
Lookahead Scheduling

Steven J. Beaty
Department of Mechanical Engineering

Colorado State University
Fort Collins, Colorado 80523

beaty@longs.lance.colostate.edu

Abstract

A new method of scheduling operations is presented.
Lookahead scheduling, alone or in combination with other
scheduling methods, can increase both the speed and the
likelihood of correctness when generating schedules.

1 Introduction

Sequencing is defined by Ashour [Ash72] as being “con-
cerned with the arrangements and permutations in which
a set of jobs under consideration are performed on all
machines.” That is, what is the order the jobs will be
performed; what is the priority of each job? Sequencing
thereby ranks the jobs to be executed. Baker [Bak74]
states “scheduling is the allocation of resources over time
to perform a collection of tasks.” Scheduling usually
places already prioritized jobs into slots, often accounting
for conflicts in resource usage. The combined sequenc-
ing/scheduling (order/place) process produces the desired
outcome: jobs placed on machines capable of performing
the desired tasks in the correct order at a correct time. In
[Bea92], a more thorough treatment of the possible com-
binations of sequencing and scheduling is given.

Instruction scheduling (IS) involves the placement of
atomic machine operations into machine instructions. A
data dependence DAG (DDD) is often used to describe
the necessary operations and their order. The nodes in a
DDD contain the operations, and the edges denote a partial
order on the nodes. This partial order is used to guarantee
program dataflow requirements. The edges of a DDD do
not constrain the order nodes are scheduled, only the order
they appear in the final schedule.

List scheduling (LS) is a general [Cof76] scheduling
method often used for instruction scheduling [Gas89]. LS
builds a ready set that contains all jobs that are not waiting
on the results of another job. In IS, this is represented as
nodes with no unscheduled predecessors. In finding the
ready set, LS performs a topological sort of a DDD, thereby
reducing the search space of the scheduling problem and
increasing the chances of finding a valid schedule. List

scheduling has an implicit heuristic: scheduling nodes
with no predecessors results in valid orderings more often
than scheduling nodes with predecessors. As with all
heuristics, there are instances where this assumption does
not hold.

Trace scheduling [Fis81] relies on a LS algorithm to
schedule traces. In this way, it is really a meta-scheduling
algorithm. It provides the raw material for another sched-
uler; it does not prioritize or place the operations. Perco-
lation scheduling [Nic85] is both a scheduler and a meta
scheduler. The set of allowed graph operations are used
to schedule the machine operations; there are heuristics to
prioritize which of the allowed graph operations are to be
used.

2 LS Enhancements

Because LS is based on an implicit heuristic and uses
other heuristics to prioritize the jobs, it does not always
generate valid schedules. A number of different methods
have been used to assist LS with the generation of good,
valid schedules. This section discusses several.

2.1 Absolute Timing

�(e) is used to denote the timing associated with an
edge in a DDD. It contains both a minimum and max-
imum time allowable between operations to describe a
rich set of architectural features. With this definition on
edges, timing can be assigned to the nodes as well. Using
�(e), a range of instructions where each operation can
be placed can be calculated. This range will be termed
�(op) = (min;max), meaning op can be scheduled in
any instruction �f� j min � � � maxg. This is termed
the absolute timing for op.
�(op) can have a large influence when calculating node

priorities. Using the absolute timing algorithm from Allan
and Mueller in [AM88], and Figure 1, node 3 will origi-
nally have �(3) = (2;1). After the placement of node
2, node 3 will have �(3) = (n; n) where n is one greater
than the scheduled value of node 2. This is a much tighter



��
��

1

?
1;1

��
��

2

?
1; 1

��
��

3

Figure 1: Need for dynamic schedule range calculation

��
��

1

�
�
�
�	

3;1

?

1;1

��
��

2

@
@
@
@R1; 1

��
��

3

Figure 2: A graph where the absolute timing algorithm
can fail

bound on the range of node 3 and should be reflected in its
priority.

A complication not addressed in [AM88] is the possibil-
ity of legal loops in the timing. In Figure 2, if the absolute
timing algorithm is run, the following occurs:

1. Starting with �(1) = (1;1): �(2) = (2;1),
�(3) = (4;1).

2. Traverse to 3, change predecessors: �(2) = (3;1).

3. Traverse to 2, change predecessors: �(1) = (2;1).
Goto step 1, creating a loop.

The difficulty occurs when the routine follows a �(e) =
(n;1) edge to a previous node (from node 1 to node 2),
changing its timing. An important observation is

there is no reason to follow (n;1) edges to pre-
decessors. The absolute timing algorithm is only
interested in making the timing on nodes later,
and with 1 maximum timing on an edge, no
reason exists to make a predecessor node later.
The operation may occur as early as possible
and the value will remain valid forever.

During the calculation of absolute timing, it is easy to
check for timing errors. For example, if a node’s earliest
time becomes later than its latest time, a timing error with
respect to its neighbors is present. It is also an error to
change the timing to be earlier than it currently is. The
node is as early as it can be in relation to some node; if
another requires it earlier a timing error is present. This
checking provides a means for detecting errors in the order
of packing nodes from the DDD. This has the same result as
extended timings [SDX87] have, although not necessarily
as early in the scheduling process.

2.2 Foresight

A powerful method to increase the likelihood of gener-
ating a valid schedule called foresight is introduced by
Su [SDX87]. The procedure checks to see whether, after
placing an operation in an instruction, all nodes that be-
come constrained (having�(op) = (a; a)) can be “easily”
placed in their respective instructions, with respect to re-
source and encoding conflicts. If so, the operation under
consideration is placed. If not, the operation is moved to its
next valid instruction and foresight is repeated. If no valid
instruction can be found, the schedule generated thus far is
deemed invalid. This is not a backtracking algorithm; on
the contrary, it looks forward,checking for validity of plac-
ing a node before the final decision for any node is made.
Because a substantial amount of information is generated
during each pass of the foresight routine, Wijaya and Al-
lan [WA89] added the ability to keep information from
one pass to another, resulting in incremental foresight.
The schedule ranges for operations have a form of tem-
poral locality, i.e. once they are constrained, they remain
constrained. The constrained set does not vary greatly be-
tween iterations. Rules may be formed that specify when
schedule ranges are affected by placement of operations
and must be updated. When incremental foresight cannot
reuse information from a previous pass, non-incremental
foresight is used. In this way speedup is achieved and
incremental foresight fails only when foresight would.

Foresight certainly helps in the generation of valid
schedules by checking the validity of operation placement
before committing to it. An assumption made by foresight
is either 1) constrained nodes will be placed in the in-
structions foresight checks, or 2) other instructions can be
found to hold them. This assumption can be invalidated.
If the constrained nodes cannot be placed in the instruc-



tion examined, foresight breaks down. For example, if
instead of the constrained nodes being scheduled into the
instructions foresight examined, nodes from another part
of the DDD are scheduled into those instructions (either
due to higher priorityor the successor nodes not being data
ready), the validity of the examination is obviated.

3 Lookahead

When the scheduler does not place the constrained nodes
in the instructions that foresight determined will produce a
valid schedule, work is lost. Why not perform the schedul-
ing of those nodes immediately? Within the framework of
list scheduling, the reason is simple: those nodes may not
be data ready. If the data ready criterion is removed, what
is the impact upon forming a valid schedule? None.

As noted before, the edges in a DDD only limit the
ordering in the final schedule. So long as this order is
preserved, the method of placing the nodes is irrelevant.
The checking done by the absolute timing algorithm as-
sures that nodes are placed such that their range is valid
in the final schedule. The value �(op) for a node, cal-
culated by the absolute timing routine, specifies the range
in the final schedule where an operation can be placed.
Because the foresight routine examines instructions in this
range for node placement, if foresight succeeds in find-
ing a valid schedule then that placement will be valid in
the final schedule. An alternative view is that not only
can a node be placed where foresight predicts, it should be
placed there. If it is not, scheduling can fail on a placement
it previously judged valid by foresight. A method termed
lookahead was developed to place operations instead of
just testing for the possibility of placement.

As a simple example of lookahead, consider the DDD
in Figure 1. When attempting to schedule node 2, node 3
becomes completely constrained. Foresight checks to see
if node 3 can be packed in the given instruction. If it can,
node 2 is placed and scheduling continues. Lookahead also
checks node 3, if it can be placed both node 2 and node 3
are scheduled, guaranteeing scheduling will not fail later
due to the inability to place node 3. When foresight or
lookahead fail, node 2 will not be placed in the original
instruction.

A decision must be made as to whether to pack only
the nodes with �(op) = (a; a) (equivalently �(e) =
(n; n)), or additionally to pack the nodes with �(op) =
(a; b)fa; b j a < b < 1g. In the first case, no choice
exists as to when to pack the nodes, they must be placed in
instruction�+n. The second case contains more flexibility
and requires the analysis of a tradeoff. Having lookahead
place them will result in a larger chance of generating a
valid schedule, similar to the improvement that foresight
has to plain list scheduling. However, if lookahead does
not immediately place the �(op) = (a; b)fa; b j a < b <

1g nodes, the scheduler may be able to produce a more
compact final sequence.

This tradeoff varies with the amount of flexibility in the
operation’s schedule range, in the current DDD, and in
the architecture, making it difficult to analyze the tradeoff
universally. For example, if the current DDD is wide
(displaying a lot of parallelism), constrained operations
might need to be placed immediately so that other parallel
operations do not consume all needed resources in�(op).
For machines with a large amount of available parallelism,
final placement should probably be deferred, allowing the
most amount of flexibility for the scheduler. Placement
decisions made between the time of finite constraint and
final packing are less likely to have a deleterious effect as
there is more “room” in each instruction for operations in
these types of architectures. A heuristic based on �(op) =
�(op)max � �(op)min could be tuned on a per-machine
basis to control the amount of lookahead.

3.1 With List Scheduling

Lookahead can be combined with LS to increase both the
chances of generating a valid schedule and the speed by
which the schedule is generated. There is no need to
change the definitions or implementations of any routines
within the list scheduler. The definition for data ready
remains the same. Any failure to place a restricted node
would result in a failure later in the scheduling process,
reducing the time spent on an infeasible schedule. Looka-
head also schedules nodes without having to topologically
order them. By doing so it removes the number of nodes
LS must deal with and thereby increases the speed.

It is important to understand that using lookahead with
list scheduling is still an avoidance technique, albeit a
more powerful one than foresight, itself more powerful
than nothing at all. There still is the possibility that valid
DDDs exist that cannot be scheduled due to poor choices
made by the node priority heuristics. This is an inher-
ent problem when only searching a small subspace of the
possible solutions.

3.2 Without List Scheduling

Because lookahead is a scheduling method unto itself, it
may be combined with other methods of sequencing. The
sequencing method simply provides the order of place-
ment of the operations and lookahead schedules them. An
example of combining lookahead and genetic algorithms
may be found in [Bea91]. A difficulty with relying on
lookahead to schedule is it is a relatively “weak” schedul-
ing method as it uses no heuristics to attempt to produce
valid schedules. The method of ordering the placement
must therefore be stronger. Certainly genetic algorithms is
one such method. A benefit of using lookahead is its speed.
For example, if a sink node in a DDD is scheduled first,



all others may be packed in one step by lookahead. This
occurs because the absolute timing algorithm constrains
all other nodes to a specific instruction. This assumes of
course that this constraining produces a valid schedule. If
not, iteration on the sequence may be necessary.

4 Conclusions

A new method of scheduling operations, lookahead, has
been presented. Lookahead may be used in conjunction
with other scheduling techniques such as list scheduling to
increase both the likelihood of generating correct sched-
ules and the speed the production of them. Lookahead
may also be used with other methods of sequencing to
form a complete scheduling system.

References

[AM88] V.H. Allan and R.A. Mueller. “Microcode
compaction with general synchronous tim-
ing”. IEEE Transactions on Software Engineer-
ing (Special Section on Microprogramming),
14(5):595–599, May 1988.

[Ash72] S. Ashour. Sequencing Theory. Springer-
Verlag, New York, 1972.

[Bak74] K. R. Baker. Introduction to Sequencing and
Scheduling. John Wiley and Sons, Inc., New
York, 1974.

[Bea91] S.J. Beaty. Instruction Scheduling Using Ge-
netic Algorithms. PhD thesis, Mechanical Engi-
neering Department, Colorado State University,
Fort Collins, Colorado, 1991.

[Bea92] S.J. Beaty. “Genetic algorithms for instruction
sequencing and scheduling”. In Proceedings
from the Workshop on Computer Architecture
Technology and Formalism for Computer Sci-
ence Research and Applications, Istituto per le
Ricerche sui Sistemi Informatici Paralleli via
P. Castellino 111, 80125 Napoli (Italy), March
1992.

[Cof76] E.G Coffman. Computer and Job-Shop
Scheduling Theory. Jon Wiley & Sons, New
York, 1976.

[Fis81] J.A. Fisher. “Trace scheduling: A technique for
global microcode compaction”. IEEE Trans-
actions on Computers, C-30(7):478–490, July
1981.

[Gas89] F. Gasperoni. “Compilation techniques for vliw
architectures”. Technical report, Courant Insti-
tute of Mathematical Sciences, New York Uni-
versity, March 1989.

[Nic85] Alexandru Nicolau. “Percolation scheduling: A
parallel compilation technique”. Technical re-
port, Department of Computer Science, Cornell
University, Ithaca, New York, May 1985.

[SDX87] B. Su, S. Ding, and J. Xia. “Microcode Com-
paction with Timing Constraints”. In Proceed-
ings of the 20th Microprogramming Workshop
(MICRO-20), Colorado Springs,CO, December
1987.

[WA89] P. Wijaya and V.H. Allan. “Incremental
foresighted local compaction”. In Proceed-
ings of the 22nd Microprogramming Workshop
(MICRO-22), Dublin, Ireland, August 1989.


