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Abstract

Most nodes of modern massively-parallel computing sys-
tems contain processors that use instruction-level paral-
lelism to increase the speed of the individual processor. In
order to achieve the greatest speedup possible, the compiler
must perform instruction scheduling so that instructions are
presented to the processor in the order that is most efficient.
Instruction scheduling is a compiler problem that, due to
its NP-complete nature, requires heuristic solutions for any
significant programs.

One promising stochastic search technique that shows
promise in the realm of instruction scheduling is the use
of simulated annealing (SA.) Simulated annealing can be
thought of as modified hill-climbing that includes “occa-
sional perturbations” in the search space under investiga-
tion to avoid the problem of getting stuck in a local minimum
or maximum. The process gets its name from the fact that
it closely follows the physical process of annealing which is
gradual cooling of a liquid until it solidifies.

We implemented an SA-driven instruction scheduler in
our compiler for instruction-level parallel (ILP) architec-
tures. This allows us to compare our SA instruction sched-
uler with a more traditional list scheduling approach. Ex-
perimental comparison of 114 data dependence graphs ef-
ficiency improvement of more than 6% when using an SA-
driven scheduler over results obtainable with the standard
list scheduling technique.

1. Introduction

Most modern massively-parallel computing systems
(MPCS) contain computers that support instruction-level
parallelism (ILP) in each of the nodes of the connected sys-

tem. Such systems are then used to solve large problems,
problems that can require large amount of execution time.
For such applications, significant compile time can be tol-
erated in order to achieve maximal execution efficiency.
This flexibility in compile time allows the opportunity to
investigate alternatives that would be too computationally
expensive in a compiler for most other applications. This
paper investigates one technique to allow tradeoffs between
compile-time and run-time efficiency for massively-parallel
systems with hardware support for instruction-level paral-
lelism.

Computer manufacturers are continually striving to make
faster computers by a combination of faster circuitry and
increasing the amount of simultaneous computation (paral-
lelism) in their architectures. One popular method of in-
creasing the degree of simultaneous computation is inclu-
sion of ILP. ILP computers exploit the implicit parallelism
that most programs contain [13]. They overlap the execu-
tion of operations1 that do not depend on one another. For
example, a memory address can be evaluated while the value
to store there is computed. Today, typical ILP processors
have multiple memory address, integer, and floating point
computational units. Future processors, will have more of
each of these.

While high-performance architectures have included
some ILP for at least 25 years [13], recent computer designs
have exploited ILP to a larger degree. This trend shows no
sign of reversing. Effective use of ILP hardware requires
that the instruction stream be ordered such that, whenever
possible, multiple low-level operations can be in execution

1We define an operation as an atomic computational function, such
as an add, multiply, or memory access. An instruction is an abstract
representation of the operations that can be issued during a single machine
cycle. An instruction might contain more than one operation, and the
operation(s) may or may not be performed in the order they are presented
in the instruction.



simultaneously. This ordering of machine operations to ef-
fectively use an ILP architecture’s parallelism is typically
called instruction scheduling (IS.)

Instruction scheduling is a compiler problem that, due to
its NP-complete nature [7], requires heuristic solutions for
any significant programs. List scheduling (LS) [6] is a gen-
eral scheduling method often used for instruction schedul-
ing. It takes its name from the fact that, during scheduling,
a priority list of available tasks is consulted to see which
task should be scheduled next. While list scheduling can-
not guarantee optimal schedules, it provides generally ade-
quate instruction scheduling while requiring relatively little
(O(N 2)) compile time. As such, list scheduling is a pop-
ular scheduling method in compilers for ILP architectures.
While compilation for even embedded systems applications
cannot tolerate the exponential time required to guarantee
an optimal schedule, such compilers may be able to accept
the extra compile time needed to perform a more thorough
search of the possible scheduling space than is provided by
standard list scheduling.

[4] has shown that stochastic search methods can be
adapted to instruction scheduling allowing improved sched-
ules at the expense of compile time. Stochastic search tech-
niques are those that use a controlled amount of randomness
in order to broaden the area of the solution space searched,
with the hope of finding higher-quality results in those re-
gions. One stochastic search technique that shows promise
in the realm of instruction scheduling is the use of simulated
annealing. Simulated annealing (SA) can be thought of as
modified hill-climbing that includes “occasional perturba-
tions” in the search space under investigation to avoid the
problem of getting stuck in a local minimum or maximum.
The process gets its name from the fact that it closely follows
the physical process of annealing which is gradual cooling
of a liquid until it solidifies.

We have implemented an SA-driven instruction sched-
uler in our compiler for ILP architectures. This allows us
to compare our SA instruction scheduler with a more tradi-
tional list scheduling approach. We have found that using
simulated annealing to help drive a standard list scheduler
can lead to significant improvements in the obtained sched-
ules at the cost of considerable compilation time necessary
for simulated annealing.

2. List Scheduling

Sequencing is defined by Ashour [1] as being “concerned
with the arrangements and permutations in which a set of
jobs under consideration are performed on all machines.”
That is, what is the order the jobs will be performed? What
is the priority of each job? Sequencing thereby ranks the
jobs to be executed. Baker [2] states “scheduling is the
allocation of resources over time to perform a collection of

tasks.” Scheduling usually places already-prioritized jobs
into slots, often accounting for conflicts in resource usage.
The combined sequencing/scheduling (order/place) process
produces the desired outcome: jobs placed on machines
capable of performing the desired tasks in the correct order
at a correct time.

Instruction scheduling (IS) involves the placement of
atomic machine operations into machine instructions. A
data dependence DAG (DDD) is often used to describe the
necessary operations and their order. The nodes in a DDD
contain the operations, and the edges denote a partial order
on the nodes. Typically, DDD edges are weighted so that the
edge (Oi ! Oj , min) indicates that node Oj must follow
node Oi by at least min instructions in the final schedule.
This partial order is used to guarantee program dataflow re-
quirements. The edges of a DDD do not constrain the order
nodes are placed in the schedule, only the order they appear
in the final schedule.

List scheduling (LS) [6] is a general scheduling method
often used for instruction scheduling [12]. In general list
scheduling, an ordered list of tasks, called a priority list,
is constructed. The priority list takes its name from the
fact that tasks are ranked such that those having the highest
priority will be chosen first. When a machine (or functional
unit in the context of instruction scheduling) becomes free,
the priority list is scanned for the first unexecuted task ready
to be executed. A task is ready when all its predecessors
have been executed. If not enough resources are available,
the priority list is scanned further until a task is found that
can be executed or, if no such task can be found, the machine
remains idle until a task on the list is ready.

When using list scheduling in an instruction scheduler,
the inputs are typically

1. A priority list of operations that are data- and timing-
ready (i.e.: all predecessor operations have completed.)
This priority list is typically called a data-ready set
(DRS) in the context of instruction scheduling.

2. The DDD.

3. Resource limitations of the target architecture.

and the output is a list of instructions, where each instruction
is a set of operations. This list is initially empty; when
all the operations are placed in instructions, the schedule
is final, and scheduling is complete. An instruction holds
all the operations that start during that machine cycle; the
operations may end in different cycles.

Instructions are numbered 1 through k where k is the
length of the schedule. Let IOi

represent the instruction
number in whichOi is scheduled. A valid schedule requires
that for each arc (Oi ! Oj , min), the resulting schedule
ensures min � IOj

� IOi
. In addition, there must be



sufficient resources to execute all operations that overlap in
time.

By adding each DDD node, N, to the DRS only after all of
N’s predecessors have been scheduled, we reduce the search
space of the scheduling problem and increase the chances of
finding a valid schedule. This restriction forms an implicit
heuristic for list scheduling: placing nodes with no prede-
cessors more often results in valid total orderings (from the
partial ordering represented by the DDD) than does schedul-
ing nodes with as-yet unscheduled predecessors. Note that
placing nodes only after all predecessor nodes have been
placed is, however, only a heuristic. We might well be
able to achieve shorter schedules if “important” nodes could
be placed in the schedule even before some predecessor
node(s).

List schedulers are often categorized as being one of
two types: operation-driven or instruction-driven. In
instruction-drivenscheduling, instructions are considered in
order and each instruction is filled as much as possible be-
fore moving on to consider the next instruction. Instruction-
driven scheduling fills one instruction at a time such that all
operations in instruction Ij are placed before any operation is
placed in instruction Ij+1. In the instruction-driven model,
operations are only added to the priority list once they are
timing-ready for scheduling. Thus, if the DDD contains an
arc, (X ! Y , 3) and X is scheduled in instruction n, then
Y cannot be added to the priority list until instruction n+3
is being considered. In contrast, operation-driven schedul-
ing does not “fill” an instruction at a time, but rather places
each DDD node at an “appropriate” location in the schedule
whenever that DDD node is to be placed. Operation-driven
scheduling makes use of the relative timing between nodes
(represented by DDD edges) and the schedule location of
whatever nodes have been scheduled to date in order to find
an appropriate spot for the DDD node being placed.

In fact, it is the use of operation-driven scheduling that
makes possible the simulated-annealing driven scheduling
described in the next section.

3. List Scheduling with Simulated Annealing

Instruction scheduling may be viewed as a search-space
problem involvingan incompleten-dimensional hypercube,
where n is the number of operations (DDD nodes) to be
scheduled. Each operation might be executed at a variety
of locations in the code, and each dimension represents the
range of instructions in which that operation might be placed.
Instruction scheduling is complicated by both the inherent
dataflow ordering between operations in the DDD and the
complexities of the target architecture. The architecture
may have complex timings between operations, a number of
different field encodings, and a limited number of resources
that can perform any given operation.

Most existing instruction schedulers rely on heuristics to
remove from examination those parts of the search space that
appear fruitless. Identifying appropriate heuristics can be
difficult, however, when attempting to arrive at an efficient
yet efficacious scheduler. This difficulty is compounded by
several factors.

� The heuristics generally must be regenerated for each
machine targeted.

� The heuristics themselves are not in a form easily un-
derstood by humans, thus making it difficult for humans
to correctly choose and modify a scheduler’s behavior.

� It is possible that the heuristics do not address an issue
that has great influence on the final code.

� Heuristics that work well for one ordering of operations
may not work well for another.

� Heuristics are also picked before the execution of
the instruction scheduling routine and remain static
throughout. They have no ability to learn from previ-
ous runs or to take advantage of anomalous situations
existing in specific situations that lead to shorter code
sequences.

Considering these difficulties in generating schedulers,
several researchers have proposed using stochastic methods
to solve the scheduling problem. In [11], the Metropolis
Monte Carlo technique was used. [9] used a Boltzmann
Machine approach to good effect. In [3, 4], Genetic Algo-
rithms were shown to produce good results, and in [5] they
were compared with Tabu search.

In order for stochastic search techniques to work on a
given problem, two things are usually needed: an ability
to express the problem as a set of values that are to be
optimized, and a way to compare solutions accurately to
delineate fruitful areas of search. In most problems, the set
of values are used to denote independent variables in the
equation being optimized.

For instruction scheduling, we need to map the problem
to a set of values that can be permuted to produce a valid
solution. In classic list scheduling, the sequence the data-
ready list controls the overall efficacy of the schedule. The
straightforward mapping then, is to have the optimization
method produce values with its internal method, and use
these values to sequence of the data-ready list for the sched-
uler. That is, instead of having the heuristics choose the
sequence of operations to schedule in classic list schedul-
ing, have the stochastic search technique pick the sequence.

This is where operation-driven scheduling comes into
play. Because operation-driven scheduling allows (poten-
tially) valid schedules to be generated by placing DDD
nodes into the schedule in an arbitrary order, we can use



the stochastic technique of choice generate “random” order-
ings (permutations) of the DDD nodes for any DDD to be
scheduled. We must then have some mechanism to evaluate
a given sequence of DDD nodes, thus ranking the fitness of
different possible permutations of nodes. Choosing a useful
evaluation function, i.e., one that represents a sequence’s
relative worth without inordinate bias, is important. For
instruction scheduling, a minimization problem, the result
of the evaluation function must reflect the length of the fi-
nal schedule that given sequence generates. A difficulty
encountered is that not all sequences will produce valid fi-
nal schedules. Failures occur when a conflict arises (e.g.
timing, resource, or field) due to the order of scheduling
the operations. It is not surprising that certain orders fail
to produce valid schedules for a given DDD; the impact of
ordering on the production of valid schedules is emphasized
in all previous instruction scheduling methods.

After consideration, the evaluation function we selected
performs a “worst-case” evaluation when a node-ordering
fails to produce a valid schedule. This evaluation is pro-
duced by assuming all unscheduled operations have no par-
allelism available in them, necessitating their serial place-
ment. The calculation of the evaluation function is then triv-
ial; it is the number of instructions that contain operations so
far, plus the length of the path containing the serial ordering
of all the unscheduled operations. This produces a good es-
timate in the event of schedule failure; those schedules with
more operations placed will receive a better evaluation. It
also produces an exact evaluation in the presence of a valid
schedule.

Armed with an evaluation function we can turn our at-
tention to stochastically generating different DDD nodes
orderings. For this study, we used the ASA code provided
by Lester Ingber [10], an implementation of adaptive simu-
lated annealing. The word adaptive refers to the ability of
the algorithm to modify its behavior on the fly. It essentially
“decides” the number of iterations spent at a certain tem-
perature level, how to reduce the temperature and alter the
random selection of the neighbors.

In the current implementation, we use ASA to find the
permutation� of of the n jobs that produces a schedule with
minimum number of instructions when this permutation is
used as the ordering for the list scheduling heuristic.

4. Experimental Evaluation

In order to evaluate the possible usefulness of instruc-
tion scheduling based upon simulated annealing, we com-
pared, for a test suite of 114 data dependence DAGs
(DDDs), the scheduling results generated by our standard
list-scheduling implementation to those obtained using our
simulated-annealing driven scheduler. Overall, we found
that the simulated-annealing driven scheduler generated bet-

Name Description
8q a recursive solution to the 8 queens problem
gauss a Gaussian elimination program
whetstone the standard benchmark
Livermore a C implementation of the Livermore loops
Cut the Unix cut program
matrix standard matrix multiply code
bubble bubble sort
factorial compute factorials
clinpack2 a C implementation of linpack
dhrystone the standard benchmark
nseive sieve of Eratosthenes

Table 1. C Programs in Test Set

ter schedules, but at the cost of significant compile time.

4.1. DDDs

To compare our two scheduling methods we needed
DDDs for which to generate schedules. The 114 DDDs
used in this study all come from a test suite of the eleven C
programs listed in Table 1. The compiler [14] was used to
build a DDD for each basic block in the test suite of C pro-
grams. Only DDDs consisting of ten or more nodes were
included in the suite of DDDs used for the experimental
evaluation of simulated-annealing driven scheduling.

4.2. Experiment

Using the compiler, we scheduled each of the 114 DDDs
constructed as described in Section 4.1, generating instruc-
tion schedules for the DEC Alpha 21164 architecture [8]
which allows up to two integer and two floating point opera-
tions to begin execution in a cycle. Latencies for integer and
floating point computations as well as the load and store la-
tencies were assigned according to the 21164 timing model.
All loads were assumed to be cache hits. With this machine
model, we compared schedules by counting the number of
instructions that each DDD would require to execute.

Table 2 list the schedule data obtained in the study. The
first column of each table gives the DDD number. This
number has no special significance and is used only to dif-
ferentiate the DDDs. The second column indicates how
many nodes that DDD contains. The third column shows
instructions required to schedule the DDD using traditional
list scheduling. The fourth column indicates how many
instructions required to schedule the DDD using simulated-
annealing driven scheduling. Notice that many of the entries
in column four are “same”. This indicates that the simulated-
annealing driven scheduler failed to find a better schedule



than the list scheduler.
Table 2 does not show the compile time needed to sched-

ule the DDDs, but while traditional scheduling scheduled
all 114 DDDs in slightly less than four minutes on a Sun
Sparc10, simulated-annealing driven scheduling required
almost five days (117 hours) to schedule all 114 DDDs on
the same machine. Thus, as expected, simulated-annealing
driven scheduling was considerably slower than traditional
scheduling. However, it was not so slow, requiring a little
more than 1 hour per DDD, that it should not be considered
if excellent run-time efficiency is required.

For those 75 DDDs where simulated-annealing driven
scheduling and traditional scheduling differed, the
simulated-annealing scheduler produced shorter schedules
60 times (80% of the time) while traditional scheduling
produced the better schedule 5 times and there were 10
DDDs for which both schedules required the same num-
ber of instructions. Summing all of the instructions for
the 75 DDDs under comparison shows that, even counting
the simulated-annealing losses, simulated-annealing driven
scheduling required 6.7% fewer instructions. This can lead
to a substantial savings in execution time for those DDDs.

A likely scheduling strategy would be to first perform
traditional list scheduling for each DDD of an application
and then to perform simulated-annealing driven scheduling
for each DDD (or maybe only for those which profiling
indicates constitute a significant percentage of total execu-
tion time.) This would allow use of the better of the two
schedules. If such a policy were used, the “combined”
tradition-SA scheduler would produce results (for our test
suite) that results in 7.3% fewer instructions that the tradi-
tional scheduler.

The negative correlation between our simulated-
annealing scheduler being better than simple LS and DDD
size should not be surprising when you consider that our
strategy for using simulated annealing is to evaluate differ-
ent “random” permutations of integer 1 to N where N is the
number of nodes in a DDD. Given that we would expect only
a few permutations to lead to legal schedules, scheduling for
larger DDDs (with substantially larger numbers of possible
permutations) would be less likely to encounter any legal
schedules during the stochastic search. Still, since the 114
DDDs used in this study come from “real” code and since
the only bias based upon DDD size discarded small DDDs
(less than 10 nodes) we feel that our approach to simulated-
annealing scheduling should lead to significantly improved
schedules for local (single-basic block) DDDs.

Note that we did not choose to “seed” the ASA routines
by initializing the search space with a DDD node-ordering
from standard list scheduling. This would have the effect
of removing all the “longer” schedules from the SA-driven
scheduler, since we would always have at least one “short”
schedule, namely the one generated by list scheduling. We

chose to accept random initial permutations instead, to en-
sure that the search space visited was not biased by the
original list-scheduled result.

5. Conclusions

This paper has shown the benefit of applying a simulated
annealing (SA), a stochastic search technique, to the prob-
lem of producing high-quality code. With a combined tra-
ditional/SA instruction scheduling method, over 7% fewer
instructions were needed when compared to a traditional list
scheduler. This can lead to both decreased code size and
runtime. There is no doubt that using SA for optimization
requires more compilation time, but this is well amortized
over the length of time a program is in production.

A concern of the current implementation is the num-
ber of times SA fails to generate a shorter schedule. This
high percentage has not been noted in previous stochastic
IS techniques and needs to be studied in order to find the
root cause. It may be that this is a cost that must be paid in
order to achieve the highest level of optimization possible.
With this caveat, we would recommend this method of IS to
practitioners in the field.
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