
List Scheduling: Alone, with Foresight, and with Lookahead

Steven J. Beaty
Cray Computer Corporation

1110 Bayfield Drive
Colorado Springs, Colorado, 80906

Voice: (719) 540-4129
FAX: (719) 540-4028
beaty@craycos.com

Abstract

List scheduling is a popular method of scheduling. It
has the benefits of being a relatively fast technique and
producing good results. It has weaknesses when dealing
with restricted timing. Two ancillary methods, foresight
and lookahead, have been developed to help mitigate this
weakness. This paper compares the effectiveness of list
scheduling alone, with foresight, and with lookahead. It
also shows the benefits of lookahead are accrued with no
time overhead.

1 Introduction

List scheduling (LS) is a general scheduling method
[Cof76] often used for both instruction scheduling (IS)
[Gas89] and processor scheduling (PS) [WSG92]. While
the techniques discussed in this paper are demonstrated
using IS, they extend to other forms of scheduling. LS
builds a ready set that contains all jobs that are not waiting
on the results of another job. The ready set is then heuris-
tically ordered, and the highest priority node is placed in
the final schedule. This process repeats until there are no
more nodes to place. In finding the ready set, LS performs
a topological sort of the directed acyclic graph (DAG),
thereby reducing the search space of the scheduling prob-
lem and increasing the chances of finding a valid schedule.
List scheduling has an implicit heuristic: scheduling nodes
with no predecessors produces valid orderings more often
than scheduling nodes with predecessors. As with all
heuristics, there are instances where this assumption does
not hold.

IS involves the placement of atomic machine opera-
tions into machine instructions. A data dependence DAG
(DDD) is often used to describe the necessary operations
and their order. The nodes in a DDD contain the opera-
tions, and the edges denote a partial order on the nodes.
This partial order is used to guarantee program dataflow

requirements. The edges of a DDD do not constrain the
order nodes are scheduled, only the order they appear in
the final schedule.

In [Veg82], Vegdahl uses both minimum and maxi-
mum times on the edges in a DDD to express com-
plicated timings between nodes. In the current paper,
�(e) = (min;max) will be used to denote the timing
associated with an edge in a DDD. This allows the descrip-
tion of a rich set of architectural features, and importantly,
allows the description of many different kinds of architec-
tures in one representation. Therefore, a scheduler using
this representation can be made generic and will work for
any number of different machines. For IS the follow-
ing are easily expressed with edges that have non-infinite
maximum timing:

� multi-stage pipes, either homogeneous or heteroge-
neous (e.g., a single pipe that does both multiplica-
tions and additions),

� transient resources such as the latent register desig-
nation on I860 [Int90] pipe operations, and

� other operations extending beyond one clock cycle
including delayed branches.

Resources that latch their values (such as general-purpose
registers) are modeled with the maximum time set to
an infinite value. For PS, semaphores and other inter-
process[or] communication can be modeled using non-
infinite maximum timings.

Using �(e), the range of instructions where each op-
eration can be placed can also be calculated. This range
will be termed �(op) = (min;max), meaning op can be
scheduled in any instruction �f� j min � � � maxg. This
is termed the absolute timing [AM88] for op.

The absolute timing calculation provides an easy
method to check for timing errors. For example, if a
node’s earliest time becomes later than its latest time, a
timing error is present in the current DDD. This checking



provides a means for detecting errors either in the order of
packing nodes from the DDD or in the DDD itself. This
checking has the same result as extended timings [SDX87]
have.

2 LS Enhancements

Because LS is based on an implicit heuristic and uses other
heuristics to order the jobs, it does not always generate
valid schedules. Often, the node-ordering heuristics must
be tuned for each particular architecture in order to im-
prove LS’s effectiveness. There are numerous difficulties
with this, including:

� the human must understand the impact of the heuris-
tics on the scheduling and understand how to tune
them to increase the likelihood of valid schedules,

� this effort takes time when retargeting to a new archi-
tecture,

� the heuristics that help guarantee validity may lead to
longer schedules unnecessarily and,

� all the heuristic tuning still does not guarantee valid-
ity.

An example follows to illustrate when LS can fail dur-
ing scheduling. Figure 1 is an actual DDD taken from
ROCKET [SB92], a highly-optimizing retargetable com-
piler, targeted for the IBM RS/6000 [IBM90]. The code
in the block’s nodes is displayed in Figure 2. This code is
the inner part of the following loop:

for (i = 0; i < 15; i++)
up[i] = down[i] = 1;

The assembly code for nodes 6, 7, 12, and 13 is empty.
These nodes are used to synchronize the store operations,
each of which takes two machine cycles. When schedul-
ing a DDD, one can either go top-down or bottom-up.
In architectures with delayed branches, ROCKET usually
goes bottom-up as the placement of the branch and sur-
rounding nodes is less restricted by previous placement
decisions. Note however that any situation found going in
one direction can be replicated in the other, so direction
in unimportant when considering the generation of valid
schedules. Using plain LS, ROCKET chooses nodes 13,
12, 7, 11, 6, 9, 8, 10, ... as the order of placement. A
difficulty arises when node 7 is placed in instruction 3 as
this constrains node 6 which constrains 11 and 5, which
constrains 10 and 8, which constrains 9. As node 5 now
must be placed in instruction 5, nodes 8 and 10 must be
either in instruction 4 or 5. Operations 5, 8, and 10 all
need the integer unit of the processor so all three cannot
fit into the two instructions.

1,∞

1,∞

1,∞

1,∞

1,∞

1,1 0,∞ 0,∞

0,∞1,1
1,∞

1,∞

1,∞

1,∞

1,1

1,1

1 2 4

3

5

6 8 10

7 9

11

12

13
Figure 1: A DDD where List Scheduling can fail



Node Code

1 sli r15,r13,2
2 cal r14,G down(30)
3 a r14,r15,r14
4 lil 31,1
5 st 31,0x0(r14)
6 # empty
7 # empty
8 cal r14,G up(30)
9 a r14,r15,r14
10 lil 31,1
11 st 31,0x0(r14)
12 # empty
13 # empty

Figure 2: Code for nodes

2.1 Foresight

A powerful method to increase the likelihood of generat-
ing a valid schedule called CAS (for Check And Schedule)
was introduced by Su [SDX87]. This method checks to
see if all successors of a node being considered for place-
ment in an instruction can be placed in their respective
instructions. If not, the operation is not placed in the cur-
rent target instruction. Allan et al. [ASWW92] extended
CAS to include all nodes in the graph with non-infinite
maximum absolute times and renamed it foresight. Fore-
sight checks to see whether, after placing an operation in
an instruction, all nodes that become constrained (having
�(op) = (a; b)fb j b < 1g) can be “easily” placed in
their respective instructions with respect to resource con-
flicts. If so, the operation under consideration is placed.
If not, the operation is moved to its next valid instruction
and foresight is repeated. If no valid instruction can be
found, the schedule generated thus far is deemed invalid.
Because a substantial amount of information is generated
during each pass of the foresight routine, Wijaya and Al-
lan [WA89] added the ability to keep information from one
pass to another, resulting in incremental foresight. This is
possible because the schedule ranges for operations have
temporal locality; i.e., once they are constrained, they re-
main constrained.

Note that foresight can correctly schedule the graph in
Figure 1. It decides not to place node 5 in instruction five,
instead finding that it must be placed in instruction seven
in order to create a valid schedule. While foresight greatly
increases the chances of generating valid schedules, it also
adds to the time required to perform the scheduling. In
[WA89], four schedules that failed during LS were sched-
uled using foresight. An average time increase of 65%
was noted for non-incremental foresight, and 26% for in-

cremental foresight.

2.2 Lookahead

As noted before, the edges in a DDD only limit the or-
dering in the final schedule, not the order the schedule is
created. So long as the partial order is preserved, the order
of placing the nodes is irrelevant. The value �(op) for a
node, calculated by the absolute timing routine, specifies
the range in the final schedule where an operation can be
placed. Because the foresight routine examines instruc-
tions in this range for node placement, if foresight succeeds
in finding a valid place for an operation, then that place-
ment will be valid in the final schedule. An alternative
view is that not only can a node be placed where fore-
sight predicts, it should be placed there. A method termed
lookahead [Bea92] was developed to place operations in-
stead of just testing for the possibility of placement. The
original motivation for lookahead was to increase both the
speed and the chances of creating valid schedules for a
stochastic scheduling method [Bea91]; it was then noticed
it could speed up generic LS as well. The remainder of
this paper will explore the implications of using lookahead
in LS and also discuss the performance of the algorithm.

Several minor changes to LS with lookahead need to be
noted. First, the definition of data ready does not change;
i.e., it is still those nodes in the graph that have no un-
scheduled predecessors. The computation of these nodes
might be different. It is no longer enough to remove nodes
from the data ready set when they are placed by LS; one
must also add and remove nodes based on those lookahead
places. Lookahead can remove any or all the nodes on the
data ready set; it can also make nodes further down in the
graph data ready by placing all their predecessors. The
scheduler must also ignore all the nodes that are placed by
lookahead during later stages of the scheduling process.
Both of these conditions are handled in the compiler by
the addition of a flag in the nodes that state whether or
not the node has been placed, either by LS or by looka-
head. It is also important for lookahead to check nodes
in a breadth-first manner so that no cycles develop during
the procedure.

Note that any failure to placing a restricted node with
lookahead would result in a failure later in the schedul-
ing process, thereby reducing the time spent scheduling
an infeasible schedule. Lookahead also schedules nodes
without having to topologicallyorder them which is a time
consuming process. By doing so it reduces the number of
nodes LS must deal with and thereby increases the speed
of scheduling.

Also note that naive lookahead places nodes in the final
schedule non-heuristically. That is, there is no order in
examining the constrained nodes based on node weights
built into lookahead. While this expedites the process,



lookahead could be extended to deal directly with differ-
ing priorities in the constrained node set so that the final
schedule length is optimized.

It is important to understand that using lookahead with
list scheduling is still an avoidance technique. There still
is the possibility that valid DDDs exist that cannot be
scheduled due to poor choices made by the node priority
heuristics. This is an inherent problem when only search-
ing a small subspace of the possible solutions.

3 Results

In order to compare LS, LS with foresight, and LS with
lookahead, some studies were made. For all, the target
architecture was the IBM RS/6000. This architecture was
chosen as representative of today’s level of superscalar
design. The programs, all written in C, were a mixture
of numerical analysis and general-purpose code: the 8q
solves the 8 queens problem, dhrystone [Wei88] is an in-
teger arithmetic benchmark, diff3 is a GNU 3-way file
difference program, livermore is the 24-loop Livermore
Loops [McM86], sort is a quicksort program, and whet-
stone [CB76] is a floating-point benchmark program.

In Figure 3, a table of scheduling failures for LS without
foresight or lookahead is shown. The numbers represent
the number of basic blocks that were either scheduled,
or that LS failed to properly schedule. The heuristics
that drove LS emphasized the number of successors, the
number of restricted successors, the height in the DDD, and
whether an operation is on the critical path for the block.
This combination of characteristics has been effective in
the past for generating good, valid schedules. The rate
of failure is rather high, pointing to the fact that these
heuristics are not enough, and that most other schedulers
must use ad hoc methods to guarantee validity. Once
foresight or lookahead was added, no failures to schedule
were found. This points to the power of these two methods.
As an additional test, all heuristics were removed from the
scheduler; again no failures to schedule were found. This
implies that performing foresight or lookahead is more
important for forming valid schedules than choosing good
heuristics. Good heuristics are important only when valid
schedules can be guaranteed and schedule length becomes
the overriding issue.

Figure 4 shows the running time in milliseconds of the
scheduling routines for each program. The times are for a
lightly-loaded Sun SS10/30. Timings for foresight are not
included in the figure as there was no need to implement
the more complicated incremental foresight algorithm in
ROCKET. ROCKET implements foresight by not plac-
ing the constrained nodes during lookahead. There is no
temporal locality associated with lookahead as it places
all constrained nodes in one pass and can therefore ignore

Name Succeeded Failed

8q 16 4
dhrystone 59 12

diff3 69 20
livermore 236 110

sort 34 9
whetstone 46 7

Figure 3: Failures of plain List Scheduling

Name LS Lookahead %

8q 912 1034 113.38
dhrystone 5326 4327 81.24

diff3 4642 4604 99.18
livermore 26613 32436 121.88

sort 2680 2150 80.22
whetstone 8353 9830 117.68

Average 102.26

Figure 4: Timing Comparison

those nodes completely in subsequent passes. Figure 5
contains the number of operations lookahead scheduled
and the total number of operations scheduled.

The speed of lookahead is heartening. It is, on the
average, 2% slower that plain LS and � 20% faster than
incremental foresight. It does require more analysis on the
DDD, but makes up for it by placing operations immedi-
ately when they become constrained, removing the number
of nodes LS must examine. In these programs, lookahead
placed an average of 54% of the nodes in the graph, with
a range from 48% (in 8q and sort) to 62% (in livermore.)
Lookahead is noticeably faster than incremental foresight.
This disparity is larger when more operations having re-
stricted timing are present in the target architecture, and
when programs use those operations.

Name Placed Total %

8q 80 165 48.48
dhrystone 401 739 54.26

diff3 375 788 47.59
livermore 3094 5000 61.88

sort 212 388 54.64
whetstone 817 1472 55.50

Average 53.73

Figure 5: Number of nodes lookahead placed



4 Conclusions

List scheduling is a good method for instruction schedul-
ing for most architectures, especially when combined with
methods that check for the placement of constrained op-
erations. Foresight and lookahead are two methods that
do this. Lookahead is able to greatly enhance list schedul-
ing’s ability to generate valid schedules, at essentially no
cost. As architectures are developed that contain more
available parallelism, with more constraints on the tim-
ing between operations, lookahead will become more and
more important.

References

[AM88] V.H. Allan and R.A. Mueller. “Microcode
compaction with general synchronous tim-
ing”. IEEE Transactions on Software Engi-
neering (Special Section on Microprogram-
ming), 14(5):595–599, May 1988.

[ASWW92] Vicki H. Allan, Bogong Su, Pantung Wijaya,
and Jian Wang. “Foresighted compaction un-
der timing constraints”. IEEE Transactions
on Computers, 41(9):1169–1172, September
1992.

[Bea91] S.J. Beaty. Instruction Scheduling Using
Genetic Algorithms. PhD thesis, Mechani-
cal Engineering Department, Colorado State
University, Fort Collins, Colorado, 1991.

[Bea92] Steven J. Beaty. “Lookahead scheduling”.
In Proceedings of the 25th Annual Inter-
national Symposium on Microarchitecture
(Micro-25), pages 256–259, Portland, Ore-
gon, December 1992.

[CB76] H.J. Curnow and Wichman B.A. “A syn-
thetic benchmark”. Computer, February
1976.

[Cof76] E.G Coffman. Computer and Job-Shop
Scheduling Theory. Jon Wiley & Sons, New
York, 1976.

[Gas89] F. Gasperoni. “Compilation techniques
for vliw architectures”. Technical report,
Courant Institute of Mathematical Sciences,
New York University, March 1989.

[IBM90] IBM. IBM Journal of Research and Devel-
opment, January 1990.

[Int90] Intel. i860 64-bit Microprocessor Program-
mer’s Reference Manual, 1990.

[McM86] F.H. McMahon. “The livermore fortran ker-
nels: A computer test of numerical perfor-
mance range”. Technical report, Lawrence
Livermore National Laboratory, December
1986.

[SB92] Philip H. Sweany and Steven J. Beaty.
“Rocket retargetable c compiler – an
overview”. Technical report, Archelon Inc.,
460 Forestlawn Road, Waterloo, Ontario,
Canada, N2K 2J6, 1992.

[SDX87] B. Su, S. Ding, and J. Xia. “Microcode com-
paction with timing constraints”. In Proceed-
ings of the 20th Microprogramming Work-
shop (MICRO-20), Colorado Springs, CO,
December 1987.

[Veg82] S.R. Vegdahl. Local Code Generation and
Compaction in Optimizing Microcode Com-
pilers. PhD thesis, Department of Computer
Science, Carnegie-Mellon University, Pitts-
burgh, PA, 1982.

[WA89] P. Wijaya and V.H. Allan. “Incremental fore-
sighted local compaction”. In Proceedings
of the 22nd Microprogramming Workshop
(MICRO-22), Dublin, Ireland, August 1989.

[Wei88] R.P. Weicker. “Dhrystone benchmark: Ra-
tionale for version 2 and measurement rules”.
SIGPLAN Notices, 23(8):49–62, August
1988.

[WSG92] Tia M. Watts, Mary Lou Soffa, and Rajiv
Gupta. “Techniques for integrating paral-
lelizing transformations and compiler based
scheduling methods”. In Supercomputing
’92 Proceedings, 1992.


