
Extending List Scheduling to Consider Execution Frequency�

Michael J. Bourke III
Superior Software
318 N. First Street

Brighton, MI 48116

Philip H. Sweany
Department of Computer Science

Michigan Technological University
Houghton MI 49931-1295

Steven J. Beaty
3612 Chipperfield Court

Fort Collins, Colorado, 80525

Abstract

Frequency-Based List Scheduling (FBLS) extends stan-
dard List Scheduling by considering execution frequencies
within a schedule. This is useful for global instruction
scheduling methods that schedule groups of basic blocks,
called meta-blocks, as though they were a single block.

Traditional local schedulers operate on the premise that
each instruction is executed the same number of times as
every other instruction in the “block”, an unwarrented as-
sumption for meta-blocks. This assumption can lead meta-
blocks schedulers to produce inefficient code. FBLS pro-
vides an answer to this problem by considering the differing
execution frequencies within meta-blocks when scheduling
operations.

To evaluate our contention that FBLS is a useful ex-
tension to standard list scheduling, we implemented FBLS
and compared it to standard list scheduling within the con-
text of dominator-path scheduling [1], a meta-block global
scheduling algorithm. Experimental results show overall
run-time improvement of 10.9% for livermore loops.

1 Introduction

Architectures exhibiting instruction-level parallelism
(ILP), such as superscalar, VLIW, and superpipelined ma-
chines, have become increasingly popular. [2] To best
exploit instruction-level parallelism in these machines, an
instruction scheduling phase is required during compila-
tion. Instruction scheduling is typically classified as local
if it considers code only within a basic block and global if
it schedules multiple basic blocks. Local scheduling meth-
ods are well known (Beaty provides a summary [3].) Local
instruction scheduling’s largest impediment is its inability
to consider context from surrounding blocks. While local
scheduling can find parallelism within a basic block, it can
do nothing to exploit parallelism between basic blocks.

�This research is partially supported by NSF Grant CCR-9308348.
Email addresses: mjbourke@cs.mtu.edu, sweany@cs.mtu.edu., and
beaty@lance.colostate.edu

Among global instruction scheduling methods, several
use a local scheduler to place operations into instructions.
These include trace scheduling [4, 5, 6] and dominator-
path scheduling [7, 1] which schedule multiple basic blocks
as though they were a single basic block. We call these
combined blocks which are treated as a single basic block
meta-blocks. Using a local scheduler for meta-blocks adds
complexity to the scheduling algorithm that has not been
properly addressed. Specifically, local schedulers operate
on the premise that each instruction is executed exactly
the same number of times as every other instruction in the
“block.” As local scheduling is extended to handle the
meta-blocks selected for optimization, however, it is no
longer true that each instruction will be executed with the
same frequency. Therefore, such meta-blocks violate one
of the main assumptions of local scheduling, namely that
every instruction in the block will be executed the same
number of times. This motivates the search for a sched-
uler which places operations based in part on the expected
execution frequencies of different portions of the meta-
block being scheduled. Frequency-Based List Scheduling
(FBLS) is such a scheduler.

Although the instruction scheduling methods discussed
here could be incorporated into any ILP compiler, some
discussion of the implementation context is appropriate.
The algorithms described here have been implemented in
the Rocket compiler [8, 3, 7], an instruction-scheduling C
compiler retargetable for a broad class of ILP architectures.
Current targets include two commercial superscalar archi-
tectures (an IBM RS6000 computer and a computer based
on an Intel i860 chip) as well as several hypothetical LIW
processors. Rocket’s global optimization includes com-
mon subexpression elimination, copy propagation, constant
folding, constant propagation, algebraic simplification, in-
duction variable simplification, and reduction in strength.
Aho, et al. [9]. describe these “traditional” compiler opti-
mizations. Rocket includes local instruction scheduling, a
form of trace scheduling [10] and dominator-path schedul-
ing [7]. Register assignment via graph coloring can either
immediately precede or follow instruction scheduling. The
issues involved in choosing early or late register assignment



are discussed in [8]. Thorough discussions of both the lo-
cal scheduler [3, 11] and the Rocket’s global scheduling
algorithms [7, 1] are available elsewhere. We shall refer to
such details only when relevant to the discussion at hand.

In the remainder of this paper, Section 2 motivates the
need for FBLS by discussing the use of meta-blocks in
trace scheduling and dominator-path scheduling; Section
3 describes list scheduling, a popular technique used for lo-
cal scheduling; Section 4 introduces Frequency-Based List
Scheduling; Section 5 describes an experimental compar-
ison of FBLS and list scheduling on a small test suite of
C programs compiled for an architecture with limited ILP;
and Section 6 presents our conclusions.

2 Global Scheduling Using Meta-Blocks

A considerable body of research has shown that to ex-
ploit the considerable amount of ILP that exists within
most programs, a global scheduling technique must be
used [12, 13, 14, 15, 16]. In this paper, we concentrate on
a global scheduler that uses a local scheduling algorithm
to schedule meta-blocks, namely dominator-path schedul-
ing (DPS). We shall see how DPS exploits parallelism by
scheduling meta-blocks and thus motivate why DPS bene-
fits from FBLS.

2.1 Dominator-Path Scheduling

Dominator-Path Scheduling (DPS) [7, 1] is a global
scheduling method in which parallelism in multiple basic
blocks can be exploited without the cost of trace schedul-
ing’s bookkeeping operations. This makes DPS an at-
tractive global scheduling technique for architectures with
limited ILP. Like trace scheduling, DPS selects groups
of blocks to schedule as a single meta-block. Unlike
trace scheduling which chooses adjacent control-flow graph
(CFG) nodes, DPS builds meta-blocks from paths in the
dominator tree for a function. The dominator tree for
a function is a representation of the dominator relation
among the blocks of the function’s CFG. A basic block, D,
dominates another block B, if all paths from the root of the
CFG to B must pass through D.

DPS uses an extension to Reif and Tarjan’s fast symbolic
covers algorithm [17] to build a dominator tree where tree
nodes (basic blocks) are decorated with dataflow informa-
tion. Sweany describes this extension in [7]. After building
the dominator tree a path in the dominator tree is selected
for scheduling and combined into a single meta-block. This
resulting meta-block is scheduled using the local scheduler.
During scheduling, operations are free to move (where not
confined by data dependence) across block boundaries to
exploit parallelism that exists on a dominator path. Due to

the conservative nature of the data flow analysis used, oper-
ations cross block boundaries only when no compensation
code is required to ensure correct program semantics.

2.2 List Scheduling Limitations

DPS suffers from local instructionscheduling’s inability
to consider differing execution frequencies within meta-
blocks as operations are scheduled throughout the com-
bined meta-block. A traditional local scheduler moves
operations without regard for the potential execution fre-
quency of the locale in which an operation is to be finally
placed. Thus, the scheduler may move an operation from a
block that has a relatively low execution frequency to one
that has a higher frequency. This could result in a sched-
ule that takes more instruction cycles to execute than that
generated by an instruction scheduler which does not allow
for inter-block code movement. Thus, DPS will benefit
from an instruction scheduler like FBLS which considers
execution frequency when placing operations.

DPS meta-blocks are not restricted to a single loop. In
fact, one of the largest benefits of DPS is the ability to
move operations across loop edges. It is expected that the
estimated execution frequencies may vary greatly within
a meta-block using DPS, and the difference between the
best and worst block could be significant. This difference
should allow for considerable improvement by FBLS when
instructions are scheduled in the best location within the
meta-block.

3 List Scheduling

The pursuit of improved scheduling techniques has been
driven in part by the popularity of ILP architectures. In
the past, several techniques for local scheduling have been
studied including Linear Analysis, Critical Path, Branch
and Bound, and List Scheduling [18]. This paper will only
be concerned with List Scheduling, a derivative of Branch
and Bound which attempts to obtain a good schedule in rea-
sonable time (in contrast to Branch and Bound’s guarantee
of an optimal schedule in exponential time.)

List scheduling is commonly used in practice and serves
both as the foundation for FBLS and as the yardstick by
which we shall measure the efficacy of FBLS. List schedul-
ing takes as input some representation of the operations to
be scheduled. This input is usually a Data Dependence
Dag (DDD), in which DDD nodes represent operations to
schedule and arcs correspond to data dependences between
DDD nodes. The DDD’s directed edges indicate that a node
x preceding a node y constrains x to occur no later than y.
More sophisticated systems [19, 20] label edges from x to
y with a pair of non-negative integers (min,max) indicating



that y can execute no sooner than min cycles after x and
no later than max cycles after x. For example, if x placed
a value on a bus that y read, an edge from x to y would
establish a “data dependence” with timing (0,0) indicating
that the read must follow the write in the same instruction.
In contrast, if x assigned a value to a register subsequently
read by y and the target machine did not permit reading a
register after it is written in the same instruction, the edge
from x to y would include timing (1,1), specifying that y
must follow x by at least one instruction, but can be placed
any number of instructions after x. Throughout the remain-
der of this paper, we shall assume the use of DDD edges
with min and max times.

List scheduling is based upon the maintenance of a Data
Ready Set (DRS). The DRS contains all DDD nodes that
are currently ready to be scheduled (i.e. have no unsched-
uled predecessors in the DDD.) A DDD node becomes data
ready when all the DDD nodes which produce data for it
have been scheduled. The scheduler selects the best node
from the DRS to schedule based on a heuristic choice. The
selected DDD node is inserted in the schedule at the point
nearest its last dependence (or at the start of the schedule if
there is no dependence) such that no machine resource con-
flict exists. Note that placing the node as close as possible
to the last dependence is a heuristic and might not always
produce the best code. After each DDD node is scheduled,
its children (nodes dependent on it) are evaluated for data
readiness. When a child becomes data ready, it is added
to the data ready set. This scheduling process is repeated
until all the nodes have been scheduled.

Traditionally, list scheduling is performed an instruction
at a time — by which we mean that instruction n is com-
pletely scheduled before moving to instructionn+1. While
this works, it is unnecessarily restrictive. There is no reason
why scheduling can’t be filling any number of instructions
at the same time. In order to allow this out-of-order filling
of instructions, we need an additional method to specify
not only that all predecessors of a node have been sched-
uled, but also the range of instructions into which a DDD
node can be placed. In our model of list scheduling, each
DDD node, N, includes data fields which specify the earli-
est and latest possible instructions during which N might be
scheduled. These absolute times for a node are determined
by combination of the absolute times of a node’s prede-
cessors and the timings on the arcs from those (scheduled)
predecessors, and will change as a node’s predecessors are
scheduled. An efficient algorithm to update nodes’ abso-
lute times during scheduling is given in: [3, 11]. While
not essential to perform list scheduling, the absolute node
times provide flexibility in scheduling which proves use-
ful for FBLS. Using the absolute instruction times we can
schedule nodes whenever they become data ready, rather

than requiring that we fill an instruction at a time before
moving on. This ability to fill instructions out-of-order
based on the absolute times of the DDD nodes is a feature
of the Rocket local scheduler and plays a significant part in
FBLS’ implementation.

There are generally multiple data-ready nodes at any
point during scheduling, as should be expected with any
program that exhibits ILP. Thus, the effect of heuristics on
the efficiency of generated schedules (and even the abil-
ity to find a schedule) is an important concern. Beaty
[3] discusses the relative importance of different oft-used
heuristics and gives an extensive list of heuristics used in
practice.

4 Frequency-Based List Scheduling

The ability to consider varying instruction frequencies
when scheduling meta-blocks can be a substantial bene-
fit to dominator-path scheduling (DPS). To date, however,
such benefit has not been available because of limitations
imposed by local scheduling. To best use DPS we need an
instruction scheduler which will account for the differing
cost of the instructions of a meta-block. If a single meta-
block includes multiple nesting levels, we want the sched-
uler to recognize that instructions added to blocks with
higher nesting levels are more costly than those at lower
nesting levels. Even within a loop, there exists the poten-
tial for considerable variation in the execution frequencies
of different blocks in the meta-block due to control flow.
Of course variable execution frequency is not an issue in
traditional local scheduling because within the context of
a single basic block, each DDD node is executed the same
number of times — namely once for each time execution
enters the block.

Frequency-Based List Scheduling (FBLS) is an exten-
sion of list scheduling which provides an answer to this
difficulty by considering that execution frequencies differ
within sections of the meta-blocks. FBLS uses a greedy
method to place DDD nodes in the lowest-cost instruction
possible.

FBLS amends the basic list scheduling algorithm by re-
vising only the DDD node placement policy in an attempt
to reduce the run-time cycles required to execute a meta-
block. To do this, FBLS modifies list scheduling so that
once a DDD node has been chosen for scheduling, a two
phase approach for operator placement is used. The first
phase attempts to schedule a DDD node only within an
already existing instruction with which the node can ex-
ecute in parallel. If the scheduler cannot locate such an
existing instruction, a second phase is used. The second
phase creates a new instruction in the “best” portion of the
meta-block where all the dependences of the selected node



Algorithm Frequency-Based List Scheduling
Input:

Data Dependence Dag (DDD) representing operations to schedule
Data Ready Set (DRS) of DDD nodes ready to schedule
For each node, N, of DDD, the earliest instruction, EI in which

N may be scheduled, based upon scheduled predecessors
For each node, N, of DDD, the latest instruction, LI in which

N may be scheduled, based upon scheduled predecessors
# A sorted list, LF, of sections within the DDD ordered by
# the frequency of the DDD segments

Output:
Schedule of Instructions for the DDD, representing a meta-block

Algorithm:
While DRS not empty

Heuristically choose a node, N, from the DRS to schedule next
SchedulePtr = N.EI
Scheduled = FALSE

While ((SchedulePtr � N.LI) And (Not Scheduled))
# If N can be placed in Schedule[SchedulePtr]
# AND Schedule[SchedulePtr] is non-empty

Add N to Schedule[SchedulePtr]
Scheduled = True
For each successor, S, of N

Remove arc N ! S
Add S to DRS, if it has no predecessors

else
Increment SchedulePtr

End While

# If not Scheduled (Pass 1 failed, try Pass 2)
# Let B be that portion of the DDD with
# lowest execution frequency which overlaps
# the range (N.EI,N.FE)

# SchedulePtr = max(N.EI, B.start)
# Repeat the while loop above WITHOUT
# the restriction that N must be placed in
# an existing instruction.

End While DRS not empty
If one or more DDD nodes not scheduled

Scheduling has failed!

Figure 1: Frequency-Base List Scheduling Algorithm



are met. The “best” portion is defined as the area in the
meta-block that has the lowest execution frequency within
the possible range of the DDD node to be placed. This
scheme presupposes a mechanism to partition the DDD
for a meta-block into sections of differing execution fre-
quencies and the further ability to place an instruction in
any partition. Techniques to accomplish this will be dis-
cussed shortly when we shift attention to implementation
detail. In essence, FBLS first attempts to schedule a node
“for free” by overlapping it with an existing instruction,
and only when such an attempt fails, does FBLS create a
new instruction. Whenever a new instruction is created
it will be in the lowest-cost possible portion of the meta-
block. Figure 1 provides an algorithmic description of
FBLS. To facilitate comparison between the FBLS algo-
rithm and that for simple list scheduling, any line which is
added (or changed) for the FBLS algorithm is marked with
a #.

4.1 Frequency-Based List Scheduling Implemen-
tation

The foundation of FBLS is to schedule a DDD for
a meta-block such that instructions are placed in lower-
frequency portions of the meta-block whenever possible.
This requires a mechanism to associate an execution fre-
quency with each instruction generated. There may be
several ways to accomplish this feat. The one discussed
here (and implemented in Rocket) is to add special nodes
to the DDD for a meta-block and to use those nodes both to
represent the execution frequencies within the meta-block
and to drive the scheduling process by affecting each DDD
node’s absolute instruction times.

Since each basic block included in a meta-block has its
own execution frequency, we designate for each block in
the meta-block a single DDD node as a BlockStart node.
This BlockStart node represents the start of the instruc-
tions that will be executed in that basic block. We use
the BlockStart nodes to anchor a block and restrict motion
of nodes into and out of basic blocks when such motion
would be illegal in whatever global scheduling strategy
is employed1. DDD dependence arcs are added between
BlockStart nodes to ensure the correct relative placement
of the basic blocks within a meta-block. As an example
of how the BlockStart nodes are used to ensure only legal
inter-block motion, consider an arbitrary meta-block con-
taining five basic blocks, which we shall name B1-B5. For
simplicity assume that block Bi precedes block Bj in the
meta-block iff i � j. Then any node, O, which originally
resides in block Bi and which cannot (due to restrictions

1In Rocket, both trace scheduling and dominator-path scheduling use
BlockStart nodes to enforce algorithmic restrictions on movement between
blocks. See [7] for details.

of the global scheduling algorithm used) move to block Bj

would include a dependence arc to block Bj’s BlockStart
node. This would require that, in the final schedule, O
must be scheduled in an instruction preceding the one in
which Bj’s BlockStart node is scheduled (but after Bi’s
BlockStart node, of course.) We use this same principle
to determine the execution frequency of scheduled instruc-
tions. Any instruction which resides (in the final schedule)
between Bi’s BlockStart node and Bi+1’s BlockStart node
will be executed with the frequency of block Bi.

Our task then, is to place the BlockStart “anchors” in
the list of scheduled instructions such that sufficient in-
structions are available to schedule other DDD nodes be-
tween the BlockStart nodes. We do this by placing all
BlockStart nodes at appropriate intervals in the scheduled
instruction array before any other nodes are placed, even
though the BlockStart nodes may not fit the data-ready cri-
terion. The capability for such out-of-order placement of
nodes does add implementation complexity to the local in-
struction scheduler but the flexibility it offers is quite valu-
able. In fact, this is where the use of absolute instructions
times within the node structure becomes important. While
placing the BlockStart nodes the absolute times for other
nodes dependent upon the BlockStart nodes automatically
are updated. Returning briefly to our generic five-block
example meta-block, we might decide a priori that no more
than 300 instructions should ever be required to schedule
all DDD nodes of any block. Then we initially place Bi’s
BlockStart node at instruction 300 � (i� 1) for 1 � i � 5.
This leaves ample instructions to fill in DDD nodes between
the (already scheduled) BlockStart nodes and also provides
a mechanism to know the execution frequency of each in-
struction. Any node scheduled in instruction X will be
executed with the same frequency as instruction Ik where
k = Xdiv300 + 1. Once the BlockStart nodes are sched-
uled, their fixed absolute times drive the absolute times of
the other DDD nodes and scheduling proceeds normally.

Given the above method for placing BlockStart nodes
and thereby restricting other DDD nodes to instruction
ranges over legal basic block boundaries, it is a relatively
easy task to determine which basic block range within a
DDD node’s possible absolute times corresponds to the
lowest execution frequency. FBLS merely looks at each
BlockStart anchor within the range of each node’s absolute
min and max times.

It should be noted that one consequence of the chosen
method for considering execution frequency when placing
DDD nodes is some loss of scheduling flexibility within
the meta-block itself. The main rationale for both trace
scheduling and dominator-path scheduling is that a larger
scheduling context will lead to better schedules. By parti-
tioning the meta-block, we lose some (but not all) of that



flexibility. Specifically, if we place every BlockStart node
in the schedule, this denotes that each block has a different
execution frequency than its neighbors, and can limit our
flexibility somewhat more than is necessary. For exam-
ple, we might well have a meta-block in which contiguous
blocks have the same execution frequency2. In such a case
FBLS would sacrifice scheduling flexibility needlessly if
it “anchored” every BlockStart node. Instead, if multiple
consecutive blocks within a meta-block have the same ex-
ecution frequency, FBLS will only anchor the first block’s
BlockStart node. Returning once again to our generic five-
block meta-block, let us assume that we are using 300 as
the maximum number of instructions for any block. Given
the following execution frequencies,

B1 = 15
B2 = 15
B3 = 150
B4 = 150
B5 = 15

FBLS would anchor the BlockStart nodes for B1 (at instruc-
tion 0), B3 (at instruction 600) and B5 (at 1200), while the
BlockStart nodes for B2 and B4 would be allowed to float
within the confines of the BlockStart nodes for the previous
and next blocks. This provides more flexibility for DDD
nodes which could be scheduled in either B1 or B2 (and
similarly for nodes which can be placed in either B3 or B4.)

4.2 FBLS Example

To illustrate how FBLS works and how it can lead to
improved execution frequency, let us consider a small ex-
ample. As our example code, consider the C code in Fig-
ure 2. This code fragment should be thought of as part of a
larger program which will lead to a meta-block we wish to
schedule.

We shall assume that we wish to compile this code frag-
ment for an LIW architecture with the following character-
istics:

� Any instruction can include one integer operation and
one floating point operation. Thus, for our example,
we will include at most one operation per instruction,
as the example includes no floating point computation.

� Integer multiply is pipelined and requires 4 cycles to
complete.

� Integer modulus is pipelined and requires 10 cycles to
complete.

2While this would be unusual in trace scheduling where the blocks
within a meta-block are lexically adjacent, it is quite the normal condition
in dominator-path scheduling where a post-dominator block often follows
its post-dominatee.

int A[SIZE];
.
.
.

max = 0;
for( i = 0; i < SIZE; i++ )
{

A[i] = (i * 32767) % 1000;
if( A[i] > max )
max = A[i];

}
mid = SIZE / 2;
low = 0;
high = SIZE;
sum = 0;
prod = 1;
maxsum = max * SIZE;

.

.

.

Figure 2: Example C Code

� Loads and stores are pipelined and require two cycles
to complete.

� All other instructions are completed in a single cycle.

Admittedly this is an extremely limited ILP architecture,
but it will allow the example to demonstrate the potential
benefit of FBLS scheduling without a large amount of su-
perfluous detail. A control flow graph for the example
code is shown in Figure 3. Notice that the basic blocks are
decorated with a representation of the Rocket intermediate
code which would be generated for each block. This ex-
ample includes the effects of standard optimizations such
as common subexpression elimination, copy propagation,
dead code removal, and induction variable simplification.

To perform dominator-path scheduling for the chosen
example, Rocket would build the dominator tree for the
control-flow graph of Figure 3. Let us assume that the
meta-block to be scheduled would include basic blocks B3,
B4, B7, and B8. Consider what local scheduling might
construct as a schedule for each block, shown in Figure 4.
The assembly language chosen is meant to be an intuitive
one rather than actually representative of any real assembly
language. Notice that blocks B4 and B7 constitute a loop
and if SIZE is 1000, then we would expect each of B4 and
B7 to execute 1000 times while blocks B3 and B8 would
execute once each. Since the schedules for B4 and B7



B1 (enter)

B3
i <- 0

t0 <- 500
t1 <- A

t0 <- + (t0,t1)
t2 <- 0

max <- 0

B4
 t3 <- % (t2,1000)

*t1 <- t3
t2 <- + (t2,32767)

t1 <- + (t1,4)

if t3 <= max goto B7

B7

if t1 < t0 goto B4

B6
 max <- t3

B8
mid <- 500

high <- 1000
maxsum <- * (max,1000)

low <- 0
sum <- 0
prod <- 1

B9 (...)

Figure 3: Control Flow Graph for Example C Code

B3:
i = 0
t0 = 500
t1 = &A
t0 = t0 + t1
t2 = 0
max = 0

B4:
t3 = t2 % 1000
t2 = t2 + 32767
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
0(t1) = t3
t1 = t1 + 4
ble t3,max,B7

B7:
blt t1,t0,B4

B8:
maxsum = max * 1000
mid = 500
high = 1000
low = 0
sum = 0
prod = 1

Figure 4: Local Scheduling of Blocks B3, B4, B7, B8

combined require 14 instructions while the schedules for
B3 and B8 require 12 instructions, we would expect 14012
cycles would be required to execute these blocks if local
scheduling were used. We’re ignoring block B6 because it
is not in the chosen meta-block.

Now consider the schedule we might expect from
dominator-path scheduling, with blocks B3, B4, B7, and
B8 considered a single block for scheduling purposes. Us-
ing a traditional local scheduler Rocket would attempt to
minimize the instructions required to schedule the code.
Figure 5 shows a likely schedule. Note that the total num-
ber of instructions required for the meta-block is reduced
from 26 to 22. However, this is due to moving instructions
out of block B8 and into the loop (B4, B7). While this



B3:
i = 0
t0 = 500
t1 = &A
t0 = t0 + t1
t2 = 0
max = 0

B4:
t3 = t2 % 1000
t2 = t2 + 32767
mid = 500
high = 1000
low = 0
sum = 0
prod = 1
NOP
NOP
NOP
0(t1) = t3
ble t3,max,B7

B7:
maxsum = max * 1000
t1 = t1 + 4
NOP
blt t1,t0,B4

B8:

Figure 5: Dominator-Path Scheduling — Traditional List
Scheduler

gives us fewer instructions overall, it increases the number
of instructions in the loop.3 So, for DPS with a traditional
local scheduler, the cost of the meta-block would be 16006,
even higher than local scheduling. To remedy the problem,
we need FBLS to consider expected execution frequencies.
Figure 6 shows the code we could expect from DPS with
an FBLS local scheduler. Now we require 24 instructions,
with 14 still in the loop blocks, B4 and B7. The total cy-
cles required for the DPS-FBLS scheduled loop is 14010,
a modest (2 cycle) improvement over local scheduling for
this example, but a substantial improvement over DPS with
a traditional scheduler.

3It might appear that the computation of maxsum could be moved to
block B4, but it cannot since the value of max could be redefined in block
B6.

B3:
i = 0
t0 = 500
t1 = &A
t0 = t0 + t1
t2 = 0
max = 0

B4:
t3 = t2 % 1000
t2 = t2 + 32767
mid = 500
high = 1000
low = 0
sum = 0
prod = 1
NOP
NOP
NOP
0(t1) = t3
ble t3,max,B7

B7:
t1 = t1 + 4
blt t1,t0,B4

B8:
maxsum = max * 1000
NOP
NOP
NOP

Figure 6: Dominator-Path Scheduling— FBLS List Sched-
uler



5 Experimental Evaluation

To evaluate our contention that FBLS is a useful ex-
tension to standard list scheduling when scheduling meta-
blocks, we compared FBLS to standard list scheduling
within the context of dominator-path scheduling for the
well-known Livermore loops [21] benchmark program. To
perform a comparison of the two scheduling methods, we
needed an architecture for which to compile code. We
chose Poplawski’s URM machine ([22]) as it provided us
with a simulator and analyzer for a “vanilla” ILP archi-
tecture. The compiler used profile information to provide
the necessary “estimates” of each basic block’s execution
frequency.

While the parameterized URM machine supports a wide
range of architectural features and allows the user to specify
different levels of ILP in a superscalar format, we chose as
a base machine a load-store architecture which allows up to
2 integer and 1 floating point instructions to be issued each
cycle. Integer loads and stores “used” an integer instruction
while loads/stores of floating point values were considered
floating point instructions. At most one memory operation
could be issued in a cycle. Instruction issue was restricted
to be in-order of the assembly code presented to the URM
simulator.

To compare standard list scheduling with FBLS
list scheduling Livermore loops was compiled using
dominator-path scheduling and the total cycles required
to execute the programs were recorded. Rocket chose 31
dominator paths to schedule as meta-blocks and the loops
compiled with FBLS required 8.6% fewer cycles to com-
plete than the same meta-blocks with standard list schedul-
ing. This strongly suggests that FBLS does indeed provide
better scheduling for meta-blocks. To evaluate how FBLS
would perform with slightly more available hardware par-
allelism, we repeated the experiment with all URM param-
eters the same except that we allowed up to 4 integer and
2 floating point instructions to be issued in any cycle. On
this more parallel machine, FBLS out-performed standard
list scheduling by 10.9%. Given the example of Section 4
one might ask how DPS without FBLS fared against local
scheduling alone. They produced quite similar results for
Livermore, with DPS and traditional scheduling winning by
an insignificant .7%. Therefore using FBLS allowed DPS
to improve upon local scheduling while using a traditional
scheduler did not.

The Livermore run-time results suggest that FBLS can
out-perform standard list scheduling for some significant
code. However, as suggested in Section 4, the smaller con-
text for list scheduling certainly allows the possibility that
FBLS could “lose” compared to standard scheduling for
some meta-blocks. To obtain more detailed results than
possible from run-time comparison, we performed a static

analysis of the cycles required for each of the 31 dominator
paths scheduled in the Livermore loops experiment. First,
a word about how Rocket models superscalar architectures
when scheduling. Essentially Rocket treats superscalars as
LIW architectures, inserting NOPs into the schedule when
it determines that the superscalar architecture will be unable
to issue an instruction for any particular cycle. While these
NOPs are commented out in the assembly code, and thus ig-
nored by the superscalar URM simulator, they allow Rocket
to accurately predict the number of cycles required to exe-
cute a basic block. This number of cycles, NC, is merely
the number of instructions Rocket determines would be
needed by an LIW with the same parallelism capabilities as
the superscalar being modeled. Having computed NC for
each block Bi in a scheduled meta-block, statically com-
puting the cost for a meta-block merely requires summing
(for each block) the number of times the block is executed
multiplied by NC. Thus, if Fi is the frequency that basic
block, Bi is executed and NCi is the number of cycles
required for block, Bi, then the meta-block cost, MBC is:
MBC =

Pn

i=1 Fi � NCi Using this static measurement,
we looked at each of the 31 meta-blocks in Livermore
loops and found that for two of the meta-blocks, standard
list scheduling produced better results (fewer cycles) than
FBLS. For five of the meta-blocks, FBLS and standard
list scheduling produced the same results and for 24 of
the meta-blocks FBLS out-performed standard scheduling.
This supports our contention that, while FBLS might lead
to less efficient schedules for some meta-blocks, schedules
for the majority of meta-blocks which include basic blocks
from different nesting levels would benefit from FBLS.

6 Conclusions

Current list scheduling techniques are not adequate to
schedule meta-blocks that include variable execution fre-
quency among instructions. The advent of global schedul-
ing techniques such as dominator-path scheduling which
perform local scheduling on meta-blocks requires more
sophisticated methods. Frequency-Based List Schedul-
ing is an instruction scheduling technique based upon list
scheduling that considers execution frequency of instruc-
tions when placing operations. As such, FBLS promises
to find better schedules for meta-blocks. In a small experi-
mental sample FBLS showed improvement of roughly 10%
over a traditional list scheduler when using dominator-path
scheduling to compile Livermore loops for an architecture
with limited instruction-level parallelism. We conclude that
when used for scheduling meta-blocks, local scheduling
techniques need to consider variable execution frequency
within the meta-block. FBLS provides an effective way to
make use of such meta-block frequency information.



References

[1] P. Sweany and S. Beaty, “Dominator-path scheduling
— a global scheduling method,” in Proceedings of the
25th International Symposium on Microarchitecture
(MICRO-25), (Portland, OR), pp. 260–263, Decem-
ber 1992.

[2] B. R. Rau and J. A. Fisher, “Instruction-Level Parallel
Processing: History, Overview, and Perspective,” The
Journal of Supercomputing, vol. 7, pp. 9–50, 1993.

[3] S. Beaty, Instruction Scheduling Using Genetic Algo-
rithms. PhD thesis, Mechanical Engineering Depart-
ment, Colorado State University, Fort Collins, Col-
orado, 1991.

[4] J. Fisher, The Optimization of Horizontal Microcode
Within and Beyond Basic Blocks: An Application of
Processor Scheduling. PhD thesis, Courant Institute
of Mathematical Sciences, New York University,New
York, NY, October 1979.

[5] J. R. Ellis, Bulldog: A Compiler for VLIW Architec-
tures. The MIT Press, 1985. PhD thesis, Yale, 1984.

[6] S. A. Mahlke, W. Y. Chen, W. mei W. Hwu, B. R.
Rau, and M. S. Schlansker, “Sentinel scheduling
for VLIW and superscalar processors,” in asplos5,
vol. 27, (Boston, MA), pp. 238–247, oct 1992.

[7] P. Sweany, Inter-Block Code Motion without Copies.
PhD thesis, Computer Science Department, Colorado
State University, Fort Collins, Colorado, 1992.

[8] P. Sweany and S. Beaty, “Post-compaction register as-
signment in a retargetable compiler,” in Proceedings
of the 23th Microprogramming Workshop (MICRO-
23), (Orlando, FL), pp. 107–116, November 1990.

[9] A. Aho, R. Sethi, and J. Ullman, Compilers: Princi-
ples, Techniques, and Tools. Reading, MA: Addison-
Wesley, 1986.

[10] M. Howland, R. Mueller, and P. Sweany, “Trace
scheduling optimization in a retargetable microcode
compiler,” in Proceedings of the 20th Microprogram-
ming Workshop (MICRO-20), (Colorado Springs,
CO), December 1987.

[11] S. Beaty, “Lookahead scheduling,” in Proceedings
of the 25th International Symposium on Microarchi-
tecture (MICRO-25), (Portland, OR), pp. 256–259,
December 1992.

[12] G. Tjaden and M. Flynn, “Detection and parallel ex-
ecution of independent instructions,” IEEE Transac-
tions on Computers, vol. C-19, no. 10, pp. 889–895,
Oct 1970.

[13] A. Nicolau and J. Fisher, “Measuring the parallelism
available for very long instruction word architec-
tures,” IEEE Transactions on Computers, vol. 33,
no. 11, pp. 968–976, Nov 1984.

[14] D. W. Wall, “Limits of instruction-level parallelism,”
in asplos4, (Santa Clara, CA), pp. 176–188, April
1991.

[15] M. Butler, T.-Y. Yeh, Y. Patt, M. Alsup, H. Scales, and
M. Shebanow, “Single instruction stream prallelism
is greater than two,” in 19th Annual International
Symposium on Computer Architecture, pp. 276–286,
ACM, 1992.

[16] A. K. Uht, “Extraction of massive instruction level
parallelism,” Computer Architecture News, vol. 21,
pp. 5–12, June 1993.

[17] J. Reif and R. Tarjan, “Symbolic program analysis
in almost-linear time,” SIAM Journal of Computing,
vol. 11, no. 1, pp. 81–93, February 1981.

[18] D. Landskov, S. Davidson, B. Shriver, and P. Mal-
lett, “Local microcode compaction techniques,” ACM
Computing Surveys, vol. 12, no. 3, pp. 261–294,
September 1980.

[19] S. Vegdahl, Local Code Generation and Compaction
in Optimizing Microcode Compilers. PhD thesis, De-
partment of Computer Science, Carnegie-Mellon Uni-
versity, Pittsburgh, PA, 1982.

[20] V. Allan, A Critical Analysis of the Global Optimiza-
tion Problem for Horizontal Microcode. PhD thesis,
Computer Science Department, Colorado State Uni-
versity, Fort Collins, Colorado, 1986.

[21] F. McMahon, “The Livermore FORTRAN kernels:
A computer test of numerical performance range,”
tech. rep., Lawrence Livermore National Laboratory,
December 1986.

[22] D. A. Poplawski, “The unlimited resource machine
(URM),” Tech. Rep. CS-95-01, Department of Com-
puter Science, Michigan Technological University,
Houghton, January 1995.


