
Using Genetic Algorithms to Fine-Tune Instruction-Scheduling
Heuristics

Steven J. Beaty
Hewlett-Packard

3404 East Harmony Road
Fort Collins, Colorado, 80525

Phone: (970) 229-6480
beaty@fc.hp.com

Scott Colcord
Computer Science Department

Michigan Technological University
1400 Townsend Drive

Houghton MI 49931-1295
Phone: (906) 487-2209
sacolcor@cs.mtu.edu

Philip H. Sweany
Computer Science Department,

Michigan Technological University,
1400 Townsend Drive

Houghton MI 49931-1295
Phone: (906) 487-2209

sweany@cs.mtu.edu

Abstract

Instruction scheduling is an NP-complete problem that in-
volves finding the fastest sequence of machine instructions
from an abstract program representation. List scheduling
is a method often used for instruction scheduling when pro-
ducing code for instruction-level parallel processors and
can produce excellent results when appropriate heuristics
are chosen. We have investigated a method of experimen-
tally determining good scheduling heuristics and found that
it does indeed provide an easy way to tune instruction-
scheduling heuristics.

1 Introduction

Computer manufacturers are continually striving to make
faster computers with a combination of faster circuitry
and increasing the amount of simultaneous computation
(parallelism) in their architectures. One popular method
of increasing the degree of simultaneous computation is
instruction-level parallelism (ILP.) ILP computers exploit
the implicit parallelism that most programs contain [25].
They overlap the execution of operations1 that do not de-

1We define an operation as an atomic computational function, such as
an add, multiply, or memory access. An instruction is an abstract represen-
tation of the operations that can be issued during a single machine cycle.
An instruction might contain more than one operation, and the operation(s)

pend on one another. For example, a memory address can
be calculated while the value is computed to store there. To-
day, typical ILP processors have a memory address, an inte-
ger, and several floating point computational units. Future
processors will have more of each of these. While high-
performance architectures have included some ILP for at
least 25 years [20], recent computer designs have exploited
ILP to a larger degree. This trend shows no sign of revers-
ing. Indeed, as most of today’s multiprocessors are built
with individual nodes exhibiting significant ILP, multipro-
cessor systems need to make efficient use of ILP hardware.
Effective use of ILP hardware requires that the instruction
stream be ordered such that, whenever possible, multiple
low-level operations can be in execution simultaneously.
This ordering of machine operations to effectively use an
ILP architecture’s parallelism is typically called instruction
scheduling (IS.)

While instruction scheduling has been shown to be an
NP-complete problem [8] practitioners have long achieved
good results in polynomial time using list scheduling. List
scheduling (LS) derives its name from the fact that a list of
data-ready nodes (those with no unscheduled predecessors)
is maintained. The essence of LS is to heuristically deter-
mine which data-ready node to schedule next. Many LS im-
plementations use a weighted sum of key scheduling param-
eters to assign a priority to each data-ready node. This pri-

may not be performed in the order they are presented in the instruction.

ority is then used to order data-ready nodes. Allan [1] calls
such a method discriminating polynomial selection. She
suggest that the weights to be used for each term of the poly-
nomial be experimentally determined. It is our contention
that using a genetic algorithm to search the space of possi-
ble heuristic weights allows the weights to be easily tuned
to the specific needs of a scheduler/architecture pair.

Genetic algorithms (GAs) provide a robust method to
search an exponential search space. GAs rely on manipula-
tion of populations of strings analogous to biological opera-
tions on chromosomes. Genetic Algorithms have been used
successfully to perform the traveling salesperson problem
[29, 30], job shop [30], and flow shop [5, 21] optimization
problems. Encouraging results from these problems have
led us to postulate that GAs are an effective technique for op-
timizing the heuristic weights used in list scheduling’s dis-
criminating polynomial selection.

To evaluate our contention the GAs can be useful in ex-
perimentally determining the weights for LS’s discriminat-
ing polynomial selection, we have used the Rocket com-
piler [23, 2, 22]. Rocket is a highly-optimizing compiler re-
targetable for ILP architectures which uses descriminative
polynomial selection to order nodes in list scheduling’s data-
ready list.

The remainder of this paper first describes instruction
scheduling in Section 2 before discussing genetic algorithms
in Section 3. In Section 4 we turn our attention to our ex-
perimental method for using GAs to determine appropriate
heuristic weights for list scheduling and then discuss our ex-
perimental results in Section 5.

2 Instruction Scheduling

Instruction scheduling involves the placement of atomic ma-
chine operations into machine instructions. A DDD (data
dependence directed acyclic graph (DAG)) is often used to
describe the necessary operations and their order. The nodes
in a DDD contain the operations, and the arcs denote a par-
tial order on the nodes. This partial order is used to guaran-
tee program semantics.

2.1 Local Scheduling

List scheduling is a general scheduling method [6] often
used for both instruction scheduling (IS) [16] and proces-
sor scheduling (PS) [26]. LS builds a data-ready list that
contains all jobs that are not waiting on the results of an-
other job. This ready list is then heuristically ordered, and
the highest priority node is placed in the final schedule. This
process repeats until there are no more nodes to place. In us-
ing a data-ready list, LS performs a topological sort of the
DDD, thereby reducing the search space of the scheduling

problem and increasing the chances of finding a valid sched-
ule.

Of course to achieve efficient schedules, LS needs to
have useful heuristics to order data-ready nodes so that
the “most important” nodes are placed first. While re-
searchers have extolled the virtues of determining these
heuristics experimentally, most list schedulers seem to rely
on ad hoc techniques for choosing heuristics. Allan and
Mueller’s discriminative polynomial selection technique
provides a framework to combine several heuristics into
a single heuristic by assigning weights to each individual
heuristic term and summing the weighted terms. The key
then is to determine what weights yield the most efficient
schedules for a wide range of programs and architectures.

2.2 Global Scheduling

A considerable body of research has shown that exploita-
tion of significant amount of ILP requires global schedul-
ing techniques [24, 18, 25]. Several global scheduling tech-
niques make use of a local scheduler, however, to reorder
code for meta-blocks. A meta-block is a group of basic
blocks 2 that a global scheduler treats as a single block.
Trace scheduling [11, 9] is an example of such a global
scheduler. It attempts to optimize the most frequently-
executed paths of a control flow graph (CFG), possibly at
the expense of the less frequently-executed paths. Blocks
that are included in the frequently-executed paths are called
on-trace and those in the less frequently-traveled paths are
called off-trace. The basic idea is to use a local scheduling
algorithm to move operations between blocks in an on-trace
path to reduce the number of instructions executed within
that trace. Other global scheduling algorithms that simi-
larly rely on a local scheduler to reorder code in meta-blocks
include Bernstein’s Global Scheduling [3], Hwu’s Sentinel
Scheduling [17], and Sweany’s Dominator-Path Scheduling
[23]. Such use of a local scheduler on DDDs that contain
control flow complicates the choice of appropriate discrim-
inating polynomial weights and might well require differ-
ent weights for meta-block scheduling than for basic block
scheduling in order to achieve best results.

3 Genetic Algorithms

Genetic algorithms (GAs) manipulate populations of strings
that represent the parameterization of the optimization prob-
lem. The strings correspond to chromosomes or genotypes
in biological terms. There is a mapping from this repre-
sentation to the phenotype of the actual solution. GAs use
a form of selective pressure to encourage over-achieving

2A basic block is a straight-line sequence of instructions with single en-
trance and exit points which may contain a branch only as the last instruc-
tion in the block.

and discourage under-achieving strings in the population.
A string’s chances of reproducing correspond to its perfor-
mance in the current environment. This is an easily under-
standable method and it produces robust searches of diffi-
cult parameter spaces as demonstrated by Holland and oth-
ers [13, 7, 12].

Parameters are usually encoded into some form of binary
representation. This representation is then used for subse-
quent operations and evaluations. Consider the string:

1100101001110110001

This could represent an integer, a fixed or floating point real,
or any other relevant model of the parameters to be opti-
mized. Multiple parameters are simply appended together.
The initial population is usually generated by creating ran-
dom strings.

To perform recombination, the basis for most genetic
adaptation in nature, consider also the string:

xyyxxyxyxyxxxyyyxxy

(with x for 0 and y for 1) and some number of break points.
The genetic material from one string is then swapped be-
tween those break points with the corresponding material
from the other. An example with two break points is:

11001 \/ 01001110110 \/ 001
xyyxx /\ yxyxyxxxyyy /\ xxy

resulting in the two children:

11001yxyxyxxxyyy001
xyyxx01001110110xxy

Although a single break point is usually used in discussions
of GAs, two have been empirically shown by Booker [4] to
produce better results.

Another operation in the reformation of strings is muta-
tion. This is accomplished by randomly toggling some of
the bits in the offspring. This creates genetic diversity. It has
been found, in the general case, that mutation rates should be
kept low (less than 5%) for best exploitation and least dis-
ruption of the information present.

In standard GAs, all the strings in the population are re-
formed during a generation. Parents are crossed on the ba-
sis of their performance in comparison to the average fit-
ness of the population and mutation is allowed to occur on
the offspring. The selective pressure is provided by the fit-
ness measure; the differential need not be great to achieve
good results. Both selective pressure and initial population
sizes may be tuned to match the problem space. The type of
crossover and rate of mutation needs to be selected based on
the problem type.

To relate the encoding with the sampling of hyperspace,
consider a string of length three. With this we get the abil-
ity to represent a three-dimensional hypercube. The string

011 represents a corner of the hypercube. Edges have one
of the bits as a “don’t care”, i.e. 01*. Faces have two “don’t
cares”: i.e. 0**. The entire space can be expressed by a
complete “don’t care string”: i.e. ***. Strings that contain
a “don’t care” in some position are termed schemata. In gen-
eral, each binary encoding corresponds to one corner in the
hypercube and samples 2L � 1 different hyperplanes in the
search space where L is the length of the binary encoding.
This is the idea of “intrinsic parallelism” whereby one string
samples the productivity of many hyperplanes [13]. The
schema theory indicates that individual hyperplanes will in-
crease or decrease their representation in a population based
upon their relative fitness in that population when reproduc-
tion and recombination are applied.

The more diverse the original population, the more global
the search. The search does not avoid or escape from local
minima; it does a global search where local minima are ig-
nored in favor of higher-valued strings. If a local minima is
found to be best, it will tend to be competitive with all areas
of the space searched. It has been shown that if an area in hy-
perspace has above average performance and is sampled by
a schema in the population, that area’s representation will in-
crease within the population. It has been calculated that for
the processing ofN structures per generation approximately
N

3 schemata are sampled (intrinsic parallelism).

The ability to sustain search is dependent upon the ge-
netic diversity in the population. When a population lacks
diversity, new areas of the space are not examined. Muta-
tion can be used to drive the search into these unexamined
areas. However, a fixed level of mutation has been shown to
disrupt the search early and then fail to provide enough di-
versity in the later stages. Thus, adaptive mutation increases
the mutation rate based on the homogeneity of the popula-
tion and gives better performance.

The GENITOR GA program, developed by Whitley [27,
28], has some differences with “standard” GAs that appear
to increase performance. It does not replace the entire pop-
ulation with each generation. Instead it probabilistically
chooses two parents to reform into two offspring. Recombi-
nation and mutation occur, then one of the offspring is dis-
carded randomly. The remaining offspring is placed in the
population according to its fitness in relation to the rest of the
strings. The lowest-valued string is discarded. This keeps
high-valued strings within the population, directly accumu-
lating high-performance hyperplanes. It also bases the re-
productive opportunity upon rank with the population, not
upon a string’s fitness value in comparison with the aver-
age of the population, reducing the impact of selective pres-
sure fluctuation. It also reduces the importance of choosing
a proper evaluation function for fitness in that the difference
in the fitness function between two adjacent strings is irrel-
evant.

Target Local Global
URM 110 95

RS6000 119 95
I860 110 33

Table 1: Number of Data Dependence DAGs Used for Eval-
uation

4 Experimental Method

To evaluate our contention that GAs are a good way to tune
LS heuristics, we’ve taken the terms of the discriminating
polynomial used in the Rocket compiler and used a GA to
optimize the weights on those terms. Note that positive
terms in the polynomial denote that a heuristic is useful in
creating a efficacious schedule, while negative terms denote
a heuristic that hurts the final schedule. Section 4.1 lists the
25 terms available in Rocket’s list scheduler.

In addition to experimentally finding good heuristic
weights for LS, we wanted to compare heuristic weights
for differing machines and scheduling methods to determine
the weights useful for different scheduling contexts. As
Rocket is a retargetable compiler, we ran GAs for each of
three different architectures: the IBM RISC RS6000 [14],
a computer based on an Intel i860 chip [15], and a hypo-
thetical ILP machine called the Unlimited Resource Ma-
chine (URM) developed at Michigan Technological Univer-
sity [19]. We made use of both Rocket’s local and global in-
struction scheduling (dominator-path scheduling.) This al-
lowed us to determine heuristic weights for both local and
global scheduling and compare the two.

In our GA, we chose a population size of 1000 192-bit
strings and ran for 2500 generations. We treated each group
of 8 bits within the 192-bit strings as an integer weight (-
128 to 127) and mapped the bit strings directly to an array
of 24 term weights used in Rocket. To evaluate strings, we
instruction scheduled a representative number of data de-
pendence DAGs for each architecture tested. Table 1 shows
the number of DDDs evaluated for each combination of ar-
chitecture and scheduling method. To build the test suites
of DDDs, examples were taken from a mixture of scientific
and system code. Of course scheduling DDDs to measure
the fitness of strings generated by Genitor required a consid-
erable time. Typically, each run required two to three days
to complete on a Sparc10 workstation. It is our contention,
however, that investing two or three days of computer time
to fine tune a list scheduling heuristic to a particular com-
bination of architecture and scheduling method is time well
spent.

4.1 Discriminating Polynomial Terms

We have investigated many heuristics in attempts to achieve
valid schedules for a variety of architectures. Typically, con-
siderable testing goes into choosing heuristics for a particu-
lar target, but some heuristics, such as critical path are al-
most always used.

Here is a list of discriminating polynomial terms we have
found useful for some architecture we have targeted:

1. height – the maximum number of arcs from this node
to any sink node.

2. on_critical_path – the operation is on the
longest path in the DDD.

3. on_schedule_critical_path. – the operation
is on the longest path in the DDD when operation tim-
ings are considered.

4. lexical_order – ordering of nodes from source.
Fisher [10] suggests that program lexical order is not
a good metric for list scheduling priority, but it can be
used for non-ILP architectures to produce a default or-
dering.

5. branch_node– the node is a branch node, especially
useful in the presence of delayed, restricted branching
mechanisms. This has been used to increase the chance
a branch node will be placed before other operations.

6. resource_usage_of_this_type – the amount
of use of this node’s resource in this DDD. The more
contention for resources, the earlier a node should be
placed in order to free the resource as soon as possible
for reuse.

7. used_and_defined_resources
– as above, nodes that use more resources than others
should be scheduled so they do not interfere with others
needing those resources.

8. least_recently_used_resource – a method
of forming round-robin reference to resources.

9. field_usage_of_this_type – as with
resources, try to minimize instruction field conflicts.

10. fields_used.

11. least_recently_used_field.

12. successors – the more successors a node has, the
earlier it should be scheduled, allowing its successors
to become data ready as early as possible. This exposes
more parallelism to the scheduler.

13. restricted_successors – the more restricted
successors 3. a node has, the earlier it should be sched-
uled so timing is more flexible within the DDD.

14. total_restricted_successors – total of the
timings for all restricted successors

15. shortest_restricted_successor

16. distance_from_successors – a measure of
how restricted the edges to the successors are.

17. predecessors – the more predecessors a node has,
the later it should be scheduled, allowing its predeces-
sors to become data ready as early as possible. This ex-
poses more parallelism to the scheduler.

18. restricted_predecessors –
the more restricted predecessors a node has, the later it
should be scheduled so timing is more flexible within
the DDD.

19. total_restricted_predecessors – total of
all restricted predecessors.

20. shortest_restricted_predecessor

21. distance_from_predecessors – a measure of
how restricted the edges to the predecessors are.

22. schedule_spread – the number of instructions in
which an operation can be placed. The greater the
spread, the more flexibility for placement.

23. average_restricted_successor_gap – the
average of �(e) for all the restricted successors.

24. average_restricted_predecessor_gap –
the average of �(e) for all the restricted successors.

5 Experimental Results

The data obtained from GA searches for useful heuristic
weights demonstrate several intesting features. For exam-
ple, we found that each of the six populations was able to
find strings which evaluated about 5% better than the best
of the randomly generated strings in the initial population.
This suggests that tuning list scheduling’s heuristics may
have a limited effect on the schedules generated.

We also found that the heuristic weights for well-
performing strings did indeed differ considerably based
upon the architecture compiled for and the scheduling
method used. Using both local and global scheduling on

3a successor operation is restricted if there is a maximum time the result
of the dependent operation is valid

each of three machines (URM, RS6000, i860), six popula-
tions of strings were generated to choose heuristic weights.
Table 2 shows the means and standard deviations of the
weights obtained from each of the 100 top performers from
the three GA pools for local scheduling. Table 3 shows the
analogous data for global scheduling. In each case, individ-
ual heuristics are identified by same number in which they
are listed in Section 4.1. By looking at the top 100 strings
from each pool after 2500 generations we can begin to deter-
mine how important each of the 24 heuristic factors is to cre-
ating efficient schedules. A large average weight, combined
with a relatively small standard deviation suggests that an
individual heuristic term must be important as it was in-
cluded in most of the high-performance bit strings.

Tables 2 and 3 show several interesting trends. These
data can be used to test the hypothesis (using confidence
analysis) that the “optimal” weight is different than zero for
any heuristic factor. When we do this we discover that, at
the 60% confidence level, all of the 24 heuristics are dif-
ferent from zero for at least one combination of schedul-
ing method and architecture. This suggests that each heuris-
tic is indeed useful in ordering data-ready nodes for some
scheduling context. However, only one heuristic, lexi-
cal order (number 4), was found to be significantly differ-
ent from zero at the 75% confidence level for all six com-
binations of architecture and scheduling method. This is
certainly counter-intuitive as popular wisdom suggests that
critical path heuristics are the most important and that lexi-
cal order is relatively unimportant. It is curious, however,
that the weight for lexical order was positive in two pop-
ulations (both local scheduling) and negative for the other
four. Both critical path heuristics (2 and 3) in contrast, were
positive in all populations, though only significantly so (at
the 75% level) for five out of six populations for weighted
critical path and four out of six for unweighted critical
path. Note also that for local scheduling, unweighted crit-
ical path is at least as important in determining good sched-
ules as weighted critical path, while for global scheduling
the weighted critical path seemed roughly twice as impor-
tant a heuristic, judging from the observed weights of the
high-performance strings.

6 Conclusions

We have successfully used genetic algorithms (GAs) to de-
termine appropriate weights for the heuristic terms used in
list scheduling’s discriminating polynomial. We have found
that GAs allow us to tune our list scheduler to a particular ar-
chitecture and scheduling method in a short amount of time.

It should not be surprising that our GA experiments
showed that effective discriminating polynomial weights
differed considerably from architecture to architecture as
well as when moving from local to global scheduling. This

Heuristic URM RS6000 I860
Number Weight S.D. Weight S.D. Weight S.D.

1 -36.5 22.5 -56.4 23.7 -44.0 34.7
2 93.6 24.6 58.3 44.6 70.0 58.1
3 108.0 15.7 23.9 49.7 60.9 58.2
4 16.6 11.7 71.9 22.2 -11.5 5.95
5 -24.9 60.3 -6.73 49.5 0.38 75.1
6 -5.21 62.3 24.2 61.4 -1.92 64.5
7 -20.7 78.1 -16.1 72.2 -0.05 82.7
8 -23.3 73.5 -3.08 91.8 -8.24 67.8
9 -8.64 66.6 -24.2 84.5 17.7 78.1

10 -40.0 71.5 -1.87 71.8 -19.0 88.4
11 -1.25 81.0 17.6 55.8 3.75 55.1
12 23.1 26.1 104.9 18.3 60.9 26.0
13 -53.3 67.6 31.0 72.6 69.6 52.0
14 -32.1 70.3 37.1 60.5 72.2 39.5
15 -23.8 71.0 -27.2 72.8 9.6 71.0
16 -18.6 49.0 0.99 76.5 -0.24 79.0
17 4.82 25.1 64.3 53.6 51.5 50.8
18 3.80 65.3 19.9 75.8 22.7 74.4
19 15.7 89.2 32.0 66.6 0.72 78.7
20 19.7 69.4 1.52 86.7 -16.6 75.6
22 5.96 40.9 -11.7 67.9 8.68 63.8
22 6.88 71.5 22.3 69.3 4.40 65.5
23 -29.2 71.4 32.5 60.7 68.9 47.1
24 -11.4 84.5 28.4 66.3 -7.29 70.7

Table 2: Heuristic Weights for Local Scheduling

Heuristic URM RS6000 I860
Number Weight S.D. Weight S.D. Weight S.D.

1 -2.46 36.3 -65.1 36.7 -34.4 66.8
2 39.4 48.7 38.4 59.5 23.4 65.6
3 72.2 32.8 60.1 54.3 78.7 53.8
4 -17.5 7.42 -6.83 4.16 -19.1 23.3
5 23.0 78.8 16.6 74.7 -1.07 72.9
6 -16.9 81.6 -4.93 71.4 -7.20 84.7
7 -4.16 77.7 31.4 77.1 -6.19 85.7
8 -12.1 72.4 -28.9 77.3 2.08 67.1
9 11.1 83.6 -3.13 72.6 -11.2 64.3

10 -15.8 65.7 -14.9 76.8 -18.4 83.3
11 -8.11 84.6 -5.00 75.9 -2.1 60.4
12 -23.6 44.0 15.0 69.7 31.0 48.0
13 74.7 47.4 68.7 52.7 60.5 51.2
14 63.1 62.6 34.8 65.0 64.6 56.1
15 -11.0 69.9 30.6 74.8 -0.95 73.6
16 -8.66 63.3 -6.07 71.5 14.2 59.8
17 -40.8 63.3 -46.5 58.7 36.4 52.1
18 -29.4 82.1 -8.05 82.5 0.25 63.0
19 1.10 71.6 -4.63 74.3 9.24 72.5
20 -0.60 64.1 -9.93 80.5 19.4 64.1
22 -11.9 72.3 -23.0 61.2 -4.94 59.1
22 -5.85 64.7 0.24 72.5 17.8 73.5
23 74.2 39.7 56.7 63.4 67.5 42.5
24 -5.11 79.5 6.81 71.2 2.62 76.3

Table 3: Heuristic Weights for Global Scheduling

suggests that, as hypothesized, tuning heuristics to a partic-
ular scheduling context is an important consideration when
building an instruction scheduler. Our study of 24 different
heuristic terms indicated that all were useful in building a list
scheduler for at least one of the six combinations of schedul-
ing method and architecture tested.

A number of different areas for future work is indicated
from this effort. The effect that different architectures play
in chosing a set of heuristics could bear much fruit. Study-
ing the effect of the application set used to derive the heuris-
tics would be interesting. Some of the traditional ideas about
which heuristics are important are brought into question, and
these questions need addressing. The differences between
global and local heuristics, while not surprising, could lead
to other interesting research areas.

Acknowledgments

We would like to thank the National Science Foundation for
helping to fund this work through Grant CRR-9308348.

References

[1] V. H. Allan. A Critical Analysis of the Global Optimiza-
tion Problem for Horizontal Microcode. PhD thesis, Com-
puter Science Department, Colorado State University, Fort
Collins, Colorado, 1986.

[2] S. J. Beaty. Instruction Scheduling Using Genetic Algo-
rithms. PhD thesis, Mechanical Engineering Department,
Colorado State University, Fort Collins, Colorado, 1991.

[3] D. Bernstein and M. Rodeh. Global instruction schedul-
ing for superscalar machines. In Conference on Program-
ming Language Design and Implementation, pages 241–255,
Toronto, June 1991. SIGPLAN ’91.

[4] L. Booker. Improving search in genetic algorithms. In
L. Davis, editor, Genetic Algorithms and Simulated Anneal-
ing, pages 61–73. Morgan Kaufmann, 1987.

[5] G. A. Cleveland and S. F. Smith. Using genetic algorithms
to schedule flow shop releases. In Proceedings of the Third
International Conference on Genetic Algorithms. Morgan
Kaufmann, 1989.

[6] E. G. Coffman. Computer and Job-Shop Scheduling Theory.
Jon Wiley & Sons, New York, 1976.

[7] K. DeJong. An Analysis of Reproduction and Crossover in
a Binary - coded Genetic Algorithm. PhD thesis, University
of Michigan, Ann Arbor, 1986.

[8] D. J. DeWitt. A Machine-Independent Approach to the Pro-
duction of Optimal Horizontal Microcode. PhD thesis, De-
partment of Computer and Communication Sciences, Uni-
versity of Michigan, Ann Arbor, MI, 1976.

[9] J. R. Ellis. Bulldog: A Compiler for VLIW Architectures. The
MIT Press, Cambridge, MA, 1986. PhD thesis, Yale, 1984.

[10] J. A. Fisher. The Optimization of Horizontal Microcode
Within and Beyond Basic Blocks: An Application of Pro-
cessor Scheduling. PhD thesis, Courant Institute of Mathe-
matical Sciences, New York University, New York, NY, Oct.
1979.

[11] J. A. Fisher. Trace scheduling: A technique for global mi-
crocode compaction. IEEE Transactions on Computers, C-
30(7):478–490, July 1981.

[12] D. Goldberg. Genetic Algorithms in Search, Optimization,
and Machine Learning. Addison-Wesley, 1989.

[13] J. Holland. Adaptation in Natural and Artificial Systems.
University of Michigan Press, 1975.

[14] IBM. IBM Journal of Research and Development, Jan. 1990.
[15] Intel. i860 64-bit Microprocessor Programmer’s Reference

Manual, 1990.
[16] D. Landskov, S. Davidson, B. D. Shriver, and P. W. Mallett.

Local microcode compaction techniques. ACM Computing
Surveys, 12(3):261–294, Sept. 1980.

[17] S. A. Mahlke, W. Y. Chen, W. mei W. Hwu, B. R. rishna Rau,
and M. S. Schlansker. Sentinel scheduling for VLIW and su-
perscalar processors. In asplos5, volume 27, pages 238–247,
Boston, MA, Oct. 1992.

[18] A. Nicolau and J. A. Fisher. Measuring the parallelism avail-
able for very long instruction word A rchitectures. IEEE
Transactions on Computers, 33(11):968–976, Nov. 1984.

[19] D. A. Poplawski. The unlimited resource machine (URM).
Technical Report CS-95-01, Department of Computer Sci-
ence, Michigan Technological Univers ity, Houghton, Jan.
1995.

[20] B. R. Rau and J. A. Fisher. Instruction-Level Parallel Pro-
cessing: History, Overview, and Perspective. The Journal of
Supercomputing, 7:9–50, 1993.

[21] T. Starkweather, S. McDaniel, K. Mathias, C. Whitley, and
D. Whitley. A comparison of genetic sequencing operators.
In Proceedings of the Fifth International Conference on Ge-
netic Algorithms. Morgan Kaufmann, 1991.

[22] P. Sweany and S. Beaty. Post-compaction register assign-
ment in a retargetable compiler. In Proceedings of the 23th
Microprogramming Workshop (MICRO-23), Orlando, FL,
Nov. 1990.

[23] P. H. Sweany and S. J. Beaty. Dominator-path scheduling —
A global scheduling method. In Proceedings of the 25th An-
nual International Symposium on Microarchitecture (Micro-
25), pages 260–263, Portland, Oregon, Dec. 1992.

[24] G. S. Tjaden and M. J. Flynn. Detection and parallel exe-
cution of independent instructions. IEEE Transactions on
Computers, C-19(10):889–895, Oct. 1970.

[25] D. W. Wall. Limits of instruction-level parallelism. In Pro-
ceedings of the Forth Internation Conference on Architec-
tural Support for Programming Languages and Operating
Systems, Santa Clara, California, Apr. 1991.

[26] T. M. Watts, M. L. Soffa, and R. Gupta. Techniques for in-
tegrating parallelizing transformations and compiler based
scheduling methods. In Supercomputing ’92 Proceedings,
1992.

[27] D. Whitley. The GENITOR algorithm and selective pres-
sure: Why rank - based allocation of reproductive trials is
best. In Proceeding of the 3rd International Conference on
Genetic Algorithms. Morgan Kaufmann, 1989.

[28] D. Whitley and T. Starkweather. sENITOR II: A distributed
genitic algorithm. In Press: Journal of Theoretical and Ex-
perimental Artificial Intelligence, 1990.

[29] D. Whitley, T. Starkweather, and D. Fuquay. Schedul-
ing problems and traveling salesmen: The genetic edge re-
combination operator. In Proceedings of the Third Inter-
national Conference on Genetic Algorithms. Morgan Kauf-
mann, 1989.

[30] D. Whitley, T. Starkweather, and D. Shaner. The traveling
salesman and sequence scheduling quality solution using ge-
netic edge recombination. In L. Davis, editor, The Genetic
Algorithms Handbook. 1990.

