
Genetic Algorithms versus Tabu Search for Instruction Scheduling

Steven J. Beaty �

NCR Microelectronics
2057 Vermont

Fort Collins, Colorado 80525
Steve.Beaty@ftcollins.ncr.com

beaty@longs.lance.colostate.edu

Abstract

Most scheduling problems require either exponential time
or space to generate an optimal answer [7]. Instruction
scheduling is an instance of a general scheduling problem
and Dewitt [8] uses this fact to show instruction schedul-
ing is a NP-complete problem. This paper applies Ge-
netic Algorithms, Tabu Search, and list scheduling to the
instruction scheduling problem and compares the results
obtained by each.

1 Introduction

Sequencing is defined by Ashour [1] as being “concerned
with the arrangements and permutations in which a set of
jobs under consideration are performed on all machines.”
That is, what is the order the jobs will be performed; what
is the priority of each job? Sequencing thereby ranks the
jobs to be executed. Baker [2] states “scheduling is the
allocation of resources over time to perform a collection
of tasks.” Scheduling usually places already ordered jobs
into slots, often accounting for conflicts in resource us-
age. The combined sequencing/scheduling (order/place)
process produces the desired outcome: jobs placed on
machines capable of performing the desired tasks in the
correct order at a correct time.

Instruction scheduling (IS) involves the placement of
atomic machine operations into machine instructions. A
data dependence DAG (DDD) is often used to describe
the necessary operations and their order. The nodes in
a DDD contain the operations, and the edges denote a
partial order on the nodes. This partial order is used to
guarantee both program dataflow and machine resource
requirements. The edges of a DDD do not constrain the

�the author is an affiliate faculty member at Colorado State University

order nodes are scheduled, only the order they appear in
the final schedule. The solution space may be viewed as
an incomplete n-dimensional hypercube, where n is the
number of operations to be performed. Each operation
might be executed at a variety of locations in the code,
and each dimension represents the range of instructions
that operation can be placed. IS is complicated by both
the inherent dataflow ordering between operations in the
source code and the complexities of the architecture of
the target machine. The architecture may have complex
timings between operations, a number of different field
encodings, and a limited number of resources that can
perform any given operation.

Most existing IS methods rely on heuristics to remove
the examination of parts of the search space that appear
fruitless. Using heuristics can be difficult when attempting
to arrive at an efficient yet efficacious scheduler. This
difficulty is compounded by several factors.

� The heuristics generally must be regenerated for each
machine targeted.

� The heuristics themselves are not in a form easily
understood by humans, thus making it difficult for
humans to correctly choose and modify a scheduler’s
behavior.

� It is possible that the heuristics do not address an issue
that has great influence on the final code.

� Heuristics that work well for one ordering of opera-
tions may not work well for another.

� Heuristics are also picked before the execution of
the instruction scheduling routine and remain static
throughout. They have no ability to learn from previ-
ous runs or to take advantage of anomalous situations
existing in specific situations that lead to shorter code
sequences.

With these difficulties in generating schedulers, several
stochastic methods have been attempted to solve the IS
problem. In Jacobs et al. [15], the MetropolisMonte Carlo



technique was used. De Gloria and Faraboschi [11, 12]
used a Boltzmann Machine approach to good effect. In
[4, 3], Genetic Algorithms were shown to produce good
results.

List scheduling (LS) is a general [7] scheduling method
often used for instruction scheduling [10]. LS builds a
ready set that contains all jobs that are not waiting on the
results of another job. In a DDD, this is represented as
nodes with no unscheduled predecessors. In finding the
ready set, LS performs a topological sort of a DDD, thereby
reducing the search space of the scheduling problem and
increasing the chances of finding a valid schedule. List
scheduling has an implicit heuristic: scheduling nodes
with no predecessors results in valid orderings more often
than scheduling nodes with predecessors. As with all
heuristics, there are instances where this assumption does
not hold.

A difficulty with using LS in combination with stochas-
tic methods is it requires time O(n2) [17, 10], where n
is the number of nodes in the graph. Most stochastic
methods require the evaluation of numerous of node or-
derings, creating a desire for a scheduling method with
less time complexity. It is unnecessary to use the topolog-
ical ordering of list scheduling if it can be replaced by a
strong method of sequencing. Lookahead scheduling [5]
addresses these concerns by providing a fast method to
scheduling operations, without incurring the overhead of
list scheduling.

2 Genetic Algorithms

Genetic Algorithms have been used successfully to per-
form TSP [21, 22], job shop [22], and flow shop [6, 19]
optimization problems. Encouraging results from these
problems drove the use of GAs for instruction scheduling.

The GENITOR GA program, developed by Whitley
[20, 23], was used for these studies. It has some differ-
ences with “standard” GAs that appear to increase per-
formance. It does not replace the entire population with
each generation. Instead it probabilistically chooses two
parents to reform into two offspring. Recombination and
mutation occur, then one of the offspring is discarded ran-
domly. The remaining offspring is placed in the popula-
tion according to its fitness in relation to the rest of the
strings. The lowest-valued string is discarded. This keeps
high-valued strings within the population, directly accu-
mulating high-performance hyperplanes. It also bases the
reproductive opportunity upon rank with the population,
not upon a string’s fitness value in comparison with the
average of the population, reducing the impact of selec-
tive pressure fluctuation. It also reduces the importance
of choosing a proper evaluation function for fitness in that
the difference in the fitness function between two adjacent

strings is irrelevant.
An evaluation function that ranks the fitness of a string

in the population must be produced. Choosing a proper
function, i.e., one that represents a string’s relative worth
in the population without inordinate bias, is important. For
instruction scheduling, a minimization problem, the result
of the evaluation function must reflect the length of the
final schedule that a member of the population generates.
A difficulty encountered is that not all members will pro-
duce valid final schedules. Failures will occur when a
conflict arises (e.g. timing, resource, or field) due to the
order of scheduling the operations. It is not surprising that
certain orders will fail to produce valid schedules for a
given DDD; the impact of ordering on the production of
valid schedules is emphasised in all previous instruction
scheduling methods.

After consideration, the evaluation function selected
performs a “worst-case” evaluation when a string fails to
produce a valid schedule. This evaluation is produced by
assuming all unscheduled operations have no parallelism
available in them, necessitating their serial placement. The
calculation of the evaluation function is then trivial; it is
the number of instructions that contain operations so far,
plus the length of the path containing the serial ordering
of all the unscheduled operations. This produces a good
estimate in the event of schedule failure; those schedules
with more operations placed will receive a better evalua-
tion. It also produces an exact evaluation in the presence
of a valid schedule.

Six different recombination operators were studied.
These are described in Starkweather et al. [19] and in-
clude two order crossovers, partially mapped crossover,
cycle crossover, position-based crossover, and edge re-
combination. Starkweather et al. demonstrate that each
operator will perform differently for each problem do-
main. The performance difference can be measured in the
speed of convergence to a good solution. For example,
edge recombination finds good solutions more rapidly on
the TSP while performing more poorly than the others on
scheduling problems.

The number of generations should be related to the rela-
tive difficulty of producing an optimal schedule for a given
DDD. DDDs with a few simple operations do not require
as many generations to find good schedules as do those
with many complex operations. For these experiments,
the number of generations is n2, where n is the number of
operations. The size of the genetic population is n. The
strings in the population are of strings of non-repeating
integers. This representation is consistent with those used
in the TSP and shop scheduling problems previously men-
tioned. All strings are randomly initialized. No effort is
made to optimize GA parameters for IS in this study. The
selection bias is 1.5. There is no mutation, adaptive or
otherwise.



tabu_search ()
{

for (i = 1; i <= # iterations; i++)
{

value = best_move ();
make best_move;
make best_move tabu;
if (value < global_best)
{

global_best = value
}

}
}

Figure 1: Tabu Search

3 Tabu Search

Tabu search (TS) is an optimization method that uses a
form of short-term memory used to keep a search from
becoming trapped in a local minima. A tabu list is formed
that keeps track of recent solutions. At each iteration in
the optimization process, solutions are checked against the
tabu list. A solution that is on the list will not be chosen
for the next iteration (unless it overrules its tabu condition
by what is called an aspiration condition.) The tabu list
forms the core of tabu search and keeps the process from
cycling in one neighborhood of the solution space.

At each iteration, a steepest-descent solution that does
not violate the tabu condition is chosen. If no non-tabu
improving solution exists, the best non-improvingsolution
is taken. The combination of memory and gradient descent
allows for diversification and intensification of the search.
Local minima in the search space are avoided while good
areas are well explored.

Two bits of pseudo-code will show the basic of the TS
method used here. The first, in Figure 1, is the overhead
procedure. It controls the number of iterations, updating
of the best solution so far, and controls the tabu list. The
second, in Figure 2, finds the next move in the search
by a swapping procedure. All the possible swaps in the
sequence are tried, and the best non-tabu swap is chosen.
The routine shown finds the best move from the current
location in the search space to a neighboring position. An
alternative is to find the first location in the neighborhood
that is an improvement over the current one. These two
possibilities are termed best improving and first improving
respectively.

TS has been effectively used for a number of problems
related to the IS problem. Glover and McMillan [13]
used it for employee scheduling, Eck [9] studied Job shop
scheduling, and Laguna et al. [16] applied TS to machine
scheduling. The success in these areas helped motivate

best_move ()
{

for (i = 1; i < n; i++)
{

for (j = i + 1; j <= n; j++)
{

swap (sequence[i,j]);
value = evaluate (sequence);
if (tabu[i][j] &&

value > global_best)
{

continue;
}
if (value < best_so_far)
{

best_so_far = value;
best_move = [i,j];

}
}

}
return best_so_far;

}

Figure 2: Best Move

this study of instruction scheduling.

For this study, two different resequencing operators
were applied. The first swapped two machine operations
in the sequence and evaluated the resulting sequence. The
second performed an insertion procedure by removing one
operation from the sequence, shifting the remaining ele-
ments to fill in the open spot up a certain point and then
placing the removed operation into that spot. In some
cases, the insertion procedure may prove more suited for
a sequencing task if the sequence is almost completely
optimized. For example, if an optimal sequence is 1 2 3
4 5 6 7 8 9, and the current solution is 1 9 2 3 4 5 6 7 8,
the swap procedure would take more iterations to arrive at
the optimal solution. This can occur in IS when the last
node is a branch instruction and must be placed last in the
block.

There are a number of different types of information
that can be kept on the tabu list. For example, when a
operation is moved from one position in the sequence to
another, one could make moving that operation back to its
original position tabu. One could keep the relative posi-
tion information for each operation. The total sequence
could be saved. In these experiments, the contents of the
tabu list for the two procedures was different. For the
swap procedure, the list contained pairs of operations that
had been swapped recently. This kept operations from re-
versing their current relative positions. Insertion is more
difficult to express as a relative condition as each insertion



changes the position of many different operations. For this
case, the tabu list contained the actual permutations from
the recently effective evaluations.

The same evaluation function (lookahead scheduling)
used with GAs, was used for TS. The first improving move
scheme was employed. The tabu list size was of length
seven for both the swap and insert procedures. Various
other lengths were studied (e.g. length n, where n was
the number of MOs) and found to produce very similar
results. This suggests that the local minima neighborhoods
are fairly small for this instance of the IS problem. The
number of evaluations was limited to n2 as in the GA
approach. A running average was kept in order to compare
directly with the GA results.

4 Comparisons and Conclusions

A number of different programs were run through the com-
piler in order to compare the effectiveness of GAs, TS, and
list scheduling. The compiler was targeted to produce code
for the IBM RS/6000 architecture [14]. A representative
example is shown in Figure 3. This graph represents the
major block found in the forth Lawrence Livermore ker-
nel [18]. The EDGE RECOMB, ORDER1, ORDER2, PMX,
CYCLE, and POSITION lines are the six genetic opera-
tors. The LIST line represents the list scheduling result.
Note it is drawn to give a reference, it requires only one
evaluation to compute. The INSERT and SWAP lines are
the two tabu operators. Both GAs and tabu search worked
well for finding good solutions to IS problems.

Genetic operators emphasizing order converged faster
than those emphasizing adjacency. This comes as no sur-
prise; all previously effective methods for IS also empha-
size order. This evidence does however shed additional
light on the nature of of the instruction scheduling process
by providing more controlled, empirical evidence. The
ordering of the placement of nodes by the genetic algo-
rithm mirrors the approach used by human coders. The
nodes with the greatest impact on final schedule length
are placed first, with those having lesser impact placed
later. The order of placement that ensures validity is also
reflected.

In this study, both the swap and insert operators demon-
strated very similar behavior, pointing to the fact that abso-
lute order is not of ultimate importance for this particular
IS problem. Both were able to avoid local minima and
find competitive solutions. It took tabu search longer to
find the better solutions than the best genetic operators.
This may be a reflection of the fact that GAs are more
suited to the IS problem. It could also be that the genetic
technique used is more highly “evolved” having been used
for a number of sequencing problems before.

References

[1] S. Ashour. Sequencing Theory. Springer-Verlag,
New York, 1972.

[2] K. R. Baker. Introduction to Sequencing and
Scheduling. John Wiley and Sons, Inc., New York,
1974.

[3] S. Beaty. Genetic algorithms and instructionschedul-
ing. In Proceedings of the 24th Microprogramming
Workshop (MICRO-24), Albuquerque, NM, Novem-
ber 1991.

[4] S.J. Beaty. Instruction Scheduling Using Genetic Al-
gorithms. PhD thesis, Mechanical Engineering De-
partment, Colorado State University, Fort Collins,
Colorado, 1991.

[5] Steven J. Beaty. Lookahead scheduling. In Proceed-
ings of the 25th Annual International Symposium on
Microarchitecture (Micro-25), pages 256–259, Port-
land, Oregon, December 1992.

[6] Gary A. Cleveland and Stephen F. Smith. Using
genetic algorithms to schedule flow shop releases. In
Proceedings of the Third International Conference
on Genetic Algorithms. Morgan Kaufmann, 1989.

[7] E.G Coffman. Computer and Job-Shop Scheduling
Theory. Jon Wiley & Sons, New York, 1976.

[8] D.J. DeWitt. A Machine-Independent Approach to
the Production of Optimal Horizontal Microcode.
PhD thesis, Department of Computer and Communi-
cation Sciences, University of Michigan, Ann Arbor,
MI, 1976.

[9] B.T. Eck. Good solutions to job shop scheduling
problems via tabu search. Technical report, Depart-
ment of Industrial Engineering and Operations Re-
search, Columbia University, New York, May 1989.

[10] F. Gasperoni. Compilation techniques for vliw archi-
tectures. Technical report, Courant Institute of Math-
ematical Sciences, New York University, March
1989.

[11] A. De Gloria and P. Faraboschi. A boltzmann ma-
chine approach to code optimization. Parallel Com-
puting, 17:969–982, December 1991.

[12] A. De Gloria, P. Faraboschi, and M. Olivieri. A
non-deterministicscheduler for a software pipelining
compiler. In Proceedings of the 25th Annual Interna-
tional Symposium on Microarchitecture (Micro-25),
pages 41–44, Portland, Oregon, December 1992.



20

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000

I
n
s
t
r
u
c
t
i
o
n
s

Evaluation

"PMX"
"CYCLE"

"POSITION"
"LIST"

"INSERT"
"SWAP"

Figure 3: Comparative Results

[13] F. Glover and C. McMillan. The general employee
scheduling problem: An integration of management
science and artificial intelligence. Computers and
Operations Research, 13(5):563–593, 1986.

[14] IBM. IBM Journal of Research and Development,
January 1990.

[15] Dean Jacobs, Jan Prins, Peter Siegel, and Kenneth
Wilson. Monte carlo techniques in code optimiza-
tion. In Proceedings of the 15th Annual Workshop
on Microprogramming (Micro-15), pages 143–148,
Palo Alto, California, December 1982.

[16] M Laguna, J.W. Barnes, and F. Glover. A tabu
search method for scheduling jobs on parallel pro-
cessors. Technical report, Department of Mechanical
Engineering, University of Texas-Austin, November
1989.

[17] D. Landskov, S. Davidson, B.D. Shriver, and P.W.
Mallett. Local microcode compaction techniques.
ACM Computing Surveys, 12(3):261–294, Septem-
ber 1980.

[18] F.H. McMahon. The livermore fortran kernels: A
computer test of numerical performance range. Tech-
nical report, Lawrence Livermore National Labora-
tory, December 1986.

[19] T. Starkweather, S. McDaniel, K. Mathias, C. Whit-
ley, and D. Whitley. A comparison of genetic se-
quencing operators. In Proceedings of the Fifth Inter-
national Conference on Genetic Algorithms. Morgan
Kaufmann, 1991.

[20] D. Whitley and J. Kauth. Genitor: a different genetic
algorithm. In Proceeding of the Rocky Mountain
Conference on Artificial Intelligence, Denver, Co.,
pages 118–130, 1988.

[21] D. Whitley, T. Starkweather, and D. Fuquay.
Scheduling problems and traveling salesmen: The
genetic edge recombination operator. In Proceedings
of the Third International Conference on Genetic Al-
gorithms. Morgan Kaufmann, 1989.

[22] D. Whitley, T. Starkweather, and D. Shaner. The
traveling salesman and sequence scheduling qual-
ity solution using genetic edge recombination. In
L. Davis, editor, The Genetic Algorithms Handbook.
1990.

[23] Darrell Whitley. The GENITOR algorithmand selec-
tive pressure: Why rank - based allocation of repro-
ductive trials is best. In Proceeding of the 3rd Inter-
national Conference on Genetic Algorithms. Morgan
Kaufmann, 1989.


