
Dominator-Path Scheduling — A Global Scheduling Method

Philip H. Sweany
Computer Science Department

Michigan Technological University
1400 Townsend Drive

Houghton MI 49931-1295
(906) 487-3392

sweany@cs.mtu.edu

Steven J. Beaty
Department of Mechanical Engineering

Colorado State University
Fort Collins, Colorado 80523

beaty@longs.lance.colostate.edu

Abstract

Dominator-path scheduling performs global instruction
scheduling of paths in the dominator tree. Unlike other
global scheduling methods, dominator-path scheduling
does not require copies of operations to preserve program
semantics. In a limited test suite for a typical superscalar
architecture, dominator-path scheduling produces sched-
ules requiring 8.3% fewer cycles than local scheduling
alone.

1 Introduction

Architectures exhibiting instruction-level parallelism
(ILP), such as superscalar and superpipelined machines,
are currently popular. To best exploit instruction-level
parallelism in these machines, an instruction scheduling
phase is required during compilation. Instruction schedul-
ing is typically classified as local if it considers code only
within a basic block and global if it schedules multiple
basic blocks at once. Local scheduling methods are well
known (see [Bea91] for one summary.) Local instruction
scheduling’s largest impediment is its inability to consider
context from surrounding blocks. While local scheduling
can find parallelism within a basic block, it can do nothing
to exploit parallelism between basic blocks.

Trace scheduling [Ell86] and percolation scheduling
[AN88] are two methods of global instruction schedul-
ing. While trace scheduling and percolation scheduling
have several differences, they both allow massive inter-
block movement of operations during scheduling, often
requiring that the moved operations be copied into mul-
tiple blocks to ensure proper program semantics. This
motion of operations can exploit a considerable amount of
program parallelism, at the expense of executing copied
operations multiple times. This appears an effective trade-
off for architectures witha large degree of instruction-level
parallelism such as VLIW machines, but it is not clear that
such motion with copies is as useful for ILP architectures

with more limited hardware, such as current superscalar
architectures.

To address the issue of producing schedules without op-
eration copies, Bernstein [BR91] defines a technique he
calls global instruction scheduling which allows move-
ment of instructions beyond block boundaries based upon
the program dependence graph (PDG) [FOW87]. Bern-
stein’s method differentiates between inter-block move-
ments which require duplicates of moved operations and
those which do not. This paper defines another technique
which we call dominator-path scheduling (DPS) which
allows inter-block motion only when no duplicates are re-
quired. DPS is based upon the control-flow graph rather
than the PDG structure. We shall discuss differences be-
tween Bernstein’s method and DPS later, after discussion
of DPS itself.

2 Dominator Analysis

In their 1981 paper, [RT81] Reif and Tarjan provide a fast
algorithm for determining the approximate birthpoints of
expressions in a program’s flow graph. An expression’s
birthpoint is the first block in the control flow graph where
the expression can be computed while guaranteeing the
value computed will be the same as in the original program.
Their technique is based upon fast computation of the idef
set for each basic block of the control flow graph. The idef
set for a block, B is that set of variables which are defined
on some path between B’s dominator and B.

Reif and Tarjan’s expression birthpoints are not suffi-
cient to allow us to safely move entire operations from a
block to one of its dominators because they address only
the movement of expressions, not definitions. Operations
in general include not only a computation of some ex-
pression but the assignment of the value computed to a
program variable. For an operation A E, in addition
to computing the birthpoint of the right-hand-side expres-
sion, we must concern ourselves with the variable being
assigned to as well. To ensure a “safe” motion for a rhs ex-

pression, we need only ensure that no expression operand
move above any possible definition of that operand, thus
changing the program semantics. We need to make a sim-
ilar requirement for the variable being assigned to, but
we must do more. As well as not moving A above any
previous definition of A, we must ensure that A does not
move above any possible use of A. Otherwise, we run
the risk of changing A’s value for that previous use. Thus,
dominator analysis computes the iuse set for each basic
block as well as the idef set. Using the idef and iuse sets,
dominator analysis computes an approximate birthpoint
for each machine operation.

To measure the motion possible in C programs (at
the intermediate statement level of program abstraction),
Sweany [Swe92] moved each statement to its birthpoint
as defined by dominator analysis and counted the number
of dominator blocks each statement jumped during such
movement. In a test suite of twelve C programs, more
than 25% of all statements moved at least one dominator
block upwards towards the root of the dominator tree. One
function allowed more than 50% of the statements to be
hoisted an average of nearly eight dominator blocks. This
considerable amount of motion (without copies) available
at the intermediate statement level of program abstraction
provides motivation for using similar analysis techniques
to facilitate global instruction scheduling.

3 Dominator-Path Scheduling

Dominator-path scheduling is a global instructionschedul-
ing method that does not require copies of operations that
move from one block to another. DPS’s foundation is
scheduling instructions while moving operations among
blocks according to both the opportunities provided by
and the restrictions imposed by dominator analysis.

DPS performs global instruction scheduling by treating
a group of basic blocks found on a dominator tree path as
a single block, scheduling them as a whole. This allows
instruction scheduling to choose the most advantageous
position for an operation which we might “legally” place
in any one of a number of blocks. Because machine op-
erations are represented by nodes of a data dependence
DAG (DDD) used in scheduling and, like intermediate
statements, DDD nodes are represented by def and use

sets, the same analysis that allows us to move intermedi-
ate statements applies to nodes of a basic block’s DDD as
well.

The same motivation that drives trace scheduling —
namely that scheduling one large block allows better use
of machine resources than scheduling the same code as
several smaller blocks — applies to DPS as well. Much
like traces (groups of blocks to be scheduled together
in trace scheduling), the dominator path’s blocks can be
chosen by any of several methods. Heuristically choos-

ing a path based on length, nesting depth, or some other
program characteristic is one method. Allowing the pro-
grammer to specify the most important paths is another.
Actual profiling of the running program is a third.

Once we select a dominator path to schedule, we need a
method of combining the blocks’ DDDs into a single DDD
for the entire dominator path. In our compiler, this is easy,
as the DDD coupler (described in [Swe92]) is designed for
just such a purpose.

3.1 Algorithm

When combining two DDDs, the coupler will add arcs for
any data dependencies which exist between the two DDDs.
DPS uses this coupler feature by adding “dummy” nodes
to the DDD for each basic block. These dummy nodes
include uses and/or definitions of appropriate dataflow
values to prevent potentially hazardous motion of DDD
nodes across block boundaries during scheduling. When
the basic blocks of a dominator path are combined, the
coupler automatically inserts those arcs necessary to pre-
vent nodes’ “illegal” motion from one block to another.

Because the combined DDD for a dominator path in-
cludes control flow we need, when scheduling a group of
basic blocks represented by a single DDD, some mecha-
nism to map the scheduled instructions to the correct basic
blocks. We can easily accomplish this by adding two spe-
cial nodes to each block’s DDD. These nodes are called
BlockStart and BlockEnd. They represent the basic block
boundaries. Since BlockStart and BlockEnd are nodes in
the eventual combined DDD, they are scheduled just like
all the other nodes of the combined DDD. After schedul-
ing, all scheduled instructionsbetween the instructioncon-
taining the BlockStart node for a block and the instruction
containing the BlockEnd node for that block will be con-
sidered instructions for that block. The only remaining
chore is to ensure that the BlockStart and BlockEnd DDD
nodes remain ordered (in the scheduled instructions) rel-
ative to one another and to the BlockStart and BlockEnd
nodes for any other block. To do so, we add use and def

information to the nodes to represent a pseudo-resource,
BlockBoundary. By initializing each BlockStart node to
define BlockBoundary and each BlockEnd node to use
BlockBoundary, we ensure that no BlockEnd node can be
scheduled ahead of its associated BlockStart node (due to
flow dependence.) We also ensure that no BlockStart node
can be scheduled before its dominator block’s BlockEnd
node (because of an anti-dependence). By establishing
these imaginary dependencies, DPS ensures that the DDD
coupler will add DDD arcs between all BlockStart and
BlockEnd nodes.

In dominator analysis, interblock motion is prohibited if
1) the operation being moved defines something which is
included in either the idef or iuse set or 2) uses something
included in the idef set for the block where the opera-

tion currently resides. To obtain the same effect in the
combined DDD we again turn to using the use and def

sets for the BlockStart nodes. By adding the idef set for
a basic block B to the def set of B’s BlockStart node,
and similarly adding the iuse set for B to the use set of
B’s BlockStart node, we enforce the same restriction on
movement that dominator analysis imposed upon interme-
diate statements, thus ensuring that any interblock motion
preserves program semantics.

DPS is complicated by some factors which are not rel-
evant when moving intermediate statements. Foremost is
the added complexity imposed by the bidirectional motion
of operations that instruction scheduling allows. In the
cited experiments, intermediate statements moved in only
one direction — towards the top of the function’s control
flow graph. There was no concept of a statement moving
from a dominator block to a dominated one. To gain the
full benefit from DPS, we would like to allow operations to
move past block boundaries in either direction. To allow
bi-directional motion, we use the “post-dominator” rela-
tion which says that a basic block PD is a post-dominator
of a basic block B if all paths from B to the function’s exit
must pass through PD. Using this strategy, we similarly
define post-idef and post-iuse sets. In fact, it is not difficult
to compute all these quantities for a function. The prob-
lem lies in the fact, that no matter whether we schedule
blocks in a dominator path or a post-dominator path, we
have no guarantee that the path will be the inverse of some
path of the dominator tree computed in the other direc-
tion. Thus to allow operations to move “freely” in both
directions, the successors of a block in the dominator path
must themselves be dominators of that block in the post-
dominator tree. Since this cannot always be so, we need
some mechanism to limit bi-directional motion when we
must. Again, we rely on the technique of adding depen-
dencies to the combined DDD. In this case (assuming that
we are scheduling paths in the forward dominator tree), for
any basic block, B, whose successor in the forward domi-
nator path is not itself an immediate dominator of B in the
post-dominator tree, we add B’s def set to the use set of
the BlockEnd node associated with B. In similar fashion,
we add B’s use set to that BlockEnd node’s def set. This
will prevent any DDD node originally in B from moving
downward in the dominator path. Since this additionof de-
pendencies will hamper instruction scheduling’s ability to
find a good schedule for the combined DDD, we may wish
to choose dominator paths to schedule such that the paths
chosen are inverses of some path in the post-dominator
tree.

Comparing DPS to Bernstein’s global instruction
scheduling (GPS), we see that both allow for inter-block
motion without copies. GPS also allows for inter-block
movement requiringduplicates which DPS does not. GPS,
however, is currently defined only within the context of
a loop, while DPS paths can include blocks of different

nesting levels. GPS allows operation movement in only
one direction, while DPS allows operations to move from
a dominator block to a post-dominator. Finally, global
scheduling in DPS uses the local instruction scheduler to
place operations. GPS uses a separate set of heuristics to
move operations in the PDG and then uses a subsequent lo-
cal scheduling pass to order operations within each block.

3.2 Results

To measure the potential of dominator-path scheduling,
we have compared it to local scheduling for a small test
suite of C programs run on an IBM RS6000 computer. The
RS6000 is a popular superscalar architecture which allows
the simultaneous start of three operations (an integer op-
eration, a floating point operation and a branch operation)
during each execution cycle, should the next three instruc-
tions to execute be data-independent integer, floating point
and branch operations. To model the RS6000’s operation,
our compiler inserts NOPs where it determines that the
architecture will stall waiting for data to become ready
before it can continue. The goal of instruction scheduling
then is to minimize the number execution cycles needed
by minimizingnecessary stalls and by overlapping instruc-
tions to best take advantage of the multiple instruction is-
sue capability of the hardware. In short, we model the
RS6000 as though it were an LIW architecture, and in that
way, we can measure the effectiveness of the scheduling
by counting “instructions” (which are in effect execution
cycles).

For the test suite of six programs used, we identified 879
dominator paths to be scheduled. In this experiment we
picked dominator paths only withina loop,ensuring that all
blocks in the path are at the same nesting level. While this
conservative strategy is not required by dominator-path
scheduling (and indeed, is probably not even advanta-
geous), it was chosen for reasons which will be discussed
shortly. For the chosen dominator paths, local schedul-
ing required 9670 cycles, while dominator-path schedul-
ing required 8868. This represents a savings of 8.3% of
the instructions required by local scheduling. This is a
significant improvement for an architecture with the par-
allelism of the RS6000. The programs used in the test
suite are listed in Table 1 with the number of dominator
paths scheduled for each program and the percentage im-
provement that dominator-path scheduling demonstrated
for those paths.

Still it should be recognized that this is, to some ex-
tent, a lower bound on the potential for dominator-path
scheduling, as conservative methods were employed to
choose dominator paths. There is no inherent requirement
that dominator paths should include blocks only within a
single loop construct. This is, in fact, a powerful feature
of dominator-path scheduling, since it allows both motion
of loop invariant code out of loops and motion of opera-

Program Paths %Improvement
dhrystone 15 8.0

diff3 102 7.4
grep 36 11.3

linpack 47 6.4
livermore 103 9.4
whetstone 11 7.6

Table 1: On-Path Improvement

tions into loops when they can be overlapped with existing
code without requiring additional instruction cycles. The
reason that multi-loop paths are not included in this study
is that the “local” instruction scheduler used to schedule
paths does not currently include any feature to prioritize
the instructions of a path. If a single path were to include
multiple nesting levels, we would want the scheduler to
recognize that instructions added to blocks with higher
nesting levels are more “costly” than those at lower nest-
ing levels. This is not an issue for local scheduling and
is thus not currently included in the scheduler. We are,
however, making plans to incorporate such a feature for
use in future dominator-path scheduling experiments.

4 Conclusions

This paper has introduced dominator-path scheduling,
a method of global instruction scheduling based on an
extended version of Reif and Tarjan’s symbolic cover
analysis. As dominator-path scheduling does not re-
quire semantic-preserving copies like those of other global
scheduling techniques, it appears promising for architec-
tures that have a limited amount of instruction-level par-
allelism.

References

[AN88] Alexander Aiken and Alexandru Nicolau. “A
development environment for horizontal mi-
crocode”. IEEE Transactions on Software En-
gineering, 14(5):584–594, May 1988.

[Bea91] S.J. Beaty. Instruction Scheduling Using Ge-
netic Algorithms. PhD thesis, Mechanical En-
gineering Department, Colorado State Univer-
sity, Fort Collins, Colorado, 1991.

[BR91] D. Bernstein and M. Rodeh. “Global instruc-
tion scheduling for superscalar machines”. In
Conference on Programming Language Design
and Implementation, pages 241–255, Toronto,
June 1991. SIGPLAN ’91.

[Ell86] J. R. Ellis. Bulldog: A Compiler for VLIW Ar-
chitectures. The MIT Press, Cambridge, MA,
1986. PhD thesis, Yale, 1984.

[FOW87] J. Ferrante, K.J. Ottenstein, and J.D. Warren.
“The program dependence graph and its use in
optimization”. ACM Transactions on Program-
ming Languages and Systems, 9(3):319–349,
July 1987.

[RT81] J.H. Reif and R.E. Tarjan. “Symbolic program
analysis in almost-linear time”. SIAM Journal
of Computing, 11(1):81–93, February 1981.

[Swe92] P.H. Sweany. Inter-Block Code Motion without
Copies. PhD thesis, Computer Science Depart-
ment, Colorado State University, Fort Collins,
Colorado, 1992.

