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Abstract. Groups are mathematical objects used to describe the structure of symmetries, with
one of the most canonical examples being the set of invertible matrices of a given size. For a given
group, a matrix representation leverages this by providing a way to represent each of its elements
as an invertible matrix. The information about the (complex) representations of a finite group
can be condensed by instead considering the trace of the matrices, yielding a function known as a
character. One of the overarching themes in character theory is to determine what properties about
a finite group or its subgroups can be obtained by studying its characters. In this paper, we study a
conjecture that proposes a correlation between the makeup of a group’s irreducible characters and
the properties of certain subgroups known as defect groups. In particular, we prove the conjecture
for the finite symplectic groups Sp6(2

a).

1. Introduction

Given a finite group G and an integer n ≥ 1, a complex representation of degree n of G is a
homomorphism ρ : G → GLn(C). In other words, ρ is a function such that for each g ∈ G, the
image ρ(g) is an n×n invertible matrix with entries in the complex numbers, and ρ(gh) = ρ(g)ρ(h)
for each g, h ∈ G. Here on the left-hand side, multiplication is taken in G, and on the right-hand
side, the operation is usual matrix multiplication. We obtain the corresponding character for ρ
by taking the trace Tr(ρ(g)) of each ρ(g) (that is, by summing the diagonal entries). This gives
a function χ : G → C defined by χ(g) = Tr(ρ(g)) for each g ∈ G. Note here that if 1 ∈ G is the
identity element, then χ(1) = Tr(In) = n is the degree of the original representation.

A character χ is irreducible if it cannot be written as χ = χ1+χ2, where χ1 and χ2 are characters
corresponding to representations of G. We refer to the set of irreducible characters of G as Irr(G).
The information about the character theory of G is summarized in the character table of G, which
is the square table whose columns are indexed by the conjugacy class representatives {g1, . . . , gk}
of G, rows are indexed by Irr(G) = {χ1, . . . , χk}, and whose (i, j)th entry is given by χi(gj).

One of the main general problems in the representation theory of finite groups is the pursuit
of answering the question “what information about G or its subgroups can be obtained from the
character table of G?” This general question fits into the framework of so-called “local-global”
conjectures in character theory, which seek to find relationships between the character theory of G
and properties of certain proper subgroups.

The following standard definitions will be useful. Note that for a finite set X, we use |X| to
denote the cardinality of X. Hence, the order of a group G will be given by |G|. In analogy to this
notation, the order of an element g ∈ G will be written |g|.

We recall that given a subgroup H ≤ G of G, the normalizer of H in G, denoted as NG(H), is
the group

NG(H) := {x ∈ G : Hx = xH}.
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Throughout, if ℓ is a prime and n is an integer, we write nℓ for the largest power of ℓ dividing
n and nℓ′ for n/nℓ. If ℓ is a prime dividing |G|, then any subgroup P of G such that |P | = |G|ℓ is
called a Sylow ℓ-subgroup of G. We write P ∈ Sylℓ(G).

With this notation established, we may now state one of the earliest and most prominent of these
“local-global” conjectures, known as the McKay Conjecture [7]. The McKay conjecture proposes
that if G is a finite group, ℓ is a prime that divides |G|, and P ∈ Sylℓ(G), then |Irrℓ′(G)| =
|Irrℓ′(NG(P ))|, where Irrℓ′(G) denotes the set of irreducible characters of G with degree prime to ℓ.

Although we only deal with complex representations here, representations over fields of positive
characteristic ℓ can also be defined, and these are related to Irr(G) by so-called ℓ-blocks. For our
purposes, we consider ℓ-blocks as a partitioning of the set Irr(G). Each set in the partition is
written Irr(B), corresponding to an ℓ-block B. (More precisely, the sets Irr(B) can be obtained as
the equivalence classes under the transitive closure of the relation on Irr(G) such that χ, ψ ∈ Irr(G)
are related if

∑
ℓ∤|g| χ(g)ψ(g

−1) ̸= 0. Here the sum is taken over all elements of G whose order is

not divisible by ℓ.)
Each ℓ-block is then associated with a special subgroup of G whose size is a power of ℓ, known

as a defect group of the block. Although the precise definition of defect groups is technical and not
necessary for the results here, we remark that if D is a defect group for B, then every χ ∈ Irr(B)
satisfies χ(1) is divisible by |G|ℓ/|D|. The character χ ∈ Irr(B) is called a height-zero character
if χ(1)ℓ = |G|ℓ/|D|, and hence if χ(1)ℓ is as small as possible. We write Irr0(B) for the set of
height-zero characters of B.

The McKay Conjecture, while still unproven, opened the door to a number of stronger conjectures,
of which the Alperin-McKay Conjecture [1] (often thought of as the blockwise version of McKay,
relating the set Irr0(B) to the height-zero characters in a block of NG(D)), McKay–Navarro
Conjecture [8] (the Galois version of McKay), and the Alperin–McKay–Navarro Conjecture (a
combination of the other two) are most relevant to our work. Although these conjectures are
beyond the scope of this article, we deal here with a consequence of the Alperin–McKay–Navarro
Conjecture. Namely, in 2019, Rizo, Schaeffer Fry, and Vallejo [9] proved that if the Alperin–
McKay–Navarro conjecture holds for ℓ ∈ {2, 3}, then we can determine from the character table of
G whether a defect group is cyclic in the following way:

Conjecture 1.1 (Rizo–Schaeffer Fry–Vallejo [9]). Let ℓ ∈ {2, 3}. Let G be a finite group and let B
be an ℓ-block of G with nontrivial defect group D. Then |Irr0(B)σ1 | = ℓ if and only if D is cyclic.

Here σ1 is a specific Galois automorphism, which we define in Section 2.2, and Irr0(B)σ1 is the set
of members of Irr0(B) that are fixed under the action of σ1. In this paper, we prove the following:

Theorem 1.2. Conjecture 1.1 holds for the group G = Sp6(q) and the prime ℓ = 3, where q is a
power of 2.

Our proof of Theorem 1.2 relies on the known character table for Sp6(q) with q even determined
by Frank Lübeck [6], as well as the known distribution of characters into blocks and their defect
groups by Donald White [13] and the third author [10, 11].

The paper is structured as follows. In Section 2, we introduce some additional notation and
definitions and make some preliminary observations. (We remark here that more information on
groups and characters can be found in [3, 4].) In Section 3, we provide a series of computational
lemmas regarding the irrational values that occur in the character table for Sp6(q) and their behavior
under that Galois automorphism σ1. Finally, in Section 4, we complete the proof of Theorem 1.2.
We also provide an appendix with examples of character values found in each relevant block.
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2. Preliminaries

2.1. General Linear and Symplectic Groups. Let q be a power of a prime p, and let Fq denote
a finite field of size q. The general linear group, GLn(q), is the group of all n×n invertible matrices
with entries in Fq.

With a proper choice of basis, the symplectic group Sp2n(q) can be defined as

Sp2n(q) = {g ∈ GL2n(q)|gTJg = J}
where

J :=

[
0 In

−In 0

]
,

In is the n× n identity matrix and gT is the transpose of g. For the purpose of this paper, we are
particularly interested in the case of Sp6(q) (i.e. n = 3) when q is a power of p = 2. In this case,
note that In = −In.

2.2. The Galois Automorphism σ1. Let E be an extension field of Q. Then an automorphism
of E is a field isomorphism σ : E → E. That is, σ is a bijective map satisfying σ(a+b) = σ(a)+σ(b),
and σ(ab) = σ(a)σ(b) for all a, b ∈ E. Note that any such σ necessarily fixes Q. If E is Galois over
Q (see [2]), then we write Gal(E|Q) for the set of automorphisms of E, which in this case are also
called Galois automorphisms and form a group called a Galois group.

More generally, we can consider the Galois group Gal(E|L) of automorphisms of E fixing all
elements of L when the extensions Q ⊆ L ⊆ E are all Galois. The size of a Galois group Gal(E|L)
is the same as the index [E : L] of E over L, which is the dimension of E viewed as a vector space
over L. For more information, we refer the reader to an abstract algebra text, such as [2].

Now, given a finite group G, the character values χ(g) lie in Q(e2πi/|G|) for all g ∈ G and χ ∈
Irr(G). Further, given any σ ∈ Gal(Q(e2πi/|G|)/Q) and χ ∈ Irr(G), we obtain another irreducible
character χσ defined by χσ(g) := σ(χ(g)) for all g ∈ G. Given a prime ℓ dividing |G|, there is a

unique σ1 ∈ Gal(Q(e2πi/|G|)/Q) satisfying that for a root of unity ξ ∈ C×,

(1) σ1(ξ) =

{
ξℓ+1 if |ξ| is a power of ℓ
ξ if ℓ does not divide |ξ|.

Note that when |ξ| = ℓ, i.e. ξ is an ℓth root of unity, we have ξℓ+1 = ξ. Therefore in this case, ξ
is fixed by σ1. In fact, this is the only case in which a root of unity with order a power of ℓ is fixed
by σ1. Further, note that σ1 has order a power of ℓ.

In service of Conjecture 1.1, we are concerned with studying when χσ1 = χ, for certain χ ∈ Irr(G),

which means that the value χ(g) ∈ Q(e2πi/|G|) is fixed by σ1 for each g ∈ G. In the character table
for Sp6(q), obtained by F. Lübeck [6] and available in the computer algebra system CHEVIE [5], we
often find rational linear combinations of expressions of the form ξ+ ξ−1, where ξ is some complex
root of unity. For this reason, we establish the following observation.

Lemma 2.1. Let G be a finite group and let ℓ be an odd prime dividing |G|. Let ξ be a complex
nth root of unity, where n > 2 is a divisor of |G|. Then σ1 fixes ξ if and only if σ1 fixes ξ + ξ−1.

Proof. First, assume that σ1(ξ) = ξ. Then note that σ1(ξ + ξ−1) = σ1(ξ) + σ1(ξ
−1) = σ1(ξ) +

σ1(ξ)
−1 = ξ + ξ−1, and hence σ1 fixes ξ + ξ−1 as well.

Now assume that σ1 fixes ξ + ξ−1. Let Q ⊆ L ⊆ J ⊆ K be extension fields such that K =
Q(e2πi/|G|), J = Q(ξ), and L = Q(ξ+ ξ−1). Then σ1 ∈ Gal(K/L). Since ξ, ξ−1 /∈ L, the polynomial
x2 − (ξ + ξ−1)x + 1 = (x − ξ)(x − ξ−1) ∈ L[x] has no solutions in L. Therefore J is a splitting
field over L, and the order of the group Gal(J/L) is 2. We can then say that Gal(J/L) = {ϕ1, ϕ2},
where ϕ1(ξ) = ξ and ϕ2(ξ) = ξ−1.
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Now consider the restriction σ′1 of σ1 to Gal(J/L). That is, σ′1 is the automorphism of J that is
simply the the restriction of σ1 to the smaller domain J. Then σ′1 must either be ϕ1 or ϕ2. For the
sake of contradiction assume the latter case. Since we know that the order of σ1 is a power of ℓ,

say ℓb, then σℓ
b

1 is the trivial automorphism of Gal(K/L), so its image in Gal(J/L) is also trivial.

However, if σ′1 = ϕ2, then we would have ϕℓ
b

2 (ξ) = ξ−1, which is a contradiction. Therefore we must
have σ′1 = ϕ1, and so σ1(ξ) = ξ. That is, σ1 also fixes ξ. □

Lemma 2.2. Let G be a finite group and let ℓ be an odd prime dividing |G|. Let ξ be a complex
nth root of unity, where n > 2 is a divisor of |G|. Let I ⊆ Z be some subset of Z containing 1.
Then ξ is fixed by σ1 if and only if ξa is fixed by σ1 for all a ∈ I.
Proof. First, suppose that ξ is fixed by σ1. Then σ1(ξ

a) = σ1(ξ)
a = ξa so ξa is still fixed by σ1 for

any a ∈ I. Now suppose that ξa is fixed by σ1 for all a ∈ I. Then ξa is fixed when a = 1, and so ξ
is fixed by σ1. □

3. Breaking Down Character Values for Sp6(q)

3.1. Notation. For the remainder of the paper, let q be a power of 2 and let G = Sp6(q). Note that
|G| = q9(q2 − 1)(q4 − 1)(q6 − 1). The irrational values in the character table for G, available in the
computer algebra system CHEVIE [5] and originally determined in [6], are rational combinations
of roots of unity of orders divisible by these polynomials. Namely, the following notation will be
used throughout, letting ϵ ∈ {±1}.

ζ1 := exp

(
2π

√
−1

q − 1

)
; ξ1 := exp

(
2π

√
−1

q + 1

)
;

ω1 := exp

(
2π

√
−1

q − ϵ

)
; ω2 := exp

(
2π

√
−1

q + ϵ

)
;

ζ2 := exp

(
2π

√
−1

q2 − 1

)
; ξ2 := exp

(
2π

√
−1

q2 + 1

)
;

and

ω3 := exp

(
2π

√
−1

q3 − ϵ

)
= exp

(
2π

√
−1

(q − ϵ)(q2 + ϵq + 1

)
.

We note that the roots of unity ζi, ξi for i = 1, 2 are exactly as defined in the character table for
G in CHEVIE [5]. The following notation is used in [10, 11], and agrees with that of the CHEVIE
character table, to label the blocks and characters of G, where again ϵ ∈ {±1}.
Notation 3.1. Let I0q−ϵ be the set {i ∈ Z : 1 ≤ i ≤ q − ϵ − 1}, and let Iq−ϵ be a set of class

representatives on I0q−ϵ under the equivalence relation i ∼ j ⇐⇒ i ≡ ±j mod (q − ϵ). Let I0q2+1

:= {i ∈ Z : 1 ≤ i ≤ q2} and I0q2−1 := {i ∈ Z : 1 ≤ i ≤ q2 − 1, (q − 1) ∤ i, (q + 1) ∤ i}, and let Iq2−ϵ

be a set of representatives for the equivalence relation on I0q2−ϵ given by i ∼ j ⇐⇒ i ≡ ±j or

±qj mod (q2 − ϵ). Similarly, let I0q3−ϵ := {i ∈ Z : 1 ≤ i ≤ q3 − ϵ; (q2 + ϵq + 1) ∤ i} and Iq3−ϵ a set

of representatives for the equivalence relation on I0q3−ϵ given by i ∼ j ⇐⇒ i ≡ ±j, ±qj, or ±q2j
mod (q3 − ϵ).

3.2. Initial Observations. We next make some observations about modular relationships that
will be useful in what follows. Note that since 3 ∤ q, we have 3 divides exactly one of q− 1 or q+1.
Here and for the remainder of the paper, we let ϵ ∈ {±1} be such that 3|(q − ϵ) and will write
(q−ϵ) =: m3d with m, d ∈ N and gcd(m, 3) = 1. Note then that 3 divides (q2+ϵq+1) exactly once,
and we write (q2 + ϵq+1) =: 3n, with gcd(n, 3) = 1. (Indeed, we have q2 + ϵq+1 = (q− ϵ)2 +3ϵq,
which must be divisible by 3 since both summands are, but cannot be divisible by 9 since then 3q
is divisible by 9, contradicting that 3 ∤ q.)
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Lemma 3.2. Let h, z1, z2 ∈ Z, where h is prime to 3. Then hz1m3d−1 ≡ hz2m3d−1 mod h(q − ϵ)
if and only if z1 ≡ z2 mod 3.

Proof. Since q − ϵ = m3d, then hz1m3d−1 ≡ hz2m3d−1 mod h(q − ϵ) if and only if hm3d|h(z1 −
z2)m3d−1, which happens if and only if 3|(z1− z2), and therefore if and only if z1 ≡ z2 mod 3. □

Lemma 3.3. Let k = x3d for some integer x such that |x| < m, let h ∈ Z, where h is prime to 3,
and let µ ∈ {±1}. Then k + µhm3d−1 ̸≡ −k + µhm3d−1 mod h(q − ϵ), and k + µhm3d−1 ̸≡ −k
mod h(q − ϵ).

Proof. First, it is helpful to notice that m is odd, since m|(q − ϵ) and q is a power of 2. Suppose
then, for the sake of contradiction, that k + µhm3d−1 ≡ −k + µhm3d−1 mod h(q − ϵ) for some
µ ∈ {±1}. Then hm3d | 2x3d, which implies that hm | 2x and ultimately m | 2x. This is a
contradiction, since m is odd and |x| < m. Now suppose that k + µhm3d−1 ≡ −k mod h(q − ϵ)
for some µ ∈ {±1}. Then hm3d | (2x3d ± hm3d−1). It follows that m|2x and 3|1, which is again a
contradiction, and the proof is complete. □

3.3. Roots of Unity Fixed by σ1. Here we present several lemmas describing when the various
roots of unity appearing in the character table for G are fixed by the Galois automorphism σ1.

Lemma 3.4. For any k ∈ Z, we have 3 does not divide the order of ωk
2 , ζ

k(q−ϵ)
2 , nor ξk2 . In

particular, these are fixed by σ1.

Proof. Since 3 divides (q − ϵ), then 3 cannot divide (q + ϵ) = |ω2|. Further, |ζk(q−ϵ)
2 | = |ωk

2 | =
q+ϵ

gcd(k,q+ϵ) , which is therefore also prime to 3. Finally, since q2 ≡ 1 mod 3, it follows that 3 cannot

divide q2 + 1, so 3 cannot divide |ξk2 | =
q2+1

gcd(k,q2+1)
. □

The next two lemmas will be used when the character values contain powers of ω1, which is the
same as ζq+ϵ

2 . Note that the conditions on r ∈ Iq−ϵ in these cases are the conditions that appear in
the descriptions of the relevant blocks and characters (see Tables 1-14 and the notation preceeding
them).

Lemma 3.5. There is a unique element r ∈ Iq−ϵ satisfying m|r such that ωr
1 is fixed by σ1. Namely,

this element is r = m3d−1.

Proof. First we will show that the stated value of r ∈ Iq−ϵ is the only possibility satisfying m|r for
which ωr

1 is fixed by σ1. Assume that r ∈ Iq−ϵ such that σ1(ω
r
1) = ωr

1, and write r = mf3x with
f, x ∈ Z and f relatively prime to 3. Notice that x < d, as otherwise r /∈ Iq−ϵ. Suppose, for the

sake of contradiction, that x = d− y, for some y with 1 < y ≤ d. Then |ωr
1| = m3d

gcd(m3d,mf3d−y)
= 3y,

so ωr
1 is not fixed by σ1. Therefore we must have r = mf3d−1.

Now, note that f ≡ 1 or 2 mod 3. Further, under the equivalence relation defining Iq−ϵ, we
have i is equivalent to −i, but also we see 1 ≡ −2 mod 3 and 2 ≡ −1 mod 3, so by Lemma 3.2

we have that every r defined as such will be equivalent in the set Iq−ϵ. Finally, we see that ωm3d−1

1

has order m3d

gcd(m3d,m3d−1)
= 3, so is fixed by σ1. □

Lemma 3.6. Let k ∈ Iq−ϵ, such that 3d|k. Then, there are exactly 3 elements r ∈ Iq−ϵ satisfying
r ≡ ±k mod m such that ωr

1 is fixed by σ1.

Proof. (1) First, we show that there are 6 choices for r ∈ I0q−ϵ, under equivalence modulo q − ϵ,
satisfying r ≡ ±k mod m and such that ωr

1 is fixed by σ1. Let r be such an element. Since r ≡ ±k
mod m, we can write r = ±k + mf , for some f ∈ Z. Then, ωr

1 = (ω±k
1 )(ωmf

1 ). Further, since
k ∈ Iq−ϵ and 3d|k, we have k = x3d for some 0 ̸= x ∈ Z. Then:

|ω±k
1 | = |ω±x3d

1 | = m3d

gcd(x3d,m3d)
=

m

gcd(x,m)
.



6 A. PEÑA, F. PRYOR, AND A. A. SCHAEFFER FRY

Since m is prime to 3, the order of ω±k
1 cannot be divisible by 3, so these are fixed by σ1. Hence,

ωr
1 is fixed by σ1 if and only if ωmf

1 is. For f = 0 or when f is any multiple of 3d, we have ωmf
1 = 1,

so ωr
1 = ω±k

1 . Otherwise, we have

|ωmf
1 | = m3d

gcd(mf,m3d)
=

3d

gcd(f, 3d)

is some positive power of 3, so ωmf
1 is fixed by σ1 if and only if f is such that |ωmf

1 | = 3 exactly.

Note that 3d

gcd(f,3d)
= 3 implies that gcd(f, 3d) = 3d−1, which implies that f = z3d−1, where z ∈ Z

is prime to 3. So in order for ωr
1 to be fixed by σ1, r must be of the form ±k + zm3d−1, for some

z ∈ Z with z = 0 or 3 ∤ z.
Now, by Lemma 3.2, we have that z1m3d−1 ≡ z2m3d−1 mod (q−ϵ) if and only if z1 ≡ z2 mod 3,

so we may assume without loss that z ∈ {0, 1, 2}. Note that z = 0 corresponds to the previous case
where f = 0 or f is any multiple of 3d. Therefore, for r ∈ I0q−ϵ with r ≡ ±k mod m, we have ωr

1

is fixed by σ1 if and only if r is equivalent modulo q − ϵ to one of:

r = ±k, r = ±k +m3d−1, or r = ±k + 2m3d−1.

(2) Now we will show that these 6 choices of r correspond to at most 3 elements of Iq−ϵ. Recall
that if i, j ∈ Iq−ϵ, we have i ∼ j if and only if i ≡ ±j mod (q− ϵ). In particular, we have k ∼ (−k).

Next, we can see by Lemma 3.2 that k + 2m3d−1 ≡ k −m3d−1 mod (q − ϵ), so k + 2m3d−1 ∼
k−m3d−1. Similarly, we have −k+2m3d−1 ∼ −k−m3d−1. Then since k+m3d−1 ∼ −k−m3d−1,
we also have −k + 2m3d−1 ∼ k +m3d−1. We also have k + 2m3d−1 ∼ k −m3d−1 ∼ −k +m3d−1

using the same reasoning. For simplicity’s sake, we will use the following as our three equivalence
class representatives for r:

r = k, r = k +m3d−1, or r = k −m3d−1.

(3) Finally, we show that these three choices for r give us distinct class representatives in Iq−ϵ.

First, suppose that k+m3d−1 ∼ k in Iq−ϵ. Then either k+m3d−1 ≡ k mod (q−ϵ), or k+m3d−1 ≡
−k mod (q − ϵ). Then this is a contradiction by Lemmas 3.2 and 3.3, respectively. Second,
suppose that k − m3d−1 ∼ k in Iq−ϵ. Then either k − m3d−1 ≡ k mod (q − ϵ), in which case

Lemma 3.2 applies, or k − m3d−1 ≡ −k mod (q − ϵ), in which case Lemma 3.3 applies, giving
us another contradiction. Lastly, suppose that k + m3d−1 ∼ k − m3d−1 in Iq−ϵ. Then either

k+m3d−1 ≡ k−m3d−1 mod (q−ϵ), in which case Lemma 3.2 applies, or k+m3d−1 ≡ −k+m3d−1

mod q − ϵ, in which case Lemma 3.3 applies, giving us our final contradiction. Therefore, the
three elements listed indeed yield distinct equivalence class representatives in Iq−ϵ, and the proof
is complete. □

Due to the nature of the values found in the character table for Sp6(q), many of the preceding
lemmas will often be used in conjunction with Lemma 2.1. Similarly, Lemmas 3.8 and 3.9 below,
which deal with powers of ζ2, will be used in conjunction with the following:

Lemma 3.7. Let r ∈ Iq2−1. Then ζr2 is fixed by σ1 if and only if both ωr
1 and ζr2 + ζrq2 + ζ−r

2 + ζ−rq
2

are fixed by σ1.

Proof. First, if ζr2 is fixed by σ1, then so is any sum of powers of ζr2 , so both ωr
1 = ζ

r(q+ϵ)
2 and

ζr2 + ζrq2 + ζ−r
2 + ζ−rq

2 are fixed by σ1.

Conversely, assume that ωr
1 and ζr2 + ζrq2 + ζ−r

2 + ζ−rq
2 are fixed by σ1. Let F denote the fixed

field of Q(e2πi/|G|) under the group ⟨σ1⟩ generated by σ1, so that ωr
1, ω

r
2, and ζ

r
2 + ζrq2 + ζ−r

2 + ζ−rq
2

are all elements of F by assumption and by Lemma 3.4. Assume by way of contradiction that ζr2 is
not fixed by σ1, so that ζr2 + ζ−r

2 is also not fixed by σ1, using Lemma 2.1. Now, since Q(ζr2 + ζ−r
2 )

is the (unique) maximal totally real subfield of Q(ζr2), we see that, if we let α1 := ζr2 + ζ−r
2 and
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α2 := ζqr2 + ζ−qr
2 , then F(α1) = F(α2). Then since α1α2 = ωr

1 + ω−r
1 + ωr

2 + ω−r
2 , we see F(α1)

is the splitting field over F for the polynomial (x − α1)(x − α2) = x2 + (α1 + α2)x + α1α2 and
[F(α1) : F] = 2. From here, we may argue similarly to Lemma 2.1 to obtain a contradiction, unless
α1 (and hence ζr2) is fixed by σ1. □

Lemma 3.8. Let k ∈ Iq2−1 such that 3d|k. Then there are exactly 3 elements r ∈ Iq2−1 satisfying
r ≡ ±k or ± qk mod m(q + ϵ) such that ωr

1 and ζr2 are both fixed by σ1.

Proof. First, let r be as in the statement and let f ∈ Z such that r = ±k + mf(q + ϵ) or r =
±qk +mf(q + ϵ). Then we can further write k or qk as x3d for some x ∈ Z with 3 ∤ x. Therefore,
we can write r = ±x3d +mf(q + ϵ).

Next, we have ωr
1 = (ω±x3d

1 )(ω
mf(q+ϵ)
1 ). As in the proof of Lemma 3.6, we then have ωr

1 is fixed

by σ1 if and only if ω
mf(q+ϵ)
1 is. Further, we have ζr2 = (ζ±x3d

2 )(ζ
mf(q+ϵ)
2 ). Notice:

|ζ±x3d

2 | = m3d(q + ϵ)

gcd(x3d,m3d(q + ϵ))
=

m(q + ϵ)

gcd(x,m(q + ϵ))
.

We know that m(q+ ϵ) is prime to 3, so the order of ζ±x3d

2 is not divisible by 3. Hence we similarly

have ζr2 is fixed by σ1 if and only if ζ
mf(q+ϵ)
2 = ωmf

1 is.
Now, since m(q+ ϵ) = (q2− 1)3′ , arguing exactly as in part (1) of the proof of Lemma 3.6 in this

case, we see r is equivalent modulo q2 − 1 to one of

r = ±k, r = ±qk, r = ±k +m3d−1(q + ϵ),

r = ±k + 2m3d−1(q + ϵ), r = ±qk +m3d−1(q + ϵ), or r = ±qk + 2m3d−1(q + ϵ).

(Conversely, we see that these choices of r satisfy the statement.)
Then, in order to partition these choices for r into their respective equivalence classes in Iq2−ϵ,

we will use the relation i ∼ j if and only if i ≡ ±j or ±qj mod (q2 − 1). First, it is again clear
that k ∼ −k, but also that k ∼ qk and k ∼ −qk under this relation.

For the remaining choices for r, it will be helpful to first notice that z1m3d−1(q+ϵ) ≡ z2m3d−1(q+
ϵ) mod (q2 − 1) if and only if z1 ≡ z2 mod 3, by Lemma 3.2. We can use this to again substitute
2m for −m, and then show that these remaining 8 choices for r lie in only two equivalence classes
in Iq2−1.

We have k + ϵm3d−1(q + ϵ) ∼ qk + m3d−1(q + ϵ) because (q2 − 1) divides (q2 − 1)(−k) −
(q − ϵ)(q + ϵ)m3d−1 = (k + ϵm3d−1(q + ϵ)) − q(qk + m3d−1(q + ϵ)). A similar argument shows
−k + ϵm3d−1(q + ϵ) ∼ −qk +m3d−1(q + ϵ).

Also note that k +m3d−1(q + ϵ) ∼ −k −m3d−1(q + ϵ); −k +m3d−1(q + ϵ) ∼ k −m3d−1(q + ϵ);
qk +m3d−1(q + ϵ) ∼ −qk −m3d−1(q + ϵ); and qk −m3d−1(q + ϵ) ∼ −qk +m3d−1(q + ϵ). So any
r ∈ Iq2−1 such that ωr

1 and ζr2 are both fixed by σ1 is equivalent to one of:

r = k, r = k +m3d−1(q + ϵ), or r = k −m3d−1(q + ϵ).

It now suffices to show that these elements represent three distinct classes in Iq2−1. First,

k ∼ k+m3d−1(q+ϵ) if, and only if, k ≡ ±(k+m3d−1(q+ϵ)) or ±q(k+m3d−1(q+ϵ)) mod (q2−1).
Applying Lemma 3.2 with h = (q + ϵ), we see that k ̸≡ k + m3d−1(q + ϵ) mod (q2 − 1), and
we can use Lemma 3.3 with h = (q + ϵ) to show that k ̸≡ −(k + m3d−1(q + ϵ)) mod (q2 − 1).
Then, k ≡ qk + qm3d−1(q + ϵ) would imply that (q2 − 1)|(k − qk − qm3d−1(q + ϵ)), which gives
us (q2 − 1)|(−k(q − 1) − qm3d−1(q + ϵ)). Similarly, k ≡ −qk − qm3d−1(q + ϵ) will give us (q2 −
1)|(k(q+1)+qm3d−1(q+ϵ)). So, since 3d|(q2−1) and 3d|k, either of these would imply 3|qm(q+ϵ),
a contradiction, and therefore, k ̸∼ k +m3d−1(q + ϵ). Using similar calculations, we can also see
k ̸∼ k −m3d−1(q + ϵ) and k +m3d−1(q + ϵ) ̸∼ k −m3d−1(q + ϵ). Therefore, these three elements
give distinct r ∈ Iq2−1, and the proof is complete. □
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Lemma 3.9. Let t ∈ Iq+ϵ. Then there is a unique r ∈ Iq2−1 satisfying r ≡ ±(q−ϵ)t mod m(q+ϵ),
such that ωr

1 and ζr2 are both fixed by σ1.

Proof. Following the strategy from before, we will first show that there are 6 possible choices for
r as in the statement such that ωr

1 and ζr2 are fixed by σ1. Then we will show that these actually
only give one element of Iq2−1.

We will sometimes write M := m(q + ϵ) = (q2 − 1)3′ . Since r ≡ ±(q − ϵ)t mod M , we can

write r = ±tm3d +Mf , for some f ∈ Z. Then ωr
1 = (ω±tm3d

1 )(ωMf
1 ). We also see that |ω±tm3d

1 | =
m3d

gcd(tm3d,m3d)
= 1, and |ωMf

1 | = m3d

gcd(mf(q+ϵ),m3d)
= 3d

gcd(f(q+ϵ),3d)
. As in the proof of Lemma 3.6, if f

is 0 or any multiple of 3d, then ωMf
1 = 1 and ωr

1 = ω±tm3d

1 = 1. Otherwise, we must choose f such

that |ωMf
1 | = 3 exactly.

Similarly, ζr2 = (ζ±tm3d

2 )(ζMf
2 ) = (ω±t

2 )(ζ
mf(q+ϵ)
2 ) = (ω±t

2 )(ωmf
1 ). By Lemma 3.4, we have that

ω±t
2 is fixed by σ1, so ζ

r
2 is fixed by σ1 if and only if ωmf

1 is. Notice that |ωmf
1 | = m3d

gcd(mf,m3d)
=

3d

gcd(f,3d)
.

Using an argument similar to Lemma 3.6, we see that if ωr
1 and ζr2 are both fixed by σ1, then r

is one of:

r = ±(q − ϵ)t, r = ±(q − ϵ)t+m3d−1(q + ϵ), or r = ±(q − ϵ)t−m3d−1(q + ϵ).

Now, recall that (q− ϵ)t /∈ Iq2−1 and r ∼ −r in Iq2−1, so in fact we have r represented by one of:

r1 = (q − ϵ)t+m3d−1(q + ϵ) or r2 = (q − ϵ)t−m3d−1(q + ϵ).

But notice that r1 ≡ −ϵqr2 mod (q2 − 1), so these define just one class in Iq2−1. □

Lemma 3.10. Let k ∈ Iq3−ϵ such that 3d+1|k. Then, the following hold:

(1) There are exactly 3 elements r ∈ Iq3−ϵ satisfying r ≡ ±k, ±qk, or ±q2k mod mn, such that
ωr
3 is fixed by σ1.

(2) Let r ∈ Iq3−ϵ satisfying r ≡ ±k, ±qk, or ±q2k mod mn and denote by χ(r) the character
χ63(r) of G if ϵ = 1 and χ66(r) if ϵ = −1. Then χ(r) is fixed by σ1 if and only if ωr

3 is fixed
by σ1.

Proof. First, we notice that q3 − ϵ = (q− ϵ)(q2 + ϵq+1), so we will write q3 − ϵ as mn3d+1 when it
is useful. Since 3d+1|k, we write k = x3d+1. Note that qk and q2k are both of the form x3d+1 for
some (different) x ∈ Z, so we will write r = ±x3d+1 +mnf for some f ∈ Z.

(1) We first consider the first claim. We have ωr
3 = (ω±x3d+1

3 )(ωmnf
3 ) and

|ω±x3d+1

3 | = (m3d)(3n)

gcd(x3d+1, (m3d)(3n))
=

mn

gcd(x,mn)
.

Since m and n are both prime to 3, the order of ω±x3d+1

3 is prime to 3, so this is fixed by σ1.

Hence ωr
3 is fixed by σ1 if and only if ωmnf

3 is fixed by σ1. Now, replacing the roles of (3d, q + ϵ)
in Lemma 3.8 with (3d+1, n) here, the situation is analogous, as z1m3dn ≡ z2m3dn mod mn3d+1

if and only if z1 ≡ z2 mod 3 arguing like in Lemma 3.2.
In this case, for ωr

3 to be fixed by σ1, we therefore have r must be of one of the following forms:

r = ±k, r = ±qk, r = ±q2k,

r = ±k +mn3d, r = ±qk +mn3d, r = ±q2k +mn3d,

r = ±k + 2mn3d, r = ±qk + 2mn3d, or r = ±q2k + 2mn3d.

(Conversely, note that ωr
3 is fixed by σ1 if r is of any of these forms.)
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Now, recall that k ∼ (−k), k ∼ (±qk), and k ∼ (±q2k). Arguing similarly to Lemma 3.8 with
the role of q + ϵ now replaced with n, we obtain that under the relation ∼, each value in the list
above is equivalent to one of the following three elements of r ∈ Iq3−ϵ:

r = k, r = k +mn3d, and r = k −mn3d.

Further, arguing as in the previous lemmas, we again see that these indeed give distinct elements
of Iq3−ϵ, completing the proof of (1).

(2) Now we consider the second claim. The character χ(r) is what is known as a semisimple
character, and is indexed by a conjugacy class of G consisting of all elements in G with eigenvalues

ω̃r
3, ω̃

rq
3 , ω̃

rq2

3 , ω̃−r
3 , ω̃−rq

3 , and ω̃−rq2

3 , where here ω̃3 is a primitive q3− ϵ root of unity in Fq6 . (This is
the class g31(r) when ϵ = 1, respectively g34(r) when ϵ = −1, defined in [6, Tabelle 19].) Now, since
G comes from an algebraic group over Fq whose center is connected, [12, Lemma 3.4] describes how

such characters are permuted by members of Gal(Q(e2πi/|G|)/Q). In particular, [12, Lemma 3.4]

tells us that χ(r) is fixed by σ1 if and only if the set {ωr
3, ω

rq
3 , ω

rq2

3 , ω−r
3 , ω−rq

3 , ω−rq2

3 } is permuted
by σ1.

Now, note that n ∤ r, as otherwise n | x and hence 3n = q2 + ϵq + 1 divides k, contradicting
that k ∈ Iq3−ϵ. Suppose that some σ ∈ ⟨σ1⟩ maps ωr

3 to ωrq̄
3 , where q̄ ∈ {−1,±q,±q2}. Recall that

n is relatively prime to 2, 3d+1m, (±q2 − 1), and (±q − 1). Writing ω3 = y1y2 for y1 a primitive
3d+1m-root of unity and y2 a primitive nth root of unity, we then see that (σ(yr1))y

r
2 = yrq̄1 y

rq̄
2 , since

y2 is fixed by σ1. This forces y
r(q̄−1)
2 to be a (3d+1m)’th root of unity. Then yr2 is also a (3d+1m)’th

root of unity, since |y2| is prime to q̄− 1. Then since |y2| is prime to 3d+1m, we see that this forces
yr2 = 1, so that n | r, a contradiction. Hence we see that χ(r) is fixed by σ1 if and only if σ1 fixes
ωr
3. □

4. Proof of Theorem 1.2

Let G := Sp6(q) with q a power of 2. To prove Theorem 1.2, we must show that if B is a 3-block
of G with cyclic defect groups, then there are exactly three height-zero characters in Irr(B) that
are fixed by σ1, and that if B has noncyclic defect groups, then the number of such characters is
strictly larger than 3.

The defect groups for G are described in [11, Proposition 3.1]. Namely, for the prime 3, the

cyclic defect groups are (in the notation of [11]) denoted Q1, Q2, and Q(3), and the remaining
defect groups are denoted Q1,1, Q2,1, Q1,1,1, and P . Here P is a Sylow 3-subgroup of G.

The sets Irr(B) for each block B of G are described in [13] for so-called “unipotent” blocks, and
in [10, Section 4.4] otherwise. The sets Irr0(B) are described in [11, Sections 4.2-4.10] and also in
[10, Section 7.4.1]. In Tables 1-14, we list the names of these blocks (with the notation of [13, 10])
and a subset of characters found in Irr0(B) (with the notation of the CHEVIE character table and
[10]).

With this information in place, and given our work in Section 3, the proof involves considering
the character table for Sp6(q) due to Frank Lübeck [6] and available on CHEVIE, and analyzing
when the character values of the characters in Irr0(B) for each block B corresponding to a given
defect group are fixed by σ1. The families of characters and of conjugacy classes for Sp6(q) are
indexed by the various sets introduced in Notation 3.1. The character values are either rational or
sums of complex numbers of the form x(ξir + ξ−ir), where i, r ∈ Z come from one of the indexing
sets defined in Notation 3.1 (depending on the index defining the character and the class within
their families), ξ is some root of unity, and x ∈ C is either rational or otherwise fixed by σ1. In
the appendix, we include examples of specific values for the relevant characters. We have used our
lemmas from Section 3 to find the appropriate choices of r so that a given ξr will be fixed by σ1,
where again ξ denotes a relevant root of unity.
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We apply Lemma 2.2 to say that ξr is fixed by σ1 if and only if ξir is fixed by σ1, for every
relevant i. Note that we also apply Lemma 2.1 in conjunction with Lemmas 3.5 and 3.6; Lemma
3.7 in conjunction with Lemmas 3.8 and 3.9; and the two parts of Lemma 3.10 together, to show
that in fact the full character values being considered are also fixed by σ1. Tables 1-14 list the
characters being considered for each block and the lemmas from Section 3 that are used for those
characters.

For a concrete example, consider the block B = B29(s, t1) when ϵ = 1 (see Table 3). Here
t1 ∈ Iq+1 and s ∈ Iq2−1 is divisible by 3d. Then the members of Irr0(B) are the characters
χ61(r, t1), where r ∈ Iq2−1 is equivalent to ±s or ±qs modulo m(q + 1). By Lemma 3.8, there are
exactly three choices of such r such that ζr2 and ωr

1 are fixed by σ1, and hence exactly three such

choices of r such that ζr1 + ζ−r
1 and ζr2 + ζ−r

2 + ζqr2 + ζ−qr
2 are fixed by σ1, using Lemmas 2.1 and

3.7. Now, the irrational character values for χ61(r, t1) take the following forms, where i, i′ range
through appropriate indexing sets from Notation 3.1 for the conjugacy classes:

• (ξit11 + ξ−it1
1 ); (1− q4)(ξit11 + ξ−it1

1 ); (1± q2)(ξit11 + ξ−it1
1 ); (ξir1 + ξ−ir

1 ); (1− q2)(ξir1 + ξ−ir
1 );

(1± q)(ξir1 + ξ−ir
1 ); (q3 + 1)(ξir1 + ξ−ir

1 )(ξit11 + ξ−it1
1 ); (ξir1 + ξ−ir

1 )(ξit11 + ξ−it1
1 ); (1 + q)(ξir1 +

ξ−ir
1 )(ξi

′t1
1 + ξ−i′t1

1 ); (ξir1 + ξ−ir
1 )(ξi

′t1
1 + ξ−i′t1

1 ), which are always fixed by σ1 by Lemma 3.4

• (ζir1 + ζ−ir
1 ); (q2 − 2q + 1)(ζir1 + ζ−ir

1 ); (1− q)(ζir1 + ζ−ir
1 );

• (ζir2 + ζ−ir
2 + ζiqr2 + ζ−iqr

2 ); (1± q)(ζir2 + ζ−ir
2 + ζiqr2 + ζ−iqr

2 )

• (ζ
ir(q+1)
2 +ζ

−ir(q+1)
2 )(ζ

it1(q−1)
2 +ζ

−it1(q−1)
2 ) = (ζir1 +ζ−ir

1 )(ξit11 +ξ−it1
1 ); (1−q)(ζir1 +ζ−ir

1 )(ξit11 +

ξ−it1
1 )

• (ζir2 + ζ−ir
2 + ζiqr2 + ζ−iqr

2 )(ζ
i′t(q−1)
2 + ζ

−i′t(q−1)
2 ) = (ζir2 + ζ−ir

2 + ζiqr2 + ζ−iqr
2 )(ξi

′t
1 + ξ−i′t

1 )

Then we see that χ61(r, t1) is fixed by σ1 exactly when r is one of these three choices, showing that
B contains exactly three height-zero characters fixed by σ1. Since this block has defect group Q2,
which is cyclic, this block satisfies the statement.

For each defect group, we include two tables; one for when ϵ = 1 and one for when ϵ = −1.
Each table lists all blocks B with the given defect group, additional conditions on indexing, the
characters in Irr0(B) being considered for that block (in the notation of the CHEVIE character
table), and the number of characters in the listed family that are fixed by σ1, with reference to the
lemmas used for those specific characters.

The first six tables are for the cyclic defect groups, Q1, Q2, and Q
(3). For these groups we list all

characters in Irr0(B), in order to show that |Irr0(B)σ1 | = 3. The remaining tables correspond to
the non-cyclic defect groups, P,Q1,1, Q2,1, and Q1,1,1. In these cases, we only list enough characters
needed to see that |Irr0(B)σ1 | > 3. Therefore in these cases, the column that shows the number of
fixed characters refers only to the characters listed, not necessarily the total number fixed in the
given block.

4.1. The Tables. Throughout, we let k1, k2, k3 ∈ Iq−1 with none of k1, k2, k3 the same and let

t1, t2, t3 ∈ Iq+1 with none of t1, t2, t3 the same. When ϵ = 1, let 3d|ki, and when ϵ = −1, let 3d|ti.
Let u ∈ Iq2+1, and s ∈ Iq2−1 with 3d|s, where 3d := (q − ϵ)3. Let v ∈ Iq3−1 and w ∈ Iq3+1. When

ϵ = 1, let (q3 − 1)3|v, and when ϵ = −1, let (q3 +1)3|w. Moreover, let m := (q− ϵ)3′ as before, and
let n := (q2 + ϵq + 1)3′ .
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Table 1. Blocks with Defect Group Q1 when ϵ = 1

Block B Restriction Characters in Irr0(B) # Fixed by σ1

b1
N/A χ5, χ11 2: rational
m|r χ17(r) 1: Lemma 3.5

B6(k1)
(1) r ≡ ±k1 mod m χ17(r) 3: Lemma 3.6

B23(t1, t2)
N/A χ53(t1, t2), χ54(t1, t2) 2: Lemma 3.4
m|r χ60(r, t1, t2) 1: Lemmas 3.4, 3.5

B24(u)
N/A χ55(u), χ56(u) 2: Lemma 3.4
m|r χ62(r, u) 1: Lemmas 3.5, 3.4

B28(k1, t1, t2) r ≡ ±k1 mod m χ60(r, t1, t2) 3: Lemmas 3.4, 3.6

B30(k1, u) r ≡ ±k1 mod m χ62(r, u) 3: Lemmas 3.6, 3.4

Table 2. Blocks with Defect Group Q1 when ϵ = −1

Block B Restriction Characters in Irr0(B) # Fixed by σ1

b1
N/A χ4, χ9 2: rational
m|r χ20(r) 1: Lemma 3.5

B7(t1)
(1) r ≡ ±t1 mod m χ20(r) 3: Lemma 3.6

B17(k1, k2)
N/A χ41(k1, k2), χ42(k1, k2) 2: Lemma 3.4
m|r χ58(k1, k2, r) 1: Lemmas 3.4, 3.5

B24(u)
N/A χ55(u), χ56(u) 2: Lemma 3.4
m|r χ65(u, r) 1: Lemmas 3.5, 3.4

B26(k1, k2, t1) r ≡ ±t1 mod m χ58(k1, k2, r) 3: Lemmas 3.4, 3.6

B33(u, t1) r ≡ ±t1 mod m χ65(u, r) 3: Lemmas 3.6, 3.4

Table 3. Blocks with Defect Group Q2 when ϵ = 1

Block B Restriction Characters in Irr0(B) # Fixed by σ1

B9(t1)
N/A χ28(t1), χ30(t1) 2: Lemma 3.4

r ≡ ±(q − 1)t1 mod m(q + 1) χ61(r, t1) 1: Lemma 3.9

B22(t1, t2)
N/A χ51(t1, t2), χ52(t1, t2) 2: Lemma 3.4

r ≡ ±(q − 1)t1 mod m(q + 1) χ61(r, t2) 1: Lemma 3.9

B29(s, t1) r ≡ ±s or ±qs mod m(q + 1) χ61(r, t1) 3: Lemma 3.8

Table 4. Blocks with Defect Group Q2 when ϵ = −1

Block B Restriction Characters in Irr0(B) # Fixed by σ1

B8(k1)
N/A χ25(k1), χ27(k1) 2: Lemma 3.4

r ≡ ±(q + 1)k1 mod m(q − 1) χ59(r, k1) 1: Lemma 3.9

B16(k1, k2)
N/A χ39(k1, k2), χ40(k1, k2) 2: Lemma 3.4

r ≡ ±(q + 1)k1 mod m(q − 1) χ59(r, k2) 1: Lemma 3.9

B27(s, k1) r ≡ ±s or ±qs mod m(q − 1) χ59(r, k1) 3: Lemma 3.8

Table 5. Blocks with Defect Group Q(3) when ϵ = 1

Block B Restriction Characters in Irr0(B) # Fixed by σ1

B31(v) r ≡ ±v, ±qv or ±q2v mod mn χ63(r) 3: Lemma 3.10

Table 6. Blocks with Defect Group Q(3) when ϵ = −1

Block B Restriction Characters in Irr0(B) # Fixed by σ1

B34(w) r ≡ ±w, ±qw or ±q2w mod mn χ66(r) 3: Lemma 3.10
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Table 7. Blocks with Defect Group P when ϵ = 1

Block B Restriction Selection of Characters in Irr0(B) # Fixed by σ1

b0 N/A χ1, χ3, χ4, χ9, χ10, χ12 6: rational

B8(k1) r ≡ ±k1 mod m χ25(r), χ26(r), χ27(r) 9: Lemma 3.6

Table 8. Blocks with Defect Group P when ϵ = −1

Block B Restriction Selection of Characters in Irr0(B) # Fixed by σ1

b0 N/A χ1, χ2, χ5, χ8, χ11, χ12 6: rational

B9(t1) r ≡ ±t1 mod m χ28(r), χ29(r), χ30(r) 9: Lemma 3.6

Table 9. Blocks with Defect Group Q1,1 when ϵ = 1

Block B Restriction Selection of Characters in Irr0(B) # Fixed by σ1

B7(t1) N/A χ19(t1), χ20(t1), χ21(t1), χ22(t1) 4: Lemma 3.4

B20(k1, t1) r ≡ ±k1 mod m χ47(r, t1), χ48(r, t1) 6: Lemmas 3.4, 3.6

B18(k1, t1) r ≡ ±k1 mod m χ43(r, t1), χ44(r, t1) 6: Lemmas 3.4, 3.6

B26(k1, k2, t1) ri ≡ ±ki mod m χ58(r1, r2, t1) 9: Lemmas 3.4, 3.6

Table 10. Blocks with Defect Group Q1,1 when ϵ = −1

Block B Restriction Selection of Characters in Irr0(B) # Fixed by σ1

B6(k1) N/A χ13(k1), χ15(k1), χ16(k1), χ17(k1) 4: Lemma 3.4

B20(k1, t1) r ≡ ±t1 mod m χ47(k1, r), χ48(k1, r) 6: Lemmas 3.4, 3.6

B21(t1, k1) r ≡ ±t1 mod m χ49(r, k1), χ50(r, k1) 6: Lemmas 3.4, 3.6

B28(k1, t1, t2) ri ≡ ±ti mod m χ60(k1, r1, r2) 9: Lemmas 3.4, 3.6

Table 11. Blocks with Defect Group Q2,1 when ϵ = 1

Block B Restriction Selection of Characters in Irr0(B) # Fixed by σ1

B13(t1) N/A χ35(t1), χ36(t1), χ37(t1), χ38(t1) 4: Lemma 3.4

B21(t1, k1) r ≡ ±k1 mod m χ49(t1, r), χ50(t1, r) 6: Lemmas 3.4, 3.6

B19(s) r ≡ ±s or ±qs mod m(q + 1) χ45(r), χ46(r) 6: Lemmas 3.4, 3.8

B27(s, k1)
r ≡ ±s or ±qs mod m(q + 1)

χ59(r, j)j ≡ ±k1 mod m 9: Lemmas 3.4, 3.6, 3.8

Table 12. Blocks with Defect Group Q2,1 when ϵ = −1

Block B Restriction Selection of Characters in Irr0(B) # Fixed by σ1

B11(k1) N/A χ31(k1), χ32(k1), χ33(k1), χ34(k1) 4: Lemma 3.4

B18(k1, t1) r ≡ ±t1 mod m χ43(k1, r), χ44(k1, r) 6: Lemmas 3.4, 3.6

B19(s) r ≡ ±s or ±qs mod m(q − 1) χ45(r), χ46(r) 6: Lemmas 3.4, 3.8

B29(s, t1)
r ≡ ±s or ±qs mod m(q − 1)

χ61(r, j)
9: Lemmas 3.4, 3.6, 3.8

j ≡ ±t1 mod m
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Appendix A. Some Character Values

Although it would be unreasonable to include the entire character table, here we list a character
value on a single family of conjugacy classes for some relevant characters, to help illustrate the use
of the lemmas listed in Tables 1-14. We follow the order they are listed in those Tables. In many
cases, only one character family from a line in Tables 1-14 is listed, as the character values for the
other characters on the line take similar forms. All notation is taken from the CHEVIE character
table for Sp6(q).

Character Class Value
χ5, χ11 all rational values

χ17(k1) C17(i1)
1
2 q(ζ

i1k1
1 + ζ

−i1k1
1 )

χ60(k1, k2, k3) C44(i1, i2) (ζ
i1k1
1 + ζ

−i1k1
1 )[ξ

i2k2
1 + ξ

−i2k2
1 + ξ

i2k3
1 + ξ

−i2k3
1 ]

χ55(u) C53(i1) ξ
i1k1
2 + ξ

−i1k1
2 + ξ

qi1k1
2 + ξ

−qi1k1
2

χ62(k1, k2) C62(i1, i2) (ζ
i1k1
1 + ζ

−i1k1
1 )(ξ

i2k2
2 + ξ

−i2k2
2 + ξ

qi2k2
2 + ξ

−qi2k2
2 )

χ4, χ9 all rational values

χ20(k1) C20(i1) − 1
2 (q

2 + q)(ξ
i1k1
1 + ξ

−i1k1
1 )

χ58(k1, k2, k3) C44(i1, i2) −(ξ
i2k3
1 + ξ

−i2k3
1 )[ζ

i1k1
1 + ζ

−i1k1
1 + ζ

i1k2
1 + ζ

−i1k2
1 ]

χ56(u) C53(i1) q(ξ
i1k1
2 + ξ

−i1k1
2 + ξ

qi1k1
2 + ξ

−qi1k1
2 )

χ65(k1, k2) C65(i1, i2) −(ξ
i2k2
1 + ξ

−i2k2
1 )(ξ

i1k1
2 + ξ

−i1k1
2 + ξ

qi1k1
2 + ξ

−qi1k1
2 )

χ28(t1) C19(i1) (−q3 + q2 − q + 1)(ξ
i1k1
1 + ξ

−i1k1
1 )

χ61(r, t1) C45(i1) (−q + 1)(ζ
qi1k1
2 + ζ

−qi1k1
2 + ζ

i1k1
2 + ζ

−i1k1
2 )

χ52(t1, t2) C20(i1) (−q2 + 2q − 1)(ξ
i1k1
1 + ξ

−i1k1
1 ) + q(ξ

i1k2
1 + ξ

−i1k2
1 )

χ25(t1) C17(i1) ζ
i1k1
1 + ζ

−i1k1
1

χ59(r, t1) C45(i1) (−q − 1)(ζ
qi1k1
2 + ζ

−qi1k1
2 + ζ

i1k1
2 + ζ

−i1k1
2 )

χ40(k1, k2) C16(i1) (2q + 1)(ζ
i1k1
1 + ζ

−i1k1
1 ) + q(ζ

i1k2
1 + ζ

−i1k2
1 )

χ63(k1) C63(i1) ζ
q2i1k1
3 + ζ

−q2i1k1
3 + ζ

qi1k1
3 + ζ

−qi1k1
3 + ζ

i1k1
3 + ζ

−i1k1
3

χ66(k1) C66(i1) −ξ
q2i1k1
3 − ξ

−q2i1k1
3 − ξ

qi1k1
3 − ξ

−qi1k1
3 + ξ

i1k1
3 − ξ

−i1k1
3

Character Class Value
χ1, χ3, χ4, χ9, χ10, χ12 all rational values

χ26(k1) C25(i1) (q3 + 2q2 + 2q + 1)(ζ
i1k1
1 + ζ

−i1k1
1 ) + (q2 + q)(ζ

3i1k1
1 + ζ

−3i1k1
1 )

χ1, χ2, χ5, χ8, χ11, χ12 all rational values

χ28(k1) C28(i1) (q2 − q + 1)(ξ
i1k1
1 + ξ

−i1k1
1 ) + ξ

3i1k1
1 + ξ

−3i1k1
1

χ21(k1) C21(i1) −q − 1
2 (q

2 + q)(ξ
i1k1
1 + ξ

−i1k1
1 )

χ47(k1, k2) C47(i1, i2) (−q − 1)(ζ
i1k1
1 + ζ

−i1k1
1 )(ξ

i2k2
1 + ξ

−i2k2
1 )

χ44(k1, k2) C44(i1, i2) −(ζ
i1k1
1 + ζ

−i1k1
1 )(ξ

i2k2
1 + ξ

−i2k2
1 )

χ58(k1, k2, k3) C58(i1, i2, i3) (ξ
i3k3
1 + ξ

−i3k3
1 )[(ζ

i1k1
1 + ζ

−i1k1
1 )(ζ

i2k2
1 + ζ

−i2k2
1 ) + (ζ

i1k2
1 + ζ

−i1k2
1 )(ζ

i2k1
1 + ζ

−i2k1
1 )]

χ17(k1) C13(i1) ( 1
2 q

3 − q2 + 1
2 q)(ζ

i1k1
1 + ζ

−i1k1
1 )

χ48(k1, k2) C48(i1, i2) −(ζ
i1k1
1 + ζ

−i1k1
1 )(ξ

i2k2
1 + ξ

−i2k2
1 )

χ49(k1, k2) C49(i1, i2) (q − 1)(ζ
i2k2
1 + ζ

−i2k2
1 ) − (ξ

2i1k1
1 + ξ

−2i1k1
1 )(ζ

i2k2
1 + ζ

−i2k2
1 )

χ60(k1, k2, k3) C60(i1, i2, i3) (ζ
i1k1
1 + ζ

−i1k1
1 )[(ξ

i2k2
1 + ξ

−i2k2
1 )(ξ

i3k3
1 + ξ

−i3k3
1 ) + (ξ

i2k3
1 + ξ

−i2k3
1 )(ξ

i3k2
1 + ξ

−i3k2
1 )]

Character Class Value

χ37(k1) C56(i1, i2) ξ
2i1k1
1 + ξ

−2i1k1
1 + ξ

(i1+i2)k1
1 + ξ

−(i1+i2)k1
1 + ξ

(i1−i2)k1
1 + ξ

−(i1−i2)k1
1 + 1

χ49(k1, k2) C50(i1, i2) −(ξ
2i1k1
1 + ξ

−2i1k1
1 + 1)(ζ

i2k2
1 + ζ

−i2k2
1 )

χ46(k1) C45(i1) −q(ζ
qi1k1
2 + ζ

−qi1k1
2 + ζ

i1k1
2 + ζ

−i1k1
2 )

χ59(k1, k2) C59(i1, i2) (ζ
i2k2
1 + ζ

−i2k2
1 )(ζ

qi1k1
2 + ζ

−qi1k1
2 + ζ

i1k1
2 + ζ

−i1k1
2 )

χ33(k1) C41(i1, i2) q(ζ
2i1k1
1 + ζ

2i1k1
1 ) + (q + 1)(ζ

(i1+i2)k1
1 + ζ

−(i1+i2)k1
1 + ζ

(i1−i2)k1
1 + ζ

−(i1−i2)k1
1 ) + 1 + q

χ43(k1, k2) C44(i1, i2) −(ζ
i1k1
1 + ζ

−i1k1
1 )(ξ

i2k2
1 + ξ

−i2k2
1 )

χ45(k1) C46(i1) −(ζ
qi1k1
2 + ζ

−qi1k1
2 + ζ

i1k1
2 + ζ

−i1k1
2 )

χ61(k1, k2) C61(i1, 12) (ξ
i2k2
1 + ξ

−i2k2
1 )(ζ

qi1k1
2 + ζ

−qi1k1
2 + ζ

i1k1
2 + ζ

−i1k1
2 )

χ14(k1) C57(i1, i2, i3) 2(ζ
i1k1
1 + ζ

−i1k1
1 + ζ

i2k1
1 + ζ

−i2k1
1 + ζ

i3k1
1 + ζ

−i3k1
1 )

χ33(k1) C58(i1, i2, i3) ζ
(i1+i2)k1
1 + ζ

−(i1+i2)k1
1 + ζ

(i1−i2)k1
1 + ζ

−(i1−i2)k1
1

χ41(r1, r2) C41(i1, i2) see (2) below
χ39(r1, r2) C39(i1, i2) see (3) below

χ57(r1, r2, r3) C57(i1, i2, i3) see (4) below

χ19(k1) C64(i1, i2, i3) −(ξ
i1k1
1 + ξ

−i1k1
1 + ξ

i2k1
1 + ξ

−i2k1
1 + ξ

i3k1
1 + ξ

−i3k1
1 )

χ36(k1) C64(i1, i2, i3) see (5) below
χ53(r1, r2) C55(i1, i2) see (6) below
χ51(r1, r2) C51(i1, i2) see (7) below

χ64(r1, r2, r3) C64(i1, i2, i3) see (8) below
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(2) (q + 1)[(ζ
i1k1
1 + ζ

−i1k1
1 )(ζ

i2k2
1 + ζ

−i2k2
1 ) + (ζ

i2k1
1 + ζ

−i2k1
1 )(ζ

i1k2
1 + ζ

−i1k2
1 ) + (ζ

i1k1
1 + ζ

−i1k1
1 )(ζ

i1k2
1 + ζ

−i1k2
1 )]

(q + 1)[ζ
(i1+i2)k1
1 + ζ

−(i1+i2)k1
1 + ζ

(i1−i2)k2
1 + ζ

−(i1−i2)k2
1 + (ζ

i1k1
1 + ζ

−i1k1
1 )(ζ

i2k2
1 + ζ

−i2k2
1 )+

(ζ
i2k1
1 + ζ

−i2k1
1 )(ζ

i1k2
1 + ζ

−i1k2
1 )]

(3)

(ζ
i1k1
1 + ζ

−i1k1
1 )[(ζ

i2k2
1 + ζ

−i2k2
1 )(ζ

i3k3
1 + ζ

−i3k3
1 ) + (ζ

i2k3
1 + ζ

−i2k3
1 )(ζ

i3k2
1 + ζ

−i3k2
1 )]+

(ζ
i1k2
1 + ζ

−i1k2
1 )[(ζ

i2k1
1 + ζ

−i2k1
1 )(ζ

i3k3
1 + ζ

−i3k3
1 ) + (ζ

i2k3
1 + ζ

−i2k3
1 )(ζ

i3k1
1 + ζ

−i3k1
1 )]+

(ζ
i1k3
1 + ζ

−i1k3
1 )[(ζ

i2k2
1 + ζ

−i2k2
1 )(ζ

i3k1
1 + ζ

−i3k1
1 ) + (ζ

i2k1
1 + ζ

−i2k1
1 )(ζ

i3k2
1 + ζ

−i3k2
1 )]

(4)

ξ
(i1+i2)k1
1 + ξ

−(i1+i2)k1
1 + ξ

(i1−i2)k1
1 + ξ

−(i1−i2)k1
1 + ξ

(i1+i3)k1
1 + ξ

−(i1+i3)k1
1 +

ξ
(i1−i3)k1
1 + ξ

−(i1−i3)k1
1 + ξ

(i2+i3)k1
1 + ξ

−(i2+i3)k1
1 + ξ

(i2−i3)k1
1 + ξ

−(i2−i3)k1
1

(5)

(6) −(q − 1)[(ξ
i1k1
1 + ξ

−i1k1
1 )(ξ

i2k2
1 + ξ

−i2k2
1 + ξ

i2k1
1 + ξ

i1k2
1 + ξ

−i1k2
1 ) + (ξ

i1k2
1 + ξ

−i1k2
1 )(ξ

i2k1
1 + ξ

−i2k1
1 )]

−(q − 1)[(ξ
i1k1
1 + ξ

−i1k1
1 )(ξ

i2k2
1 + ξ

−i2k2
1 ) + (ξ

i2k1
1 + ξ

−i2k1
1 )(ξ

i1k2
1 + ξ

−i1k2
1 )+

(ξ
(i1+i2)k1
1 + ξ

−(i1+i2)k1
1 )(ξ

(i1−i2)k2
1 + ξ

−(i1−i2)k2
1 )]

(7)

(ξ
i1k1
1 + ξ

−i1k1
1 )[(ξ

i2k2
1 + ξ

−i2k2
1 )(ξ

i3k3
1 + ξ

−i3k3
1 ) + (ξ

i2k3
1 + ξ

−i2k3
1 )(ξ

i3k2
1 + ξ

−i3k2
1 )]+

(ξ
i1k2
1 + ξ

−i1k2
1 )[(ξ

i2k1
1 + ξ

−i2k1
1 )(ξ

i3k3
1 + ξ

−i3k3
1 ) + (ξ

i2k3
1 + ξ

−i2k3
1 )(ξ

i3k1
1 + ξ

−i3k1
1 )]+

(ξ
i1k3
1 + ξ

−i1k3
1 )[(ξ

i2k2
1 + ξ

−i2k2
1 )(ξ

i3k1
1 + ξ

−i3k1
1 ) + (ξ

i2k1
1 + ξ

−i2k1
1 )(ξ

i3k2
1 + ξ

−i3k2
1 )]

(8)
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