.1 extends [NST18, Theorems A and C], which treats the
cases pk0pB0q, pq “ p3, 3q and pk0pB0q, pq “ p4, 2q, while Theorem 1.2 improves [MM16],
which proves a similar bound with k0pB0q replaced by the number of all irreducible char-
acters of degree not divisible by p of the group instead. Further, Theorems 1.1(B), 1.1(C),
and 1.2 provide height-zero versions of the main results of [KS21], [RSV21], and [HSF21],
respectively.

It can be shown that Theorems 1.1 and 1.2 above are implied by the statement of
the Alperin-McKay conjecture and known results on the conjugacy class number of finite
groups. In this sense, they provide further evidence for the validity of this conjecture. More-
over, Theorems 1.1 and 1.2 can be used to advance on the determination of the structure
of the Sylow p-subgroups of finite groups with exactly six irreducible ordinary characters
in its principal p-block. (This will be discussed in forthcoming work.)

Brauer’s Problem 21 [Bra63] predicts that, for every positive integer k, there are finitely
many isomorphism classes of groups which can occur as defect groups of blocks with k or-
dinary irreducible characters. This was shown by Külshammer and Robinson [KR96] to be
a consequence of the Alperin-McKay conjecture and Zelmanov’s solution of the restricted
Burnside problem. In view of Theorems 1.1 and 1.2, it is reasonable to expect that the
height-zero analogue of Brauer’s prediction is true, at least for principal blocks. The fol-
lowing is another consequence of the Alperin-McKay conjecture, see Lemma 6.1, which we
find rather interesting.

Conjecture 1.3. For every positive integer k0, there are finitely many isomorphism classes
of (abelian) groups (of prime power order) which can occur as abelianizations of defect
groups of principal blocks (of finite groups) with precisely k0 height-zero irreducible charac-
ters.
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Conjecture 1.3 is equivalent to the statement that the index rP : P 1s is bounded from
above in terms of the number k0 :“ k0pB0pGqq, where P P SylppGq. By Theorem 1.2, this
is reduced to showing that rkpP {P 1q and logppexppP {P 1qq are both bounded in terms of k0,
where rkpP {P 1q and exppP {P 1q are respectively the rank and the exponent of the abelian
group P {P 1. The problem of bounding logppexppP {P 1qq turns out to be related to recent
advances on the study of fields of character values and Galois actions on characters, in the
context of the Alperin-McKay-Navarro conjecture [Nav04, Conjecture B]. We will exploit
this relationship in Section 6. In particular, in Theorem 6.2 we prove that exppP {P 1q is
bounded in terms of k0 when p “ 2.

The structure of this paper is as follows. In Section 2, we collect some previous results on
blocks and normal subgroups as well as some proven consequences of the Alperin-McKay
conjecture. In Section 3, we obtain a lower bound for the number of irreducible height-
zero characters in principal blocks of almost simple groups. The proof of Theorem 1.1 is
contained in Section 4. In Section 5, and relying on all the previous sections, we present
a proof of Theorem 1.2. We finish our work by discussing Conjecture 1.3 and proving
Theorem 6.2 in Section 6.

2. Preliminaries

We start by collecting some results on the interplay between block theory and the normal
structure of a group. We refer the reader to [Nav98, Chapter 9] for first definitions and
basic properties. Recall that if N is a normal subgroup of G and B and b are blocks of G
and N respectively, then B covers b if there are χ P IrrpBq and θ P Irrpbq such that θ is an
irreducible constituent of the restriction χN . For θ P IrrpNq, we write IrrpG|θq, respectively
IrrpB|θq, for the set of those characters of G, respectively B, containing θ as a constituent
when restricted to N .

For a finite group G and a prime p, we denote by B0pGq the principal p-block of G
whenever p is clear from, or irrelevant in, the context. It is clear that B0pGq covers B0pNq.
Recall that χ P IrrpGq belongs to B0pGq if, and only if,

ÿ

x PG0

χpxq ‰ 0 ,

where G0 is the set of p-regular elements in G. In particular, AutpGq and GalpQab{Qq act
on IrrpB0pGqq, and also on the subset Irrp1pB0pGqq of height-zero characters in B0pGq. Here

Qab is the smallest extension of Q containing all roots of unity.

Lemma 2.1. Let G be a finite group and N Ĳ G.

(i) IrrpB0pG{Nqq Ď IrrpB0pGqq.
(ii) For every θ P IrrpB0pNqq, there exists χ P IrrpB0pGq|θq.
(iii) Suppose that B P BlpGq is the only block covering b P BlpNq. Then for every θ P Irrpbq,

we have IrrpG|θq Ď IrrpBq.

Proof. Part (i) follows as B0pGq dominates B0pG{Nq. Part (ii) is [Nav98, Theorem 9.4].
Part (iii) is [RSV21, Lemma 1.2], for instance. �
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Note that if N Ĳ G and χ P IrrpB0pGqq satisfies that N Ď Kerpχq, then it is not true in
general that χ P IrrpB0pG{Nqq.

Lemma 2.2. Let N Ĳ G and P P SylppGq.

(i) If θ P Irrp1pB0pNqq extends to PN , then there is some χ P IrrpB0pGq|θq of degree
not divisible by p.

(ii) If θ P Irrp1pB0pNqq extends to some character in B0pGq and B0pGq is the only block
of G covering B0pNq, then

|Irrp1pB0pGq|θq| “ |Irrp1pG{Nq| ,

where Irrp1pB0pGq|θq :“ IrrpB0pGqq X Irrp1pG|θq.

Proof. Part (i) is due to Murai [Mur94, Lemma 4.3]. We now prove part (ii). Let θ̂ P
IrrpB0pGqq be an extension of θ. By Gallagher’s theorem [Isa06, Corollary 6.17],

Irrp1pG|θq “ tβθ̂ | β P Irrp1pG{Nqu .

By hypothesis and Lemma 2.1(iii), Irrp1pG|θq Ď IrrpB0pGqq. Putting these facts together,
we see that |Irrp1pG|θq X IrrpB0pGqq| “ |Irrp1pG|θq| “ |Irrp1pG{Nq|. �

Lemma 2.3. Let M Ĳ G and P P SylppGq. If PCGpP q ĎM , then B0pGq is the only block
covering B0pMq. In particular, kpG{Mq ă k0pB0pGqq as long as P ą 1.

Proof. The first statement is [RSV21, Lemma 1.3]. Recall that k0pB0pMqq ą 1 if P ą 1 by
[Nav98, Problem 3.11]. Then the last part follows from Lemma 2.2(i) since G{M has order
coprime to p. �

We will also make use of Alperin-Dade’s theory of isomorphic principal blocks.

Theorem 2.4. Suppose that N is a normal subgroup of G, with G{N a p1-group. Let
P P SylppGq and assume that G “ NCGpP q. Then restriction of characters defines a
natural bijection between the irreducible characters of the principals blocks of G and N . In
particular, k0pB0pGqq “ k0pB0pNqq.

Proof. The case where G{N is solvable was proved in [Alp76] and the general case in
[Dad77]. �

We end this section with some proven consequences of the Alperin-McKay conjecture,
which posits that k0pBq “ k0pbq, where for B a block of G and b is the Brauer first main
correspondent of B [Nav98, Theorems 4.12 and 4.17]. Note that if B has defect group D,
then b is a block of NGpDq with defect group D. By Brauer’s third main theorem [Nav98,
Theorem 6.7], the Brauer first main correspondent of B0pGq is B0pNGpP qq.

Theorem 2.5. If G is p-solvable and P P SylppGq, then

k0pB0pGqq “ k0pB0pNGpP qqq “ kpNGpP q{Op1pNGpP qqP
1q .

Proof. The first equality is the principal bock case of results by Dade [Dad79] and Okuyama-
Wajima [OW80]. The second equality follows from Fong’s theorem [Nav98, Theorem 10.20]
and Itô’s argument [Isa06, Theorem 6.15]. �
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Lemma 2.6. If the principal p-block B0pGq of a finite group G satisfies the Alperin-
McKay conjecture, then k0pB0pGqq ě 2

?
p´ 1 with equality if, and only if,

?
p´ 1 P N

and NGpP q{Op1pNGpP qq is isomorphic to the Frobenius group Cp ¸ C?p´1.
In particular, if G is p-solvable or all the non-abelian composition factors of G have

cyclic Sylow p-subgroups, then k0pB0pGqq ě 2
?
p´ 1.

Proof. The first part follows from [HSF21, §2.1]. The Alperin-McKay conjecture is known
to be true for p-solvable groups by Theorem 2.5. The so-called inductive Alperin-McKay
conditions are satisfied for all blocks with cyclic defect groups by Koshitani and Späth
[Spa13, KS16], and thus the Alperin-McKay conjecture also holds true for groups in which
all the non-abelian composition factors have cyclic Sylow p-subgroups. (Indeed, note that
a simple group is involved in G if and only if it is involved in some composition factor of
G, and hence any simple group involved in G has cyclic Sylow p-subgroups.) �

Theorem 2.7. Let G be a finite group with an abelian Sylow p-subgroup. Let B0pGq
denote the principal p-block of G. Then k0pB0pGqq ě 2

?
p´ 1 with equality if and only if

?
p´ 1 P N and NGpP q{Op1pNGpP qq is isomorphic to the Frobenius group Cp ¸ C?p´1.

Proof. Note that, when P is abelian, k0pB0pGqq “ kpB0pGqq, by the work of Kessar and
Malle [KM13, Theorem 1.1] on the ‘if part’ of Brauer’s height zero conjecture. The state-
ment then follows by [HSF21, Theorems 1.1 and 1.3]. �

3. Bounding height-zero characters in (almost) simple groups

To prove Theorem 1.1 and 1.2, we need to bound from below the number of height-zero
characters in (almost) simple groups. That is the purpose of this section. We begin with
the case of alternating and symmetric groups.

Proposition 3.1. Let p ě 3 be a prime and n be a positive integer. Then

(i) If n ě p` 2 then |Irrp1pAnq| ě p and |Irrp1pSnq| ě 2p.
(ii) If n “ p or p` 1 then |Irrp1pAnq| “ pp` 3q{2 and |Irrp1pSnq| “ p
(iii) If n ě p2 then |Irrp1pB0pSnqq| ě p2, and thus, there are at least p2{2 orbits of

characters in Irrp1pB0pAnqq under the action of Sn.

Proof. Basics on the representation theory of symmetric and alternating groups can be
found in [JK81, Ols93]. Let Ppnq denote the set of all partitions of n. Irreducible ordinary
characters of Sn are naturally labeled by partitions in Ppnq, and so for each such partition
λ, we let χλ P IrrpSnq denote the corresponding character. For q P Z`, the q-core of λ is
the partition obtained from λ by successive removals of rim q-hooks until no q-hook is left.

A well-known result of Macdonald (see [Ols76, §2]) asserts that, if λ P Ppnq and the
p-adic expansion of n is

a0 ` a1p` ¨ ¨ ¨ atp
t,

then the character χλ has p1-degree if and only if λ has precisely at hooks of length divisible
by pt and the character labeled by the pt-core of λ has p1-degree. Moreover,

|Irrp1pSnq| “ kp1, a0qkpp, a1q...kpp
t, atq,

where, for m, a P N, kpm, aq is the number of m-tuples of partitions of a.
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When n ě p ` 2 we have |Irrp1pSnq| ě 2kpp, 1q “ 2p, and therefore |Irrp1pAnq| ě p,
proving part (i). For part (ii) we note that the p1-degree irreducible characters of Sp are
labeled by hook-shape partitions of the form px, 1p´xq with 0 ď x ď p, and exactly one of
them, namely the one with x “ pp ` 1q{2, is self-conjugate; also, the p1-degree irreducible
characters of Sp`1 are labeled by pp` 1q, p1p`1q, and px, 2, 1p´x´1q with 2 ď x ď p´ 1, and
again exactly one of them is self-conjugate.

For part (iii), the assumptions on p and n imply that n ě 9, and so Sn “ AutpAnq.
Let n “ mp ` r for some integers m ě 1 and 0 ď r ă p. Then [MO83, Theorem 1.10]
implies that the number of height-zero characters in the principal block of Sn is the same
as k0pB0pSmpqq. By [Ols84, P. 44], this number is

ś

iě0 kpp
i`1, biq, where m “

ř

bip
i is the

p-adic decomposition of m. Since n ě p2, we have m ě p, and it follows that this number
ś

iě0 kpp
i`1, biq is at least p2, as desired. �

We next prove the key statement for (almost) simple groups needed for our main results.

Proposition 3.2. Let S be a non-abelian simple group and p ě 5 a prime dividing |S|. As-
sume that P P SylppSq is non-abelian. Then there are at least 6 characters in Irrp1pB0pSqq.

Further, there are more than 2
?
p´ 1 different AutpSq-orbits in Irrp1pB0pSqq.

Proof. (I) First we note that the conclusion follows from Proposition 3.1(iii) for the al-
ternating groups, since P is abelian for n ă p2 and p2{2 ą maxt6, 2

?
p´ 1u for p ě 5.

For sporadic groups and the Tits group, the assumptions on p and P imply that either
p P t5, 7u or pS, pq “ pJ4, 11q or pM, 13q. The GAP character table library [GAP] contains
the character table and block distributions for S for the prime p in these cases. From this
information, we can see that the statement holds.

(II) We now assume that S is a simple group of Lie type defined over Fq, where q is a
power of some prime q0. First assume that q0 “ p. Let G be a simple algebraic group of
adjoint type and F a Steinberg endomorphism on G such that S – rG,Gs where G :“ GF .
By [Bru09, Lemma 5], the p1-degree irreducible characters of G are the same as semisimple

characters, one for each conjugacy class of semisimple elements of G˚F˚ , where pG˚, F ˚q is

the dual pair of pG, F q. As the number of semisimple classes of G˚F˚ is at least qr, where
r is the rank of G, by [Car85, Theorem 3.7.6], it follows that |Irrp1pGq| ě qr. Therefore,
|Irrp1pSq| ě qr{d where d :“ |G{S| is the order of the group of diagonal automorphisms
of S. By a result of Dagger and Humphreys (see [Cab18, Theorem 3.3]), S has precisely
two p-blocks: the principal block and the defect-zero block containing only the Steinberg
character (of degree |S|p). Therefore, we have k0pB0pSqq ě qr{d. It is now easy to check
that qr{d ą 2

?
p´ 1|OutpSq| for all S of Lie type in characteristic p ě 11, using available

information of OutpSq, in [Atl85, p. xvi] for instance. Hence we are done unless p P t5, 7u.
Now suppose p P t5, 7u. In this case, we have qr{d ě 6 except if S “ PSL2ppq, and we

have qr{d ě 5|OutpSq| unless S “ PSL2ppq; PSL2pp
2q; PSL˘3 ppq; or PSL˘4 p5q. However, if

S “ PSL2pqq, then P P SylppSq is abelian, and we are done in that case. So, assume S “

PSL˘n ppq with pn, pq P tp3, 5q, p3, 7q, p4, 5qu. In these cases, we can see from the character
table available in GAP that there are at least 5 distinct character values in Irrp1pSq, so that
there are at least 5 AutpSq-orbits in Irrp1pB0pSqq, and we are again done.
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(III) So, we may now assume that p - q. Let d :“ eppqq be the multiplicative order of
q modulo p. If S is of exceptional type (including Suzuki and Ree groups and 3 D4pqq),
then the fact that P is non-abelian implies that S “ 2 F4pqq or d is a regular number. If
S “ 2 F4pqq, we see explicitly from [Mal90, Bemerkung 1] that the statement holds.

So, we assume that S is not of Suzuki or Ree type and that d is a regular number. In
[RSV21, Lemma 3.7], it is shown in this case that there are at least 6 distinct AutpSq-
orbits on IrrpB0pSqq. In the proof of loc. cit., it is in fact shown that there are at least
6 distinct p1-degree characters in IrrpB0pSqq lying in at least 5 AutpSq-orbits. (In fact, in
most cases, there are at least 6 distinct such orbits.) Hence we are done in this case, since
the assumption P is non-abelian also implies that p ă 11.

(IV) We therefore assume for the remainder of the proof that S is of classical type.
That is, S is of type An, 2 An, Bn, Cn, Dn, or 2 Dn. we may write S “ rG,Gs, where
G “ PGLnpqq, PGUnpqq, SO2n`1pqq, PCSp2npqq, or PpCO˘2npqqq

0, respectively.
Define e to be the smallest positive integer such that p | pqe ´ 1q when G is of type A,

p | pqe ´ p´1qeq when G is of type 2A, or p | pqe ˘ 1q when G is of type B,C,D or 2D. Let
n “ we`m where 0 ď m ă e. The fact that P is non-abelian implies that p ď w.

Let W denote the relative Weyl group of a Sylow d-torus of G. When G “ PGLnpqq or
PGUnpqq, the group W is the wreath product Ce oSw and otherwise, it is a subgroup of index
1 or 2 of C2e o Sw, see [BMM93, §3A]. In all cases, W has a factor group isomorphic to Sw.
Note that p is good for G. By generalized d-Harish-Chandra theory [BMM93, Theorems 3.2
and 5.24], there is a natural bijection between unipotent characters in the principal p-block
of G and the irreducible characters of W. Furthermore, by [Mal07, Corollary 6.6], the
number of unipotent characters in Irrp1pB0pGqq is at least the number of p1-degree irreducible
characters of W. Note that each unipotent character in IrrpB0pGqq restricts irreducibly to
one in IrrpB0pSqq.

Recall that w ě p ě 5, and thus n ě 5. Assume for a moment that G is not PpCO`2npqqq
0

with n even. Then, by a result of Lusztig [Mal08, Theorem 2.5], every unipotent character
of S is invariant under AutpSq. Therefore, the number of AutpSq-orbits on Irrp1pB0pSqq is at
least the number of p1-degree irreducible characters of W, which in turn is at least |Irrp1pSwq|.
Since w ě p, and p ą 2

?
p´ 1 for all p ě 5, we are done by using Proposition 3.1(i) and

(ii), except possibly if w P t5, 6u and p “ 5.

(V) Now suppose w P t5, 6u and p “ 5, and continue to assume G is not PpCO`2npqqq
0

with n even. Then part (IV) implies we have at least 5 AutpSq-orbits on Irrp1pB0pSqq
by considering unipotent characters. We claim that Irrp1pB0pSqq must contain at least 6
characters.

In the cases of type A, 2 A, and B, we may naturally view G as a central quotient of
H :“ GLnpqq, GUnpqq, and SO2n`1pqq. In the case of type C, S is a central quotient of
H :“ Sp2npqq. Therefore, in these cases by [Nav98, Theorem 9.9], Irrp1pB0pGqq (respectively
Irrp1pB0pSqq) can be identified with the members of Irrp1pB0pHqq that are trivial on ZpHq.
Further, the two sets can be identified except in the case 5 | |ZpHq| (i.e., when 5 | pq ´ 1q
and H “ GLnpqq or 5 | pq ` 1q and H “ GUnpqq). In the case of Dnpqq, and 2 Dnpqq, G is
a central quotient of SOε

2npqq, and hence a subquotient of H :“ GOε
2npqq, and Irrp1pB0pGqq

may be identified with Irrp1pB0pSOε
2npqqqq.
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Now, by [MO83, Theorem (1.9)] and [Mal20, Theorem 5.17], there is a bijection between
Irrp1pB0pHqq and Irrp1pB0pHweqq, where Hwe “ GLwepqq,GUwepqq, SO2we`1pqq, Sp2wepqq,
or GOε

2wepqq. We further see from the formulas for |Irrp1pB0pHweqq| in [Mal20, Theorem
5.17] and [MO83, Proposition (2.13)] that this number is at least 10 in the type A, 2 A cases
and at least 20 in the other cases. Hence we are done in case B and C. Further, in the case
H “ GOε

2npqq, this yields more than 10 characters in Irrp1pB0pGqq by restricting from H,
and 6 characters in Irrp1pB0pSqq further restricting to S.

Now consider the case H “ GLnpqq or GUnpqq. Write H 1 :“ SLnpqq, respectively SUnpqq,
so that S “ H 1{ZpH 1q. Characters of H are partitioned into so-called Lusztig series EpH, sq,
indexed by semisimple elements s P H˚, where in this case the dual group H˚ is isomorphic
to H. In particular, IrrpB0pHqq lies in the union of EpH, sq where s has order a power of
p, by [CE04, Theorem 9.12]. If χ P IrrpB0pHqq is nonunipotent but lies above a unipotent
character, then χ is the tensor product of a unipotent character with a linear character
of H. But linear characters of H are in natural bijection with characters of ZpH˚q, and
it follows that χ P EpH, zq, where z P ZpH˚q is nontrival with order a power of 5 (see,
for example, [CE04, Proposition 8.26]). This is a contradiction, and we are done unless
5 | |ZpH˚q|. In the latter case, e “ 1 and w “ n P t5, 6u. Here the principal block of H
is the unique block containing unipotent characters. Then IrrpB0pHqq consists of all series
EpH, sq where s P H˚ – H has order a power of 5 by [CE04, Theorem 9.12]. First suppose
that n “ 6. Then there is a semisimple element s of H – H˚ that lies in H 1, has order
a power of 5, and has CH˚psq – GL5pqq ˆ Cq´1, respectively GU5pqq ˆ Cq`1. Then the
members of EpH, sq are trivial on ZpHq (see, for example, [SFT21, Proposition 2.6]) and
restrict to non-unipotent characters of H 1, and hence S. Since CH˚psq is of index prime to
5 in H˚, there is a so-called semisimple character in this series of degree rH : CH˚psqsq10 ,

and hence height-zero, and we are done. Now, consider the case n “ 5. Then |ZpH 1q| “ 5.
In this case, every member of Irr51pB0pHqq restricts to one of the five unipotent characters
in Irr51pB0pH

1qq. However, consider the element s P H 1 of order 5 whose eigenvalues are
tζ, ζ2, ζ3, ζ4, 1u, where ζ P Fˆ

q2
has order 5. We have CH˚psq – C5

q´1, respectively C5
q`1, so

that rH˚ : CH˚psqs “ 5. Let χ P EpH, sq be the semisimple element, so that χp1q5 “ 5.
Since s P H 1, we have χ is trivial on the center. Further, sz is H “ H˚-conjugate to s,
where z “ ζ ¨ I5 P ZpH 1q. It follows that the restriction of χ to H 1 is not irreducible, and
hence splits into 5 non-unipotent characters in Irr51pB0pH

1qq. Then |Irr51pB0pSqq| ě 6, as
claimed.

(VI) So lastly, suppose G “ PpCO`2npqqq
0 with n ě 6 even. (Recall that n ě p ě 5.) Then

every unipotent character of S is still invariant under the field automorphisms. The graph
automorphism of order 2 fixes all unipotent characters labeled by non-degenerate symbols,
but interchanges the two unipotent characters in all pairs labeled by the same degenerate
symbol of defect 0 and rank n (see [Mal08, Theorem 2.5] and also [Car85, p. 471] for the
parametrization of unipotent characters of type D groups). In this case it is sufficient to
show that |Irrp1pWq| ą maxt12, 4

?
p´ 1u.

Recall that W is a subgroup of index 1 or 2 in X :“ C2e o Sw. Fix θ P IrrpC2eq. The
character ψ :“ θ ˆ ¨ ¨ ¨ ˆ θ P IrrpBq of the base subgroup B of X is X-invariant and hence
extendible to X, by [Mat95, Lemma 1.3]. It follows that the irreducible characters of X that
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lie over ψ are in bijective correspondence with irreducible characters of Sw by Gallagher’s
theorem (see [Isa06, Corollary 6.17]), and therefore the number of those characters of p1-
degree is exactly equal to |Irrp1pSwq|. According to [BMM93, p. 51], irreducible characters of
X are labeled by 2e-tuples of partitions pai ÞÑ wiq with

ř

wi “ w. When W is a subgroup of
index 2 in X, those characters of X that split when restricted to W are described in loc. cit.
In particular, the previously considered characters of X lying over ψ all restrict irreducibly
to W. Letting θ be arbitrary in IrrpC2eq, we deduce that the number of irreducible p1-degree
characters of W is at least 2e|Irrp1pSwq|, which in turn is at least 2p by Proposition 3.1.
Note again that p ą 2

?
p´ 1 for all p ě 5. We see then that we are done unless p “ 5,

w P t5, 6u, and e “ 1.
In the latter case, we have shown that Irrp1pB0pSqq contains at least 5 AutpSq-orbits, so

it again suffices to show that Irrp1pB0pSqq contains 6 elements. The exact same argument
in (V) in the case H “ GOε

2npqq applies here, and we are done. �

4. Principal blocks with at most 5 height-zero characters

The aim of this section is to prove Theorem 1.1. We begin by recording some divisibility
results for small primes.

Lemma 4.1. Let p be a prime and G a finite group. Let B be a p-block of positive defect
of G.

(i) If p “ 2 then 2 | k0pBq.
(ii) If p “ 3 then 3 | k0pBq.

(iii) If p “ 2 and the defect d of B is at least 2, then 4 | k0pBq. Furthermore, if B has
no character of height 1, then k0pBq ” 2dpmod 8q.

Proof. This follows from [Lan81, Corollaries 1.3 and 1.6] (see also [NST18, Lemma 2.2] and
[RSV21, Theorems 1.6 and 1.7]). �

Theorem 4.2. Let p be a prime and G a finite group. Let P be a Sylow p-subgroup of G.
Then the following are equivalent:

(i) k0pB0pGqq “ 2,
(ii) kpB0pGqq “ 2,

(iii) P is cyclic of order 2.

Proof. The fact that kpB0pGqq “ 2 is equivalent to |P | “ 2 is well-known, see [Bra82].
Assume that k0pB0pGqq “ 2. If p “ 2 then |P | “ 2 by Lemma 4.1(iii), as wanted, and
p “ 3 cannot happen by Lemma 4.1(ii). Now, if p ě 5, [GRSS20, Theorem A] implies
that G is p-solvable. Therefore, by Lemma 2.6, we have k0pB0pGqq ě 2

?
p´ 1 ě 4, a

contradiction. �

Notice that a group G satisfying the equivalent conditions in Theorem 4.2 is always
solvable (by Feit-Thompson’s odd-order theorem). While Theorem 4.2 on principal blocks
with 2 height-zero characters easily follows from results already appearing in the literature,
the following result on blocks with 3 height-zero characters is much more difficult to prove;
in fact, the proof is already nontrivial when one considers just 3-blocks, see the remark
before [NST18, Theorem C].
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Theorem 4.3. Let p be a prime and G a finite group. Let P be a Sylow p-subgroup of G.
Then the following are equivalent:

(i) k0pB0pGqq “ 3,
(ii) kpB0pGqq “ 3,
(iii) P is cyclic of order 3.

Proof. The fact that kpB0pGqq “ 3 implies |P | “ 3 follows from the main result of [Bel90]
(we refer the reader to [KS21, Theorem 3.1] for an independent proof of this result). More-
over, if |P | “ 3 then [Nav98, Theorem 11.1] implies that k0pB0pGqq “ kpB0pGqq “ 3.
Therefore, it remains to prove that (i) implies (iii). So assume that k0pB0pGqq “ 3.

By Lemma 4.1(i), we may assume that p ě 3, and as the statement we need to prove is
precisely [NST18, Theorem C] when p “ 3, we may assume furthermore that p ě 5. Our
aim is now to show that if P ą 1 then k0pB0q ě 4.

Notice that if G is p-solvable, then k0pB0pNGpP qqq “ kpNGpP q{Op1pNGpP qqP
1q by The-

orem 2.5. That number can be seen to be greater than or equal to 4 by looking at [VV85,
Table 1]. We may thus assume that G is not p-solvable.

We consider a chief series 1 “ G0 ă G1 ă ¨ ¨ ¨ ă Gn “ G of G with Gj Ĳ G for every 0 ď
j ď n. Let k be maximal such that p divides rGk`1 : Gks. Since k0pB0q ě k0pB0pG{Gkqq,
in order to show that k0pB0q ě 4 we may assume that Gk`1 “ 1, and thus N :“ Gk`1 is a
minimal normal subgroup of G of order divisible by p with rG : N s not divisible by p. If
N is abelian, then G is p-solvable. Hence N is semisimple with, say t, simple chief factors
isomorphic to the simple non-abelian group S (of order divisible by p).

Write M “ NCGpP q. Since P P SylppNq, by the Frattini argument, G “ NNGpP q
so that M Ĳ G. By Lemma 2.3 we have that kpG{Mq ă k0pB0q. If kpG{Mq ě 3, then
we are done. Hence we may assume that rG : M s ď 2. Again by Lemma 2.3, for every
η P Irrp1pB0pMqq we have that IrrpG|ηq “ Irrp1pG|ηq Ď Irrp1pB0q. In particular, we would
be done if k0pB0pMqq ě 4, and thus we may assume G “M .

By Theorem 2.4 we have that k0pB0q “ k0pB0pNqq “ k0pB0pSqq
t. If t ą 1, then k0pB0q ě

4 by [Nav98, Problem 3.11]. Then t “ 1 and we may assume G “ S is a simple non-abelian
group of order divisible by p ě 5.

By Proposition 3.2, we may assume that P is abelian. Then k0pB0q “ kpB0q by the main
result of [KM13], and kpB0q ě 2

?
p´ 1 ě 4 by [HSF21, Theorem 1.1]. �

We remark that Theorems 4.2 and 4.3 prove Theorem 1.1(A).

In order to prove parts (B) and (C) of Theorem 1.1, we make use of the classification of
Sylow p-subgroups of finite groups with precisely four or five ordinary irreducible characters
in the principal p-block worked out in [KS21, RSV21]. We record this classification in the
following two results.

Theorem 4.4. Let G be a finite group and p a prime. Let B0 denote the principal p-block
of G. Then kpB0q “ 4 if, and only if, exactly one of the following happens:

(i) |P | “ 4,
(ii) |P | “ 5 and rNGpP q : CGpP qs “ 2.
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Proof. The ‘if’ implication is clear by Lemma 4.1 when p “ 2 and [Nav98, Theorem 11.1]
when p “ 5. Assume that kpB0pGqq “ 4. By [KS21], then P P tC2ˆC2,C4,C5u. Moreover,
if |P | “ 5, then kpB0pGqq “ 4 forces rNGpP q : CGpP qs “ 2 by [Nav98, Theorem 11.1]. �

Theorem 4.5. Let G be a finite group and p a prime. Let B0 denote the principal p-block
of G. Then kpB0q “ 5 if, and only if, precisely one of the following happens:

(i) P “ D8,
(ii) P “ Q8 and NGpP q “ PCGpP q,
(iii) |P | “ 5 and rNGpP q : CGpP qs P t1, 4u,
(iv) |P | “ 7 and rNGpP q : CGpP qs P t2, 3u.

Proof. The ‘if’ implication follows from results of Brauer [Nav98, Theorem 11.1] when
|P | “ p and of Brauer [Bra66, Theorem 7B] and Olsson [Ols75, Theorem 3.13] when
P P tD8,Q8u. For the reverse implication, notice that, by the discussion above, it suffices
to show that P P tC5,C7,D8,Q8u. That is the main result of [RSV21]. �

Next we prove part (B) of Theorem 1.1. Recall that if χ P IrrpGq, then detpχq is a linear
character of G uniquely determined by χ (see [Isa06, Problem 2.3]). The determinantal
order opχq “ |G{Kerpdetpχqq| of χ is related to character extension properties.

Theorem 4.6. Let p be a prime and G a finite group. Let P be a Sylow p-subgroup of G.
Then k0pB0pGqq “ 4 if, and only if, exactly one of the following happens:

(i) rP : P 1s “ 4,
(ii) |P | “ 5 and rNGpP q : CGpP qs “ 2.

Proof. By [NST18] the statement holds if p “ 2, so we may assume p is odd.

If |P | “ 5 and rNGpP q : CGpP qs “ 2 then k0pB0q “ 4 by [Nav98, Theorem 11.1], and
the ‘if’ implication holds.

Suppose that k0pB0q “ 4. We want to prove the ‘only if’ implication. We may further
assume that p ě 5 by Lemma 4.1(ii). By [Nav98, Theorem 11.1] it is enough to show that
if k0pB0q “ 4 and p ě 5, then |P | “ 5. Let G be a counterexample of minimal order to
such a statement.

Step 1. G is not p-solvable.

Write K :“ Op1pNGpP qq. Assume, to the contrary, that G is p-solvable. Then by
Theorem 2.5, we have that kpNGpP q{KP

1q “ 4. Inspecting [VV85, Table 1], we see that
NGpP q{KP

1 – D10. In particular, rP : P 1s “ 5, implying |P | “ 5 and thus contradicting
G being a counterexample.

Step 2. Op1pGq “ 1.

Notice that k0pB0pG{Op1pGqqq “ 4 by [Nav98, Theorem 9.9(c)], so Op1pGq “ 1 by the
minimality of G as a counterexample.

Step 3. Let 1 ‰ N be a minimal normal subgroup of G. Then p does not divide rG : N s.

Assume otherwise, so that 1 ă k0pB0pG{Nqq ď 4. The fact that p ě 5 implies
k0pB0pG{Nqq “ 4. By the minimality of G as a counterexample, p “ 5 and rPN : N s “ 5.
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The fact that k0pB0pG{Nqq “ k0pB0q in particular means that every χ P Irrp1pB0q lies
over 1N . By Lemma 2.2(i) we conclude that no 1N ‰ θ P Irrp1pB0pNqq extends to PN . By
Step 2, the group N has order divisible by p and there are 2 cases.

Case (a). Suppose that N is an elementary abelian p-group, so N Ď P . Then P
acts on N necessarily fixing some non-trivial element of N . Hence, there exists some
1N ‰ θ P Irrp1pB0pNqq that is P -invariant. By [Isa06, Theorem 11.22], θ extends to P , and
we get a contradiction.

Case (b). Suppose thatN is semisimple with t chief factors isomorphic to S. By [GRSS20,
Proposition 2.1] there is some 1S ‰ θ P Irrp1pB0pSqq invariant under the action of a Sylow
p-subgroup of AutpSq. Let 1N ‰ ψ be equal to the direct product of t copies of θ in
N . Then ψ P Irrp1pB0pNqq is P -invariant and opψq “ 1 because N is perfect. By [Isa06,
Corollary 8.16], ψ extends to PN , again yielding a contradiction.

Step 4. By Steps 1 and 3, we have that N is semisimple with t chief factors isomorphic
to S, a simple non-abelian group of order divisible by p. Let M “ NCGpP q. Then M “ G.

By the Frattini argument, G “ NNGpP q, and hence M Ĳ G. Notice that the elements
in Irrp1pB0pMqq are the irreducible constituents of χM for every χ P Irrp1pB0q.

Suppose that M ă G. Then by Lemma 2.3 we have that 1 ă kpG{Mq ă 4. This leaves
two possibilities.

First assume kpG{Mq “ 2, and so rG : M s “ 2. Write Irrp1pB0q “ t1G, α, β, γu where
M Ď Kerpαq. If βM “ γM , then k0pB0pMqq “ 2, which is absurd as p ě 5. Otherwise
k0pB0pMqq “ 5. By Theorem 2.4, we have that 5 “ kpB0pSqq

t. This forces t “ 1, P Ď S
and k0pB0pSqq “ 5. By [GRSS20, Proposition 2.1] some 1S ‰ θ P Irrp1pB0pSqq is AutpSq-
invariant. By Theorem 2.4, let ϕ P Irrp1pB0pMqq be such that ϕS “ θ. For every g P G,
ϕg P Irrp1pB0pMqq extends θg “ θ. By Theorem 2.4, ϕ is G-invariant. Consequently, ϕ
has 2 extensions in Irrp1pB0q, those must be β and γ by Lemma 2.1. Then βM “ γM , a
contradiction.

Secondly assume that kpG{Mq “ 3. Then every nontrivial θ P Irrp1pB0pMqq lies under
the same member of Irrp1pB0q. Hence |tψp1q | ψ P Irrp1pB0pMqqu| ď 2. By the main result
of [GRSS20] we get that M is p-solvable, and hence so is G, contradicting Step 1.

Final step. We have G “ NCGpP q, where N is semisimple with t chief factors isomorphic
to S. By Theorem 2.4, 4 “ k0pB0q “ k0pB0pNqq “ k0pB0pSqq

t. As p ě 5, this forces t “ 1,
P Ď S, and k0pB0pSqq “ 4. By Proposition 3.2, P is abelian. Then k0pB0q “ kpB0q “ 4 by
[KM13]. Then Theorem 4.4 implies that |P | “ 5, the final contradiction. �

Finally, we classify groups with 5 height-zero characters in the principal block, thus
completing the proof of Theorem 1.1.

Theorem 4.7. Let G be a finite group and p a prime. Let P P SylppGq and let B0 denote
the principal p-block of G. Then k0pB0q “ 5 if, and only if, precisely one of the following
happens:

(i) |P | “ 5 and rNGpP q : CGpP qs P t1, 4u.
(ii) |P | “ 7 and rNGpP q : CGpP qs P t2, 3u.

Proof. First we remark that the ‘if part’ follows by [Nav98, Theorem 11.1].
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Assume that k0pB0q “ 5. By Lemma 4.1, p cannot be 2 or 3, and hence p ě 5. By
[Nav98, Theorem 11.1], it suffices to show that if k0pB0q “ 5 and p ě 5, then |P | P t5, 7u.
Assume that G is a counterexample of minimal order to such a statement. By the main
result of [KM13] and Theorem 4.5, we have that P is not abelian. Also we can see that G
is not p-solvable and Op1pGq “ 1, proceeding as in the proof of the case k0pB0q “ 4. (Some
arguments will be similar to ones used in the proof of Theorem 4.6 so here we will just
sketch those.)

Let N be a minimal normal subgroup of G, with N ‰ 1. We first show that p does not
divide the index rG : N s.

Assume otherwise, so that 1 ă k0pB0pG{Nqq ď 5. As p ě 5, then 4 ď k0pB0pG{Nqq ď 5.
In the case where k0pB0pG{Nqq “ 5, we obtain a contradiction from Lemma 2.2(i) as we
can always find some θ P Irrp1pB0pNqq that extends to PN (note that by minimality of
G as a counterexample PN{N is cyclic and we can proceed as in the proof of the case
k0pB0q “ 4).

Hence k0pB0pG{Nqq “ 4. By Theorem 4.6, we have that rPN : N s “ 5. Notice that in
this case Irrp1pB0q “ t1G, α, β, γ, χu, where χ is the only member of Irrp1pB0q not belonging
to Irrp1pB0pG{Nqq. We distinguish the cases where N is abelian and semisimple.

Case (a). Suppose that N is abelian, then N is an elementary abelian p-group and
N ď P . Since P is not abelian, and as P {N is cyclic of order 5, then P X CGpNq “ N .
Hence N P SylppCGpNqq. Since Op1pGq “ 1, that implies CGpNq “ N . Let 1N ‰ θ P IrrpNq
be P -invariant. Since P {N is cyclic, θ extends to P by [Isa06, Theorem 11.22]. Take
Q{N P SylqpGθ{Nq with q ‰ p. Then θ extends to Q by [Isa06, Corollary 8.16]. By [Isa06,
Corollary 11.31] θ extends to Gθ. By the Fong-Reynolds correspondence [Nav98, Theorem
9.14],

|Irrp1pB0|θq| “ |Irrp1pB0pGθq|θq| .

Recall that |Irrp1pB0|θq| “ |tχu| “ 1 under our assumptions, as χ is the only member of
Irrp1pB0q possibly lying over a nontrivial character ofN , and by Lemma 2.2(i) some Irrp1pB0q

lies over θ. Let b0 “ B0pNq. By [Nav98, Corollary 9.21], we have that bGθ0 “ B0pGθq is the
only block of Gθ covering b0. Let η P IrrpGθq be an extension of θ. In particular, η lies in
B0pGθq. By Lemma 2.2(ii)

|Irrp1pB0pGθq|θq| “ |Irrp1pGθ{CGpNqqq| ě 2 ,

a contradiction.

Case (b). Suppose thatN is semisimple with t chief factors isomorphic to S. By [GRSS20,
Proposition 2.1] there are 1S ‰ α, β P Irrp1pB0pSqq invariant under the action of a Sylow
p-subgroup of AutpSq with αp1q ‰ βp1q. Let 1N ‰ ψ be equal to the direct product of t
copies of α in N and 1N ‰ ϕ be equal to the direct product of t copies of β in N . Then
ψ,ϕ P Irrp1pB0pNqq are P -invariant. Alos opψq “ 1 “ opϕq because N is perfect. By [Isa06,
Corollary 8.16] both ψ and ϕ extend to PN , yielding a contradiction by Lemma 2.2(i).

We have shown that p does not divide rG : N s. In particular, N is semisimple with, say
t, chief factors isomorphic to the non-abelian simple group S (of order divisible by p). Take
M “ NCGpP q Ĳ G. Then 1 ď kpG{Mq ă 5 by Lemma 2.3. We show that G “ M by
analyzing the different values 1 ă kpG{Mq ă 5. Before proceeding with the analysis, we
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make the following observation. By [GRSS20, Proposition 2.1] some 1S ‰ ϕ P Irrp1pB0pSqq
is AutpSq-invariant. In particular, if θ is the direct product of t copies of ϕ, then θ P
Irrp1pB0pNqq is G-invariant. By Theorem 2.4, let ψ P Irrp1pB0pMqq be such that ψS “ θ.
Then 1M ‰ ψ is a G-invariant member of Irrp1pB0pMqq.

If kpG{Mq “ 2, then rG : M s “ 2. Write Irrp1pB0q “ t1G, α, β, γ, χu where M Ď Kerpαq.
Since ψ extends to G, we may assume that β and γ are the two extensions of ψ. In
particular, χM must decompose as the sum of two distinct members of Irrp1pB0pMqq. In
particular, |Irrp1pB0pMqq| “ k0pB0pMqq “ 4 and by Theorem 4.6 we obtain |P | “ 5, a
contradiction.

If kpG{Mq “ 3, then G{M is isomorphic to C3 or S3. Write Irrp1pB0q “ t1G, α, β, γ, χu,
where α and β contain M in their respective kernels. Recall that 1M ‰ ψ P Irrp1pB0pMqq
is G-invariant. Notice that |Irrp1pB0|ψq| “ |IrrpG|ψq| ě 3, which is impossible.

If kpG{Mq “ 4, then every nontrivial η P Irrp1pB0pMqq lies under the same member
of Irrp1pB0q. Hence |tηp1q | η P Irrp1pB0pMqqu| ď 2. By the main result of [GRSS20] we
conclude that M is p-solvable, then so is G, a contradiction.

Finally, if G “ M , then by Theorem 2.4 we have that k0pB0pSqq
t “ 5. Hence t “ 1 and

k0pB0q “ 5. By Proposition 3.2, P must be abelian, a contradiction. �

5. Bounding height-zero characters in principal blocks

In this section we prove Theorem 1.2. We begin with a technical result due to G. Navarro.

Lemma 5.1 (Navarro). Let S1 ˆ ¨ ¨ ¨ ˆ St “ N Ĳ G, where tS1, ..., Stu are transitively
permuted by conjugation of G: Si “ Sxi1 for some xi P G. Let θ :“ θ1 P IrrpS1q such that
ZpS1q Ď Kerpθq and that there exists α P Irrp1pB0pNGpS1q{CGpS1qqq with αS1 “ eθ for
some e P N. Set ψ :“ θ1 ˆ ¨ ¨ ¨ ˆ θt where θi :“ θxi1 . Then there exists χ P Irrp1pB0pGqq such
that χN “ aψ for some et ě a P N.

Proof. This is the content of [Mar21, Lemma 4.4]. �

Lemma 5.1 is useful when one wants to produce characters in Irrp1pB0pGqq that lie above
certain characters of a non-abelian minimal normal subgroup of G. In such a situation, the
existence of θ and α satisfying the hypothesis of Lemma 5.1 is presented in the following,
which is [GRSS20, Proposition 2.1].

Lemma 5.2. Let S be a non-abelian simple group of order divisible by a prime p ě 5. Then
there exist 1S ‰ θ P Irrp1pSq and α P Irrp1pB0pAutpSqqq such that αS P tθ, 2θu. Further,

when S is not PΩ`8 pqq, one may choose α so that it extends θ.

We can now prove Theorem 1.2 in the case of non-abelian Sylow.

Theorem 5.3. Let G be a finite group and p a prime. Assume that the Sylow p-subgroups
of G are non-abelian. Then k0pB0pGqq ą 2

?
p´ 1.

Proof. First, if p ď 7 then it is sufficient to assume that k0pB0pGqq ď 4. However, by
Theorem 1.1, in such case, P is abelian or k0pB0pBqq “ 4 and p “ 2, and thus we are done
by Theorem 2.7. Therefore, we may and will assume from now on that p ě 11.
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We adapt some arguments in the proof of [HSF21, Theorem 1.1]. Let G be a counterex-
ample with minimal order. In particular, Op1pGq is trivial, P P SylppGq is non-abelian, and

k0pB0pGqq ď 2
?
p´ 1. Let 1 ‰ N be a minimal normal subgroup of G. We claim that p

does not divide rG : N s.
Assume, to the contrary, that p | rG : N s. Then PN{N P SylppG{Nq must be abelian,

by the fact k0pB0pGqq ě k0pB0pG{Nqq and the minimality of G. It then follows from
Theorem 2.7 that k0pB0pG{Nqq ě 2

?
p´ 1. Altogether, we deduce that

k0pB0pGqq “ k0pB0pG{Nqq “ 2
a

p´ 1.

Assume that N is abelian, which means that N is actually an elementary abelian p-group,
because Op1pGq “ 1. Let 1N ‰ θ P IrrpNq be P -invariant. Theorem 2.7 implies that
P {N P SylppG{Nq is of order p, and it follows that θ extends to P . By Lemma 2.2(i), we
deduce that there exists some χ P Irrp1pB0pGqq that lies over θ. We now have k0pB0pGqq ą
k0pB0pG{Nqq, violating the conclusion of the previous paragraph.

We may assume that N is non-abelian. Suppose that S is a simple direct factor of N ,
and notice that p divides the order of S, because Op1pGq “ 1. By Lemma 5.2, there exist
θ P Irrp1pSq and α P Irrp1pB0pAutpSqqq such that αS P tθ, 2θu. Lemma 5.1 then implies
that there exists χ P Irrp1pB0pGqq such that N Ę Kerpχq, again violating the equality
k0pB0pGqq “ k0pB0pG{Nqq. The claim p - rG : N s is now fully proved.

Recall that p | |N |. By Lemma 2.6, we are done if N is abelian, so let us assume that
N is not, and furthermore, as above let S be a (non-abelian) simple factor of N . By
Proposition 3.2, there are more than 2

?
p´ 1 different NGpSq-orbits on Irrp1pB0pSqq. If

two characters η, θ P Irrp1pB0pSqq are not conjugate under the action of NGpSq then the
characters ηˆ¨ ¨ ¨ˆη and θˆ¨ ¨ ¨ˆθ of N are not conjugate under the action of G. We deduce
that there are more than 2

?
p´ 1 different G-orbits on Irrp1pB0pNqq. It immediately follows

that k0pB0pGqq ą 2
?
p´ 1 since there is a character in Irrp1pB0pGqq lying over characters

in each such G-orbit, by Lemma 2.2(i). �

The following result covers Theorem 1.2 in the introduction. The equivalence of (i) and
(iv) was already shown in [HSF21, Theorem 1.3].

Theorem 5.4. Let G be a finite group and p a prime such that p | |G|. Then k0pB0pGqq ě
2
?
p´ 1. Moreover, for P P SylppGq, the following are equivalent:

(i) kpB0pGqq “ 2
?
p´ 1.

(ii) k0pB0pGqq “ 2
?
p´ 1.

(iii) k0pB0pNGpP qqq “ 2
?
p´ 1.

(iv)
?
p´ 1 P N and NGpP q{Op1pNGpP qq is isomorphic to the Frobenius group Cp ¸

C?p´1.

Proof. The first statement follows from Theorem 2.7 (which is a consequence of [HSF21,
Theorem 1.1] and [KM13, Theorem 1.1]) and Theorem 5.3. In fact, these results also imply
the equivalence of (i) and (ii). The fact that (i) is equivalent to (iv) is precisely [HSF21,
Theorem 1.3], and the equivalence of (iii) and (iv) follows by Lemma 2.6. �

We remark that the second statement of Theorem 5.4 is consistent with both Brauer’s
height zero conjecture and the Alperin-McKay conjecture for principal blocks. We have
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learned that the unproven half of Brauer’s height zero conjecture for principal blocks has
been confirmed very recently by Malle and Navarro [MN21]. However, note that our proofs
are independent of this result.

6. On Conjecture 1.3

We end the paper with some discussion on Conjecture 1.3. It asserts that, if one fixes the
number of height-zero characters in the principal p-block of a finite group, then rP : P 1s
is bounded, where P is a Sylow p-subgroup of the group. The conjecture therefore may
be viewed as the analogue of Brauer’s Problem 21 [Bra63] and famous Landau’s theorem
[L1903] for height-zero characters in principal blocks.

Lemma 6.1. Conjecture 1.3 follows from the Alperin-McKay conjecture.

Proof. Fix a positive integer k0 and let G be a finite group with precisely k0 height-zero
characters in the principal p-block of G. Assume that the Alperin-McKay conjecture holds
for principal blocks. As explained in Theorem 2.5, we then have

kpNGpP q{Op1pNGpP qqP
1q “ k0.

By Landau’s theorem (see [L1903]), it follows that the order of the quotient group NGpP q{Op1pNGpP qqP
1

must be bounded, and thus rP : P 1s is bounded as well. �

Recall that p ď k20{4` 1 by Theorem 1.2, where k0 :“ k0pB0pGqq. Moreover,

rP : P 1s ď plogppexppP {P
1qq¨rkpP {P 1q.

Conjecture 1.3 is therefore reduced to showing that logppexppP {P 1qq and rkpP {P 1q are
both bounded in terms of k0. We recall that rkpP {P 1q “ logpprP : ΦpP qsq, where ΦpP q
is the Frattini subgroup of P . The problem of bounding rkpP {P 1q in terms of k0 seems
highly nontrivial to us at the moment. On the other hand, the problem of determining
logppexppP {P 1qq appears to be related to the Alperin-McKay-Navarro conjecture. We take
advantage of recent advances [NT19, NT21] on the study of fields of values of characters of
degree not divisible by p to prove that exppP {P 1q is bounded in terms of k0 when p “ 2 in
Theorem 6.2 below.

We first need to introduce some notation. The field of values of χ P IrrpGq is Qpχq :“
Qpχpgq | g P Gq. Notice that Qpχq Ď QexppGq, where for an integer m, we write Qm :“

Qpe2πi{mq. We define cpχq as the smallest positive integer c such that Qpχq Ď Qc. The
number cpχq has been referred to as the Feit number of χ in connection with a conjecture
by W. Feit [Nav18, §3.3] and as the conductor of χ [NT21]. We recall that χ is p-rational
if p does not divide cpχq. Moreover, in [HMM21, §2], cppχq the p-rationality level of χ is
defined as logppcpχqpq, where np is the p-part of the integer n. The p-rationality level of χ
measures how p-rational χ is. Indeed, χ is p-rational if, and only if, cppχq “ 0.

The Galois group GalpQab{Qq acts on the set of irreducible characters of any finite group
G preserving character degrees. It also acts on the set of height-zero characters of principal
blocks of finite groups as discussed in Section 2. For a positive integer e, let σe denote the
automorphism of GalpQab{Qq that fixes roots of unity of order not divisible by p and sends
p-power roots of unity ξ to ξ1`p

e
. By [NT19, Theorem B], we know that if e is any positive
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integer such that all of the height-zero characters in the principal p-block of G are fixed by
σe, then logppexppP {P 1qq is at most e.

Theorem 6.2. Let p “ 2 and P P SylppGq. Then exppP {P 1q is bounded in terms of
k0 :“ k0pB0pGqq. In fact,

exppP {P 1q ď 2pk0 ´ 1q

whenever P is nontrivial.

Proof. Let B0 denote the principal p-block of G and set

epGq :“ max
χPIrrp1 pB0q

tlogppcpχqpqu.

So this epGq is the largest p-rationality level of a character in Irrp1pB0q. First suppose that
epGq “ 0. Then all the characters in Irrp1pB0q are p-rational and therefore σ1-invariant.
[NT19, Theorem B] then implies that exppP {P 1q ď p “ 2, and the theorem follows since
k0 ě 2 when P ą 1 by Theorem 1.2.

So let epGq ě 1. Then all the characters in Irrp1pB0q are σepGq-invariant, and therefore
by [NT19, Theorem B] we have

logppexppP {P 1qq ď epGq.

Let ψ P Irrp1pB0q be such that cpψqp “ pepGq; that is, choose ψ P Irrp1pB0q with maximal
p-rationality level. By [NT21, Theorem A1], we have QpepGq Ď Qpψq and it follows that

rQpψq : Qs ě rQpepGq : Qs “ pp´ 1qpepGq´1 “ pepGq´1.

On the other hand, any Galois conjugate of ψ belongs in Irrp1pB0pGqq. As the number of
those conjugates is exactly rQpψq : Qs and ψ is nontrivial, we deduce that

k0 ´ 1 ě rQpψq : Qs.
The last three displayed inequalities imply that

exppP {P 1q ď 2pk0 ´ 1q,

and this concludes the proof. �

The proof of Theorem 6.2 in fact shows that exppP {P 1q{2 ` 1 is bounded above by the
number of characters in Irrp1pB0q with maximal p-rationality level.

One might naturally ask what happens when p is odd. The p-odd analogue of [NT21,
Theorem A1] is not true in general. Navarro and Tiep proposed in [NT21, Conjecture B3
and Theorem B1] that, if χ P Irrp1pGq with cpχqp “ pa, then rQpa : pQpχq X Qpaqs is not
divisible by p. If that turns out to be true, one may follow the same arguments as in the
proof of Theorem 6.2 to show that

rQpψq : Qs ě pepGq´1,

whenever ψ is a character in Irrp1pB0pGqq with maximal p-rationality level. It would follow
then that epGq, and hence exppP {P 1q, is bounded in terms of the number k0 of height-

zero irreducible characters in B0pGq. Note that the bound rQpψq : Qs ě pepGq´1 does not
directly imply that p is bounded in terms of k0 since epGq could be 1. Therefore we do
need Theorem 1.2 for this argument to work.
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[MM16] G. Malle and A. Maróti, On the number of p1-degree characters in a finite group, Int. Math.

Res. Not. 20 (2016), 6118–6132.
[MN21] G. Malle and G. Navarro, Brauer’s height zero conjecture for principal blocks, J. Reine

Angew. Math., to appear. arXiv:2102.08270.
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