
The effect of adding a scalar D-cache to the Cray-4 vector processor

Steven J. Beaty
Cray Computer Corporation

1110 Bayfield Drive
Colorado Springs, Colorado, 80906

Voice: (719) 540-4129
FAX: (719) 540-4028
beaty@craycos.com

http://www.craycos.com/˜beaty

Gearold R. Johnson
National Technological University

700 Centre Avenue
Fort Collins, Colorado 80526

Voice: (303) 495-6404
FAX: (303) 498-0601
gerryj@mail.ntu.edu

Abstract

In the past, vector supercomputers achieved high perfor-
mance with long arithmetic pipelines coupled with fast
scalar processors. Processor speed has increased at a rate
greater than memory speed. Indeed, current vector proces-
sors have cycle times far faster than the memories they are
connected to. When compilers can predict memory access
patterns, they vectorize computations and thereby hide the
processor/memory disparity. When memory access pat-
terns are not known until run-time, caches can pay large
dividends. This paper studies the effects of adding a scalar
data cache to a modern vector processor and shows some
encouraging results.

1 Introduction

As computer design has matured, processor speed has in-
creased at a rate greater than that of general-purpose mem-
ory. This disparity is quite obvious as modern vector pro-
cessors now have instruction cycle times of 1 nanosecond
– substantially shorter than main memory access times.
This disparity has led to memory banking, which helps
vector accesses, and more levels in the memory hierarchy
[HP90] including various levels of instruction and data
caches. These caches attempt to bridge the speeds of the
processor and memories by relying on the temporal and
spatial locality of memory references.

The Cray vector processors have always had a cache
for the instruction stream. They have not had any type of
data cache as the vast majority of computation is done in
vector mode. To support these computations the bandwidth
between main memory and the processors is very large.
The main memory is designed such that it can supply the
vector registers with enough data so results are generated
every clock cycle. So long as addresses are calculated
rapidly and the vector length is large enough, vectors are
efficiently fetched and operated upon.

This work is motivated when it was noticed that some
vector operations were being paced by scalar operations.

The increasing disparity between the processor and mem-
ory speeds exacerbates this situation. Modern compilers
cannot always know a priori where in memory a scalar
datum will reside. Therefore, it might not be able to have
the datum in a fast memory, such as a register, when it is
needed for reading or writing. Scalar operands are used
for three important areas in computations:

� address calculations,

� control variables such as loop variables, and

� CPU I/O operations.

Therefore, it is important that the speed of the scalar section
of a vector processor be matched to the speed of the vector
section.

2 Evolution of Cray Memory Hierar-
chy

Over the years, there have been a number of different orga-
nizations of the memory hierarchy in Cray supercomputers.
These different organizations have been responses to what
were then the state of the art in memory speed and uti-
lization. Within these different schemes, somethings have
remained constant. For example, all machines have had
eight ‘A’ and eight ‘S’ registers. The ‘A’ registers are so
named to denote that addressing expressions are usually
(but not necessarily) computed in them. Special address
addition and multiplication units are directly attached to
this bank. Similarly, the ‘S’ registers are used to compute
other scalar expressions and have shifting and logical units
directly attached to them. The ‘A’ registers have been sized
to hold operands that can address all of common memory
(24 bits for the Cray-1, 32 for the Cray-2 and Cray-3, and
35 bits in the Cray-4) while the ‘S’ registers have been
sized to hold full-word operands (64 bits in all Cray ma-
chines.) The functional units attached to the two different
kinds of registers are non-orthogonal. For example, there
are no shift units directly attached to the ‘A’ bank, and no



Machine Clock LM CM
Cray-1 80 n.a. 22
Cray-2 250 8 55
Cray-3 500 8 35
Cray-4 1000 n.a. 49

Figure 1: Cray Memory Comparison

integer multiplyunit directly attached to the ‘S’ bank. This
is not to say that these operations cannot be performed on
the respective operands as one can move the operands to a
suitable location and then perform the operation. All Cray
machines have also had a bank of vector, ‘V’, registers.
There are eight vector registers, each holding 64 operands.
These are used for the majority of the computation that oc-
curs on Crays. There are logical, shift, integer arithmetic,
and floating point arithmetic functional units attached to
the ‘V’ bank.

One aspect that has varied in these machines is the pres-
ence of the ‘T’ (“temporary”) register bank. This was in-
cluded in the original Cray-1, and consisted of 64 1-word
(64-bit) registers. It was omitted for the Cray-2 and Cray-
3. The Cray-4 reintroduces it. It is used by the compilers
to hold a variety of temporary data.

Another aspect that has varied in direct relation to the
presence of the ‘T’ registers is the presence of ‘local mem-
ory.’ The Cray-2 and Cray-3 machines had a memory
that was small (16KW) but fast to access, ‘nearer’ to the
processor than the large common memory. This memory
is managed by the compiler and used for often-used vari-
ables and process-specific information. This provides the
compilers with an intermediate storage area, farther than
registers but closer than common memory. See Figure 1
for a comparison of the memory hierarchies; the clock
speed in in megahertz and the memory speed is in machine
cycles.

As should be obvious from this evolution, there is no
one optimal memory hierarchy for Crays or anyone elses
general-purpose machine. This is because one cannot
know a priori what type of jobs will be run on the pro-
cessor. One tries to find a good mixture of available faster
and slower memories so that most jobs fit within the con-
straints of the hierarchy.

Figure 2 shows some of the current state-of-the-art pro-
cessors and their cache schemes. For example, the Mips
R8000 has a split-cache scheme where integer references
are directed to an 16KB on-chip cache and floating-point
references are sent to a off-chip cache whose size is up to
16MB. The NEC SX-3 is a vector processor that has a cache
that contains only references to scalar data. The single-
chip implementations have between 16KB and 32KB in
total cache; the multi-chip designs have more. Most of

the newer designs also have provisions for some type of
second-level cache. In [KSF+94], the addition of a data
cache for all memory references, including vector refer-
ences, was studied. Part of the thrust of that work was to
study using lower-cost and more-dense DRAMs, instead
of faster SRAMs, and adding a cache to speed the access
and increase the bandwidth of the memory.

3 Method

A little background on the approach and methods used by
this work is in order. We were able to do very precise
studies as a number of excellent software tools were avail-
able to us. These included a simulator, a highly-optimizing
compiler, and a program suite that is thought to be exem-
plary of the type of programs users wish to run on these
types of computers.

For this study, the performance of the Cray-4 had to be
simulated as there were not enough actual machines run-
ning at the time this study was undertaken. However, there
is an internal software simulator that exactly matches the
operation of the hardware on a cycle-by-cycle basis. This
simulator is known to exactly match a logic simulator’s re-
sult and so was judged to be completely satisfactory for this
work. It calculates all of the timing found on the actual
machine including all the possible memory contentions.
The software simulator was run on Cray-2’s and Cray-3’s
for this study.

The compiler used to generate code was Cray Com-
puter Corporation’s optimizing FORTRAN compiler. It
is a state-of-the-art vectorizing compiler. It does all the
traditional optimizations [ASU86] along with extensive
machine-specific ones. One of the major aims of the com-
piler is to vectorize all computations so that they are per-
formed using the pipelined vector units. This tends to
remove scalar references from the program.

For this study, we used the 24 Livermore Loops
[McM86]. These are often used to quote performance fig-
ures in the supercomputer industry. It is important to note
that the timing figures given include all the overhead of the
master program for the loops. This includes a number of
calls to I/O routines and other setup procedures. Most of
the actual loops themselves are completely vectorized by
the compiler and contain no references to scalar memory
values.

We varied a number of the parameters for the D-cache.
One 64-bit word was the block size. Cache sizes of 1KW
and 4KW were examined. We varied the associativity of
the cache between direct-mapped and 8-way.



Company Processor D-cache Size I-cache Size D-cache Mapping

Digital 21064 [Sit92] 8KB 8KB direct
Motorola 601 [Die94] 32KB combined 8-way
Motorola 603 [Die94] 8KB 8KB 2-way

Mips R4000 [MWV92] 16KB 16KB direct
Mips R8000 [Hsu94] 16KB 16KB direct
NEC SX-3 [SWL+92] 64KB scalar-only

Figure 2: Current D-cache Schemes

0

200

400

600

800

no cache
1K
4K

Figure 3: Comparison of a direct mapped D-cache

4 Results

Figure 3 shows the total instruction count for a direct
mapped cache under three conditions:

1. with no scalar D-cache at all,

2. with a 1KW scalar D-cache, and

3. with a 4KW scalar D-cache.

The Y-axis values are in millions of machine cycles. This
shows the relative speedups experienced with the different
sizes of caches. Figure 4 shows the total cycle count for
an 8-way set associative cache under the same conditions
as Figure 3.

Figure 5 shows the number of cache hits and misses
for a direct mapped cache of sizes 1K and 4K words. As
the table shows, quadrupling the size of the cache usually
halves the number of cache misses. For some, such as
Liv02, it does substantially better than this. For others,

0

200

400

600

800

no cache
1K
4K

Figure 4: Comparison of 8-way set associative D-cache

such as Liv01, the difference is minimal. The caches were
always completely filled at the end of execution for all the
programs.

When a cache was employed, it reduced the overall
execution time for the programs by an average of 20%
– 30%. We consider this a good result. Most of the time
saved is in code that is ancillary to the actual computational
sections. In the Livermore loops, most of the sections
that perform the actual mathematics are heavily vectorized.
The code that surrounds this, i.e.: the code that performs
the setup, timing, and output, is where the time is saved.
In code that has less of this type of non-vectorizable code,
the savings would obviously be less.

5 Conclusions

The influence that a scalar-only data cache has on a mod-
ern vector processor was studied. A highly-optimizing



compiler, a cycle-by-cycle simulator, and an industry stan-
dard benchmark were used to produce a set of data. These
data demonstrated that the addition of the D-cache had a
good effect on the overall run time for the programs. The
speedup was on the order of 20% – 30% with most of
the speedup coming from the timing and I/O parts of the
program, parts that have a lot of scalar code.

6 Bibliography

References

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ull-
man. Compilers—Principles, Techniques, and
Tools. Addison-Wesley, Reading, MA, USA,
1986.

[Die94] Keith Diefendorff. “History of the PowerPC
architecture”. Communications of the ACM,
37(6):28–33, June 1994.

[HP90] John L. Hennessy and David A. Patterson.
Computer Architecture—A Quantitative Ap-
proach. Morgan Kaufmann Publishers, Los
Altos, CA 94022, USA, 1990.

[Hsu94] Peter Yan-Tek Hsu. “Design of the TFP micro-
processor”. IEEE Micro, 14(2), April 1994.

[KSF+94] L. I. Kontothanassis, R. A. Sugumar, G. J.
Faanes, J. E. Smith, and M. L. Scott.
“Cache performance in vector supercomput-
ers”. In Proceedings Supercomputing ’94,
1109 Spring Street, Suite 300, Silver Spring,
MD 20910, USA, November 1994. IEEE
Computer Society Press.

[McM86] F.H. McMahon. “The Livermore FORTRAN
kernels: A computer test of numerical perfor-
mance range”. Technical report, Lawrence
Livermore National Laboratory, December
1986.

[MWV92] S. Mirapuri, M. Woodacre, and N. Vasseghi.
“The Mips R4000 processor”. IEEE Micro,
12(4):10–22, April 1992.

[Sit92] Richard L. Sites. “Alpha AXP architecture”.
Digital Technical Journal, 4(4), 1992.

[SWL+92] M. L. Simmons, H. J. Wasserman, O. M.
Lubeck, C. Eoyang, R. Mendez, H. Hirada,
and M. Ishiguro. “A performance comparison
of four supercomputers”. Comm. of the ACM,
35(8):116, August 1992.

Program Size Hits Misses %
Liv01 1KW 1,322,331 1,234,647 48.29
Liv01 4KW 1,327,240 1,229,738 48.09
Liv02 1KW 3,236,353 1,263,850 28.08
Liv02 4KW 4,466,249 33,954 0.75
Liv03 1KW 2,092,484 31,983 1.51
Liv03 4KW 2,108,293 16,174 0.76
Liv04 1KW 2,312,890 34,441 1.47
Liv04 4KW 2,329,505 17,826 0.76
Liv05 1KW 2,397,759 797,372 24.96
Liv05 4KW 3,158,741 36,390 1.14
Liv06 1KW 6,563,853 49,862 0.75
Liv06 4KW 6,588,990 24,725 0.37
Liv07 1KW 2,106,262 31,861 1.49
Liv07 4KW 2,121,218 16,905 0.79
Liv08 1KW 2,267,478 32,813 1.43
Liv08 4KW 2,282,308 17,983 0.78
Liv09 1KW 2,143,885 31,630 1.45
Liv09 4KW 2,158,197 17,318 0.80
Liv10 1KW 2,105,415 32,780 1.53
Liv10 4KW 2,120,787 17,408 0.81
Liv11 1KW 2,316,582 396,557 14.62
Liv11 4KW 2,678,438 34,701 1.28
Liv12 1KW 2,084,367 31,436 1.49
Liv12 4KW 2,098,875 16,928 0.80
Liv14 1KW 3,900,313 369,082 8.64
Liv14 4KW 3,993,904 275,491 6.45
Liv16 1KW 2,092,466 32,361 1.52
Liv16 4KW 2,106,897 17,930 0.84
Liv17 1KW 3,510,736 181,843 4.92
Liv17 4KW 3,655,794 36,785 1.00
Liv18 1KW 2,121,094 45,901 2.12
Liv18 4KW 2,148,204 18,791 0.87
Liv19 1KW 4,031,598 179,885 4.27
Liv19 4KW 4,189,937 21,546 0.51
Liv20 1KW 3,588,070 3,137,605 46.65
Liv20 4KW 4,984,789 1,740,886 25.88
Liv22 1KW 2,315,210 37,281 1.58
Liv22 4KW 2,330,077 22,414 0.95
Liv23 1KW 13,276,091 14,059,896 51.43
Liv23 4KW 22,592,297 4,743,690 17.35
Liv24 1KW 2,778,092 97,527 3.39
Liv24 4KW 2,859,043 16,576 0.58

Figure 5: Percentage of 1-Way D-cache Read Misses


