
CRAIG: A Practical Framework for Combining Instruction Scheduling and Register Assignment

Thomas S. Brasier Philip H. Sweany Steven J. Beaty
Microware Systems Corporation Steve Carr Cray Computer Corporation

1900 NW 114th St. Computer Science Department 1110 Bayfield Drive
Des Moines IA 50325 Michigan Technological University Colorado Springs CO 80906
tomb@microware.com Houghton MI 49931–1295 beaty@craycos.com

fsweany,carrg@mtu.edu

Abstract

In compilers for machines with instruction-level parallelism, the
phases of register assignment and instruction scheduling can be
antagonistic. Whichever phase is executed first can have nega-
tive effects on the other’s performance. This paper describes a
framework, called CRAIG (Combining Register Assignment Inter-
ference Graphs), that combines register assignment and instruction
scheduling to alleviate the phase-orderingproblem. CRAIG utilizes
information gained from instruction scheduling before register as-
signment as an upper bound on the freedom needed by the instruc-
tion scheduler to attain its “best” schedule. CRAIG then allows
heuristics to choose how close to the “best” schedule one can get
before the cost of additional register pressure is too high. Within
the context of this framework, the paper evaluates an instance of
CRAIG called CRAIG0.

1 Introduction

Recent work in architecture and compilation has identified and ex-
ploited significant amounts of Instruction-Level Parallelism (ILP)[1,
4]. To take best advantage of the ILP available in modern proces-
sors, compilers need to minimize delays due to memory latency us-
ing register assignmentand instruction scheduling. Register assign-
ment involves maximizing the scalar program values maintained in
registers. Instruction scheduling involves hiding the latency to
memory with useful instructions that can legally operate in parallel
with a memory reference, as well as re-ordering operations to take
advantage of available ILP.

Unfortunately, instruction scheduling and register assignment
are antagonistic processes. When register assignment is done be-
fore instruction scheduling, unnecessary dependences are added.
Spilling is minimized, but the potential for ILP is lowered and the
execution time of the program increases. When instruction schedul-
ing is carried out first, an efficient schedule is generated; however,
the code motion that occurs generally increases register interfer-
ence. This, in turn, can lead to a register interference graph that is
not colorable with the number of available registers. If a graph is un-
colorable, spill code will have to be added, and additional memory
delays may be incurred. This paper describes a framework, called
CRAIG (Combining Register Assignment Interference Graphs) that
allows the benefits of instruction scheduling while taking into ac-
count the cost of additional register pressure. CRAIG combines

the register interference graphs created before and after instruc-
tion scheduling to obtain both lower register pressure and increased
flexibility in instruction scheduling.

2 Background

2.1 Graph Coloring Register Assignment

Chaitin [5, 6] is credited with applying the graph coloring paradigm
to the register assignment problem. All scalar live ranges (sections
of code over which a value has been defined and used but not re-
defined) are candidates for registers and are analyzed to create an
interference graph. This graph is made up of nodes, each of which
represents a program value, and arcs between them, representing
interference between the values. Two values are said to interfere if
both values are live at any execution point in the program.

In the graph coloring analogy,nodes represent scalars and colors
represent registers. In general, the number of colors given to color
the graph is the number of registers available on the machine. It
is important to note that it is not always possible to color a graph
with a limited number of colors. The problem of finding an optimal
coloring for a graph has been proven to be NP-complete[9] and
therefore heuristics must be applied to the process of coloring.

2.2 Instruction Scheduling

Instruction scheduling is the process of taking the code generated
by the code selection process of the compiler and re-ordering oper-
ations such that a more time-efficient schedule is produced. Some
operations may be limited in their ability to be re-ordered. This
is usually due to data dependences. As the name implies, instruc-
tion scheduling attempts to exploit parallelism within a function’s
control flow graph by re-ordering instructions. In general, this
optimization problem is NP-complete [7]. However, in practice,
heuristics achieve good results. Landskov, et al. [11] give a good
survey of instruction scheduling algorithms. Instruction schedul-
ing typically uses a data structure called a data dependence DAG
(DDD). DDD nodes represent operations to be scheduled. The
DDD’s directed edges indicate that a node x preceding a node y
constrains x to occur no later than y. Since these DDD edges rep-
resent constraints to instruction re-ordering, we wish to minimize
such edges while ensuring the original program semantics.

2.3 Register Assignment Before Instruction Scheduling

When register assignment is done before instruction scheduling
(early register assignment), graph coloring register assignmentgen-
erally assigns the program’s values to a near minimal number of
registers; however this process can cause anti-dependences [2] to



be added. These anti-dependences arise due to the re-definition of
registers that occurs when multiple values are mapped to the same
physical register.

Consider the code in Figure 1. For this example, we shall as-

t1

sum

t2

prod�

�

�

� A[i]

sum + t1

B[i]

prod * t2

1)

2)

3)

4)

Figure 1: Sample code

sume a machine that can initiate two operations per cycle. We
further assume that the values of sum, prod and i are already
assigned to registers r0 through r2 respectively. Figure 2 repre-
sents a typical early register assignmentand the resulting instruction
schedule.

r0 + r3r0 B[r2]r3

r1 * r3r1

r3 A[r2]

Figure 2: Figure 1’s code when register assignment is done before
instruction scheduling

Note that two instructions side by side mean they can be exe-
cuted simultaneously, thus the schedule in Figure 2 takes 3 steps
to execute and uses 4 registers. Also, observe that when register
assignment is done, an anti-dependence is generated between state-
ments 2 and 3 due to the fact that physical register r3 is reused.
This anti-dependence prevents statement 3 from executing before
statement 2.

2.4 Register Assignment After Instruction Scheduling

Conversely, when register assignment is done after instruction
scheduling (late register assignment), the scheduler, uninhibited
by anti-dependences, can generate an efficient schedule, but often
increases the amount of interference between the programs values.
If instruction scheduling were to occur first on the previous code,
the code in Figure 3 could be generated.

r3 A[r2] r4 B[r2]

r0 r0 + r3 r1 r1 * r4

Figure 3: Figure 1’s code if register assignment is done after in-
struction scheduling

Note that the schedule in 3 requires only 2 steps, but uses 5
registers. Obviously this is an improved schedule. If there are
only 4 registers available, however, spill code would be needed and
the resulting schedule would be longer, due to delays caused by
additional memory accesses.

2.5 E�ect of Phase-Ordering on Interference Graphs

Using late register assignment, a schedule is generated with opera-
tions that have values rather than registers as their operands. After
the schedule is generated, live variable analysis is done on this new

schedule. Since several operations take place at the same time, each
of these operation’s operands must exist in separate registers. This
generates more register interference, which means the interference
graph will generally have more edges. A dense interference graph
gives a register assignment with fewer anti-dependences and an
increase in parallelism available to the instruction scheduler. Con-
versely, the dense graph makes it less likely that the graph will be
colorable.

The interference graph from early register assignmentgenerally
has fewer edges than the graph from late register assignment. This
is because the live-range analysis is done on the original sequential
code where live ranges are likely to be shorter. An interference
graph with fewer edges increases the probability of a colorable
graph because more values can be assigned to the same register.
However, the more sparse graph restricts the parallelism available
to the instruction scheduler by introducing anti-dependences that
arise from multiple values being mapped to the same register. Note
that the anti-dependences can be eliminated by adding an edge
between two values that are mapped to the same register. It is this
observation that is the basis the framework described in this paper.

Examples of register interference graphs for the early and late
register assignment of Figures 2 and 3 are depicted in Figure 4.

���
bbb

L
L
L

�
�

�
�

�

�
�
�
�
�
�

�
�
�

i

sum

t1 t2

prod

Register Interference Graph for Figure 2

""
"
�
�
�
�
�
�

B
B
B
B
B
B

HHH

�
�
�
�

�
�

�
�

�
�B

B
B
B
c
c
c
c
c
c

i

sum

t1 t2

prod

Register Interference Graph for Figure 3

Figure 4: Register Interference Graphs Comparison

3 Related Work

There are obvious pros and cons to doing register assignment early
or late. Since these two compiler phasesare antagonistic, it has been
suggested that the two phases should be merged. A basic technique



is to have a pool of registers being managed by the scheduler. In this
way, the scheduler can take into account the number of available
registers when it is scheduling. Several researchers have tried more
involved techniques.

Goodman and Hsu [10] compared two different methods of
integration against both early register assignment and late register
assignment. In one method, which they call integrated prepass
scheduling, they perform late register assignment while restricting
the scheduler to use a fixed number of registers. Their other method
manipulates the scheduler’s DDD so that the “width” of the DAG is
no greater than the number of registers available. Using the altered
DDD, the method performs early register assignment. They found
both techniques outperformed strictly early or strictly late register
assignment.

Bradlee [3] discusses a method of mixing the two phases in
which initial passes of an instruction scheduler get estimates of the
schedule cost given a certain number of registers. The scheduler is
run locally with a very limited number of registers and then again
with the maximum number of registers in the machine. These
values are then used to allocate a certain number of registers for
each basic block.

Freudenberger [8] describes how register assignment is inte-
grated into trace scheduling in the MultiFlow compilers. The sched-
uler drives the register assignment process to place the heavily used
values (i.e. the values in the heavily-used traces) in registers. Since
trace scheduling starts scheduling on the crucial traces first, the
scheduler, which uses a pool of registers, takes as many registers
from the pool as it needs. Since traces have multiple entry and exit
points, information is stored about which registers contain which
values at each entry and exit point. When other, less crucial, traces
“hook up” to this trace, this information is used to minimize the
amount of code for data movement that is needed.

Norris and Pollock [12] perform early register assignment, but
add edges to the interference graph to estimate the re-ordering effect
of instruction scheduling. Their basic goals are to construct a plan
which does not require alteration of the scheduling phase of com-
pilation, and to require only a single pass of instruction scheduling.
They achieve these goals by building the interference graph from
the Data Dependence DAG (DDD) rather than from either a lin-
ear listing of intermediate code (as “traditional” early assignment
does) or the scheduled code (as late assignment does.) Since the
DDD represents more parallelism than either the initial linear code
or the final schedule, this could lead to interference graphs which
would be hard to color. Norris and Pollock evaluate several heuris-
tic techniques to limit the DDD parallelism (and thus the number of
registers needed) while hopefully retaining a good schedule. Their
experiments show a significant improvement over strictly early reg-
ister assignment for livermore loops. We feel CRAIG is at least as
easy to implement and like Norris and Pollock’s work does not
require any alteration to the instruction scheduler. CRAIG will
sometimes require two passes of instruction scheduling, but, unlike
Norris and Pollock we do not see this as a significant problem.

Pinter’s work [14] realizes that the register interference graph
for early register assignment has fewer edges, thus allowing extra-
neous anti-dependences to occur. This, in turn, leads to a schedule
that is too conservative. To avoid this, her algorithm creates a paral-
lelizable interference graph. To generate such a graph, the schedule
graph (i.e. similar to a DDD except that nodes consist of only
the destination for each operation) is analyzed and the transitive
closure of all the directed edges are placed into a graph as undi-
rected edges. Any machine dependences (resource conflicts) are
then added to this graph. As an example, if a machine has only one
divide unit, and two operations require the division unit, an edge is
placed between the nodes corresponding to these operations. The
graph’s complement is then constructed and referred to as the false

dependence graph. The union of the register interference graph
and a false dependence graph is created. This new graph is the
parallel interference graph, and represents all the true interference
that exists between values. It can be colored to give a register as-
signment which does not retard any available ILP. Since it is likely
that this graph is not colorable with the available registers, Pinter
carefully chooses which edges to remove in order to avoid creating
anti-dependences which might retard the final schedule.

By generating a parallelizable interference graph, Pinter is ap-
proaching the problem of incurred false dependences by removing
all of them and then adding them back only as needed. Schedul-
ing is done after register assignment, but only after the register
assignment process has effectively “massaged” the information in
a way that allows the scheduler more freedom to re-order code. It
is this work that inspired the CRAIG algorithm presented in this
paper. However, we are concerned that Pinter’s method considers
all false dependences. This could lead to graphs of unreasonable
size. We prefer to consider only those anti-dependences which
limit the instruction scheduler. Also, we feel that Pinter’s com-
bining edges from different types of graphs leads to unnecessary
complication. CRAIG limits itself to combining edges in one type
of graph, namely the register interference graph, and thus, we be-
lieve, is easier to implement.

4 CRAIG

In this section, we describe our framework for combining instruc-
tion scheduling and register assignment called CRAIG (Combining
Register Assignment Interference Graphs). The basis of CRAIG is
to exploit the knowledge gained from an initial pass of the sched-
uler before it has additional constraints placed on the code due to
register assignment. The information gained from scheduling with
late register assignment is an upper bound on the “best” schedule
the scheduler can produce if the cost of additional register pressure
is not prohibitive.

CRAIG mediates the “tug-of-war” between register assignment
and instruction scheduling by providing a mechanism to decrease
anti-dependences (thus increasing scheduling freedom) even to the
extent of adding spill code. CRAIG incorporates this “mediation”
as a schedule cost considering both schedule efficiency and register
pressure. This schedule cost is a heuristic designed to meet the
goals of the code generator. If the initial schedule cost is too high,
CRAIG goes back to the original linear code and attempts early
register assignment. The intuition is that the original code will
have a less busy interference graph and will therefore have a lower
cost due to register pressure. If this schedule cost is still too high,
CRAIG accepts this schedule based upon the assumption that it
is the best that we can do under the circumstances. If, however,
the schedule cost is not too high it is likely that anti-dependences
have been added, and thus, the schedule can be improved. CRAIG
will attempt to reclaim some of this lost efficiency by removing as
many of these anti-dependences as possible, up to the point where
the schedule cost is too high. By adding edges found exclusively
in the late register assignment interference graph, we are creating
interference between those values which the scheduler forced to
be in different registers. If they are mapped to the same register
in the early register assignment interference graph, then we have
identified and removed an anti-dependence that potentially inhibits
a more efficient schedule. Figure 5 gives an overview of CRAIG.

Possibly the most attractive feature of CRAIG is its robust
method to choose among early assignment, late assignment or
something in between. By trying late register assignment first,
small compilation units would generally have efficient schedules
since there are no anti-dependences from register assignment to im-



Attempt late register assignment
If the schedule cost is acceptable then exit
Attempt early register assignment
RIG = early register interference graph
While schedule cost is not too high do

Update RIG by adding edge(s) from the late
interference graph

Re-color and evaluate code
EndWhile
Output code based on RIG

Figure 5: Combining Register Assignment Interference Graphs

pede progress. However, for those times when additional register
pressure is too costly, CRAIG will choose to attempt early register
assignment. In the cases where this is too conservative, the genera-
tion of a less restrictive register assignment attempts to reclaim the
forfeited loss in parallelism.

The compilation costof CRAIG is low. The schedulerneed only
be run a maximum of two times: once to create the late interference
graph and once to generate the final code. In addition, determining
the schedule cost should be efficient. Finally, experimentation with
an instance of CRAIG gives evidence that it often requires fewer
passes of register assignment than strictly late register assignment.
Thus, we expect CRAIG to require slightly more compilation time
than early register assignment and require about the same time as
late register assignment.

4.1 An Instance of CRAIG

In this section, we present CRAIG0, an initial instance of CRAIG.
CRAIG0 first attempts to generate the best schedule it can without
generating spill code. Therefore, a schedule cost is determined
to be “too high” when spill code is inserted. When adding edges
back from the late register assignment interference graph to the
early register assignment graph, we add those edges between values
which are mapped to the same register (i.e. colored the same
color) but whose values interfered in the first graph. By using this
heuristic, we are attempting to exploit the ILP that the scheduler
found. Additionally, a heuristic choice must be used to determine
which edges from among those mapped to the same register can
remove the anti-dependences that most negatively effect the final
schedule. Currently, we pick these edges arbitrarily. Possible future
heuristics may be based on :

� a function of the priority used during the scheduling of the
operation containing a value’s definition while instruction
scheduling was done late,

� a function that recognizes if the values used are on the critical
path through the DDD,

� a function based on the live range of the values through the
DDD, or

� a function of the number of variables that were live at the
time the definition of the value is scheduled.

4.2 A CRAIG0 Example

This section shows an example of the execution of CRAIG0 on the
following code.

x pos = x pos + (x vel * t);
y pos = y pos + (y vel * t);

The target machine is an ILP architecture with 2 identical functional
units and 4 shared machine registers set aside to hold scalar values.
Assume also, thatld andst instructions take two cycles to execute
and all others take one cycle. Additionally, the variables x_pos
and y_pos are used globally and therefore need to be stored out to
memory once they are computed.

CRAIG0 attempts to perform late register assignment. Fig-
ure 6(a) shows the schedule that is created. Each of the operations
references pseudo-registers since register assignment has not yet
mapped them to machine registers. When the live ranges of these
pseudo-registers are analyzed, the register interference graph in
Figure 7(a) is created. Note that the graph is not colorable with the
4 machine registers given. Thus, CRAIG0 saves this interference
graph and attempts to do early register assignment.

The early register interference graph for the example code,
complete with its 3-coloring, can be found in Figure 7(b). Although
the graph was colored with fewer colors, several anti-dependences
were created. As a result, the less efficient schedule depicted in
Figure 6(b) would be created.

Since spill code was not required, CRAIG0 tries to combine the
early register interference graph with the late interference graph.
By adding edges from the late interference graph (Figure 7(a)), to
the early interference graph (Figure 7(b)), the algorithm attempts
to exploit the inherent parallelism. Figure 7(c) shows the resulting
combined register interference graph. The combined interference
graph will be 4-colorable since CRAIG0 will stop adding edges
before spill code is required.

The resulting schedule is shown in Figure 6(c). It requires
8 cycles to complete, however, there is no spill code, and thus,
no additional memory delays will be incurred. For the sake of
comparison, Figure 6(b) shows the schedule using the early register
interference graph (Figure 7(b)). This schedule takes 12 cycles to
complete.

As shown in the example, when register assignment is done
late, more ILP can be exploited, yet the interference graph can
be hard to color and spill code can be generated. When register
assignment is done early, spill code is less likely to be required,
but at the cost of losing parallelism. CRAIG0 attempts to get the
best of both early and late register assignment by trying to exploit
the parallelism, but only up to the point where spill code would be
required. Although CRAIG0 cannot guarantee that all code will be
scheduled without spill code, it does ensure that any code which
does not require spilling with early register assignment, will not
require spill code.

5 Experimental Evaluation of CRAIG0

To evaluate CRAIG0 we have implemented it in Rocket, a retar-
getable C compiler for ILP architectures[15]. Although Rocket is
easily targeted to either superscalar or long-instruction-word (LIW)
machines, we chose an LIW target for the experiments described
here because that allows us to statically measure execution cycles
necessary for a program, based upon profile information. The LIW
model used is a load-store architecture which allows up to four
operations to be initiated in each instruction. Integer computation
is assumed to require 1 cycle to complete, while pipelined floating
point operations require two cycles to complete. Loads and stores
all require three cycles.

Given the chosen machine model, the total execution time of
the program can be statically computed with the following formula



r2 r2 * r0

r2 + r3r3

r1 r1 * r0

r1 * r2r0

r2 ld x vel r0 ld t

r3 ld x pos r1 ld y vel

y pos st r0

r2 ld y pos

x pos st r3

nop

nop

nop

nop

nop

1

2

3

4

5

6

7

8

r2 r1 * r0

r1 r2 + r1

r1 * r0r1

r0 * r1r0

r1 ld x vel r0 ld t

x pos st r1

r1 ld x pos

y pos st r0

r1 ld y vel

r0 ld y pos

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

1

2

3

4

5

6

7

8

9

10
11

12

pr1 ld x vel
pr6 ld y vel

pr1 * pr2pr3

pr6 * pr2pr7

ld x pospr4

pr8 * pr7pr9

ld tpr2

ld y pospr8

y pos st pr9

pr3 + pr4pr5

x pos st pr5

nop

nop

nop

1

2

3
4

5

6

7

(b) Early Schedule (c) CRAIG Schedule(a) Late Schedule

Figure 6: Early, Late and CRAIG0 Schedules

l
lE

E
E
E
E
E
E
E

�
�
�
�
�
�
�
�
�

DD��
�
�
�

,
,

,
,

,
,

,
�
�

!!!!!!!!

PP
PP

PP
PP

P

l
l

l
l

T
T
T
T
T
T
T

D
D
D
D
D

�
� ZZ

Z
Z
Z
Z
Z

pr101

pr102

pr103

pr104

pr105

pr106

pr107

pr108

pr109

ll

E
E
�
�
�
�
�

�
�
�
�
�
�
�

,
,

,
,

,
,

,

�
�

�
�

pr101

pr102

pr103

pr104

pr105

pr106

pr107

pr108

pr109

r1

r0

r1

r2

r1

r1

r1

r0

r0

E
E
E
E
E
E
E
E

@@

C
C

�
�
�
�
�

�
�
�
�
�
�
�

,
,

,
,

,
,

,

�
�

�
�

�
�
�
�
�
�
�
�

!!!!!!!

c
c
c
c
c
c
c

T
T
T
T
T
T
T

l
l

l
l

l
D
D
D
D
D

pr101

pr102

pr103

pr104

pr105

pr106

pr107

pr108

pr109

r0

r2

r1

r1

r0 r2

r2

r3

r3

(b) Early Graph (c) CRAIG Graph(a) Late Graph

Figure 7: Early, Late and CRAIG0 Register Interference Graphs

:
X

b2basic blocks in program

length(b) � frequency(b) (1)

where length(b) is the number of instructions in block b and
frequency(b) is the number of times block b is executed. Profile
data is only used for the purpose of computing schedule execution
times. That is, the information is not used by the compiler to make
instruction scheduling decisions. The URM machine simulator[13]
was used to actually simulate execution and to help generate profile
information for the test code.

To test CRAIG0, we simply alter the number of available reg-
isters. By controlling the number of available registers, attempts at
late register assignment can be forced to spill while attempts with
the same machine description will allow early register assignment
to have leftover registers, and thus, a combined register assignment
interference graph will be generated.

5.1 Preliminary Results

This evaluation of CRAIG0 is based upon three C programs whose
results are representative of the trends we have seen. The programs
are:

8q (3 functions) - The standard recursive method for finding a
placement of 8 queens on a chess board such that no queen
can attack another.

gauss (9 functions) - 20� 20 Gaussian elimination.

livermore (3 functions) - Livermore loops 1 through 14 which
represent standard loop kernels in scientific code.

Table 1 compares early and late register assignments when
enough registers are permitted to obviate the need for spill code.
The table indicates how many register were used in each of early and
late register assignment, the number of execution cycles required
with each technique and the % improvement gained by performing
late register assignment. The first thing to notice is that the degree
to which late register assignment allows a better schedule varies
considerably. This is not unexpected. There are two factors which
might limit the gain expected by late register assignment; first, it
may well be that the additional freedom allowed late assignment
does not lead to better schedules. However, it is often the case that
the improved schedules of late assignment are counteracted by the
additional register save-restore code required for the extra registers
used in late assignment. In fact, when the save-restore code is not
considered, the improvements due to late register assignment for
8q, gauss, and livermore are 4.6%, 18.6%, and 5.2%. Still, for
two of the three programs this doesn’t seem to leave CRAIG0 with
much window for opportunity.

Table 2 compares execution cycles needed with each of early,
late, and combined interference graphs. Each row of the table repre-
sents the cycles required with a given number of available registers.
The available registers allowed ranged from those required by early
assignment to one less than the number required to do late assign-
ment without spilling. The entries marked f indicate that register
assignment failed to converge in 10 iterations. Whenever late regis-
ter assignment fails to converge within 10 iterations, Rocket resorts
to early register assignment, based upon the premise that additional
spill code of late assignment will degrade performance more than
a tighter schedule could possibly compensate for. Thus, we could
replace the f entries of the table with the cycles associatedwith early
register assignment for that program.

Comparing the cycles required using the combined graph to
those required with early assignment, we can see that the combined



Registers Required Execution Cycles
Early Late Early Late Improved

Benchmark Ints Floats Ints Floats
8q 6 0 7 0 350933 346050 1.4
gauss 8 3 11 4 99837 82634 17.2
livermore 13 25 15 32 1390943 1319122 5.2

Table 1: Early vs. Late Register Assignment — No Spilling

Benchmark / CRAIG0 Early Late
Register Total Execution Total Execution % Total execution %

Restriction time (cycles) time (cycles) improvement time (cycles) improvement

8q
6 integers 350933 350933 0.0 553035 36.5

gauss
8 integers 89802 99837 10.1 f

9 integers 83692 16.2 f

10 integers 82374 17.5 88009 6.4

livermore
13 integers 1319606 1390943 5.1 1319875 0.0
14 integers 1319364 5.1 1319790 0.0

25 floats 1320201 5.1 1319705 0.0
26 floats 1320119 5.1 1319620 0.0
27 floats 1327243 4.6 1319705 -0.1
28 floats 1326763 4.6 1319620 -0.1
29 floats 1326523 4.6 1319537 -0.1
30 floats 1326203 4.7 1319454 -0.1
31 floats 1325603 4.7 1319371 0.0

Table 2: CRAIG0 Execution Time Results

graph technique, CRAIG0, seems to be able to improve on early
assignment about as much as late assignment does with unlimited
registers. For 8q, in which late assignment provided little improve-
ment over early, CRAIG0 provided little difference as well. For
livermore, where late’s improvement (with “unlimited” registers)
over early is modest, CRAIG0 achieves nearly the same improve-
ment, with substantially fewer registers. And for gauss, in which
late assignment allowed a significantly better schedule than early,
CRAIG0 was able to obtain a little more than half that improvement
with no additional registers required over those needed for early
assignment. By allowing CRAIG0 10 registers, (one less than the
number used by late assignment with unlimited registers), we actu-
ally obtained a better execution time than late register assignment
with 11 registers. We attribute the difference to the one less register
to be saved and restored.

Looking at the cycles required when late register assignment
is forced to spill shows several interesting effects. First, while
CRAIG0 gained nothing over early assignment for 8q, it shows a
36% improvement over late assignment when late assignment is
allowed only 1 register less than a number sufficient to require
no spilling at all. Clearly there are times when spilling dramat-
ically increases the execution time well beyond any scheduling
gains obtained by late register assignment. In contrast, for liver-
more with 7 fewer registers than needed to ensure non-spilling, the
cost of spilling was minimal (much less than 1%.) This suggests
that, at least for some programs, substantial spilling costs virtu-
ally nothing. In this case, it was a program which didn’t show
significant improvement due to late register assignment even with-
out spilling. For gauss, the spill costs (with 10 registers) were not
enough to overshadow the benefits of scheduling without additional
anti-dependences, but CRAIG0 was able to show a marked (6.4%)
improvement over late register assignment spilling.

Summarizing our results, CRAIG0 shows promise of being as
good or better than a policy of either strictly early or strictly late
register assignment. The livermore results certainly suggest the

need to allow at least the possibility of adding interference edges
which would require spilling but allow more parallelism. Of course
the CRAIG framework allows such possibilities, even if CRAIG0

does not.

6 Conclusions and Future Work

We have presented a framework for combining register assignment
and instruction scheduling called CRAIG. CRAIG adds interference
graph edges from a graph constructed after instruction scheduling
to a complementary interference graph constructed before instruc-
tion scheduling. CRAIG is robust enough to allow for growth and
through its combined approach, it manages to exploit the advantages
of both late and early register assignment. In the future, as more ag-
gressive global scheduling techniques and compiler optimizations
(e.g. scalar replacement, loop unrolling) force late register assign-
ment to spill, CRAIG will still be able to use the information from
late register assignment to improve schedules.

Within the context of CRAIG, we have implemented and evalu-
ated an initial instance of the framework called CRAIG0. CRAIG0

attempts to generate schedules without spill code while still allow-
ing for as much code motion as possible. CRAIG0 shows promise
of outperforming either strictly early or strictly late register assign-
ment.

In the future, we will implement and evaluate the heuristics
for choosing edges to copy from the late register assignment in-
terference graph mentioned in Section 4.1. We will also consider
heuristics to guide when and how CRAIG should insert additional
interference edges when such edges would result in spill code.

Acknowledgments

We would like to thank Preston Briggs for his help in reviewing
initial iterations of this framework. We would also like to thank the



National Science Foundation for helping to fund this work through
Grant CCR-9308348.

References

[1] AUSTIN, T. M., AND SOHI,G. S. Dynamic dependency analysis
of ordinary programs. 1992 IEEE 19th Annual International
Symposium on Computer Architecture (1992), 342–351.

[2] BANERJEE, U., SHEN, S., KUCK, D., AND TOWLE, R. Time and
parallel processor bounds for FORTRAN-like loops. IEEE
Transactions on Computers C-28, 9 (Sep 1979), 660–670.

[3] BRADLEE, D., EGGERS, S., AND HENRY, R. Integrating register
allocation and instruction scheduling for RISCs. In Proceed-
ings of the Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems
(Santa Clara, California, April 1991).

[4] BUTLER, M., YEH, T.-Y., PRATT, Y., ALSUP, M., SCALES, H.,
AND SHEBANOW, M. Single instruction stream parallelism is
greater than two. IEEE 18th Annual Symposium on Computer
Architecture (1991), 276–286.

[5] CHAITIN, G. Register allocation and spilling via graph color-
ing. In Proceedings of the ACM SIGPLAN 82 Symposium on
Compiler Construction (June 1982), pp. 201–207.

[6] CHAITIN, G., AUSLANDER, M., CHANDRA, A., COCKE, J.,
HOPKINS, M., AND MARKSTEIN, P. Register allocation via
coloring. Computer Languages 6 (1981).

[7] DEWITT, D. A Machine-IndependentApproachto the Produc-
tion of Optimal Horizontal Microcode. PhD thesis, Depart-
ment of Computer and Communication Sciences, University
of Michigan, Ann Arbor, MI, 1976.

[8] FREUDENBERGER, S. M., AND RUTTENBERG, J. C. Phase order-
ing of register allocation and instruction scheduling. In Code
Generation - Concepts, Tools, Techniques: Proceedingsof the
International Workshop on Code Generation (London, May
1992), R. Giegerich and S. L. Graham, Eds., Springer-Verlag,
pp. 146–172.

[9] GAREY, M., AND JOHNSON, D. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W.H. Freeman
and Company, San Francisco, CA, 1979.

[10] GOODMAN, J., AND HSU, W. Code scheduling and register
allocation in large basic blocks. In Proceedings of the ACM
SIGPLAN 88 Conference on Program Language Design and
Implementation (1988).

[11] LANDSKOV, D., DAVIDSON, S., SHRIVER, B., AND MALLETT,
P. Local microcode compaction techniques. ACM Computing
Surveys 12, 3 (September 1980), 261–294.

[12] NORRIS, C., AND POLLOCK, L. A scheduler-sensitive global
register allocator. In Proceedings of Supercomputing ’93
(Portland, OR, Nov. 1993).

[13] PETERMAN, C. L. An analysis of instruction-level parallelism
in several common benchmarks. Master’s thesis, Michigan
Technological University, 1993.

[14] PINTER, S. S. Register allocation with instruction schedul-
ing: A new approach. Proceedings of the ACM SIGPLAN
’93 Conference on Programming Language Design and Im-
plementation (1993), 248–257.

[15] SWEANY, P. H., AND BEATY, S. J. Overview of the ROCKET
retargetable C compiler. Tech. Rep. CS-94-01, Department
of Computer Science, Michigan Technological University,
Houghton, January 1994.


