
Genetic Algorithms for Instruction Sequencing and Scheduling

Steven J. Beaty �

NCR Microelectronics
2057 Vermont

Fort Collins, Colorado
80525

(303) 226-9622
Steve.Beaty@FtCollinsCO.ncr.com

beaty@longs.lance.colostate.edu

Abstract

In forming a complete schedule for jobs (such as instruc-
tions on a processor capable of multiple instruction issue),
two independent operations occur: sequencing of the jobs
and scheduling those prioritized jobs. This paper discusses
the importance of the distinction between sequencing and
scheduling, and gives a number of examples based on in-
struction scheduling to clarify the differences. It then dis-
cusses the application of Genetic Algorithms to different
types of sequencing and scheduling problems.

1 Introduction

In much of the current literature the terms sequencing
and scheduling are used interchangeably; indeed Coffman
[Cof76] explicitly endorses this fact. The reason for the
duplicity of the terms is probably due to the fact that the
two operations are usually either intimately tied together
or irrelevant to each other. Indeed, for many scheduling
tasks sequencing is required and implicit. Four different
combinations of sequencing and scheduling, and the need
for explicit delineation of the two, will be addressed by this
paper.

2 Sequencing and Scheduling

Sequencing is defined by Ashour [Ash72] as being “con-
cerned with the arrangements and permutations in which
a set of jobs under consideration are performed on all ma-
chines.” That is, what is the order the jobs will be performed;
what is the priority of each job? Sequencing thereby ranks
the jobs to be executed. Baker [Bak74] states “Scheduling is
the allocation of resources over time to perform a collection

�the author is an affiliate faculty member at Colorado State University

of tasks.” Scheduling usually places already prioritized jobs
into slots, often accounting for conflicts in resource usage.
The combined sequencing/scheduling (order/place) process
produces the desired outcome: jobs placed on machines ca-
pable of performing the desired tasks in the correct order at a
correct time. Ashour notes another reason for the confusion
of terms results from the implicit assumption that each job
will start as early as possible; a schedule is therefore au-
tomatically formed once the sequence is known. In certain
instances, such as those representable as a flow-shop (FIFO)
model, this assumption is valid. In more complex models,
such as those representable as a job-shop, the assumption is
not.

Both sequencing and scheduling can be complex tasks in-
dependent of each other. Sequencing itself isO(J!M) where
J is the number of jobs and M is the number of machines
[Bak74]. Even if there is only one machine, the calculation
of all the possible permutations is prohibitively expensive.
For this reason, sequencers are usually heuristically driven,
producing a sequence that is reasoned to be superior to the
others possible.

Scheduling is also a difficult problem. Brightwell and
Winkler [BW90] proved that producing all of the total or-
ders from a given partial order is #P-complete, showing that
exhaustive searching by a scheduler for an optimal answer
is also not advisable. For this reason, schedulers are of-
ten deterministic such that given any one sequence of jobs,
the scheduler will always produce the same final schedule.
Schedulers take a sequence and a partial order, and create
a total order of jobs such that no schedule constraints (e.g.
timing or resource) are violated.

The form of the input to the complete scheduling problem
must express the partial order formed by the precedence
relations between the jobs that need to be completed. Graphs
are often used for this form; they are directed to express the
precedence and they are acyclic as a job cannot precede
itself (giving a Directed Acyclic Graph or DAG.) Trees



are a form of DAGs but are limited by the fact that they
cannot express that a job depends on more that one directly
preceding job. Often a matrix representation of the graph is
used for compactness and for its analytic properties.

The following subsections will discuss the following
combination of sequencing and scheduling:

1. sequencing before scheduling,

2. sequencing during scheduling,

3. scheduling without sequencing, and

4. sequencing without scheduling.

2.1 Sequencing then Scheduling

Probably the most familiar combination of the two oper-
ations is first prioritizing the jobs and then placing them
in the final schedule. Sequencing often has a large impact
on the final schedule when combined with a deterministic
scheduler; the only intelligence and flexibility available in
the process is in the ordering of jobs. An example of how
the two tasks fit together may be found in the list schedul-
ing algorithm. A general list scheduling algorithm may be
found in Coffman; a specific instruction scheduling method
will be used here for demonstration purposes. An instruc-
tion list scheduler (ILS) takes a group of required machine
operations (MOs) and places them in instructions. The ILS
forms a data-ready set (DRS) that contains all of the MOs
that are not waiting on data produced by a previous MO.
Within this set the MOs are ordered based on one or more
heuristics (see [Bea91b] for a list of twenty-six such heuris-
tics) due to the large number of permutations available in a
DRS. Note that this may be viewed as a static ordering such
that a global ordering of MOs can be generated, and each
individual DRS can derive its order from that. Whether the
DRS is ordered globally or locally, the sequence must be
completed before any scheduling takes place.

2.2 Scheduling then Sequencing

There are instances when scheduling may partially precede
sequencing. This is advisable when the formation of a par-
tial schedule should change the priorities of the remaining
jobs to be placed. This interaction is a two-way street:
the sequence changes based on the schedule, and the final
schedule is changed due to the re-prioritizing of the jobs.
An initial sequence is needed to start the scheduling pro-
cess. An example is the distribution of memory operations
in a RISC architecture. The penalty of the load or store
delay may be best offset with MOs of other types instead of
a long string of memory operations. The memory pipeline
can be stalled for the memory delay time between each suc-
cessive load or store, and no useful work could be done. In

contrast, if other (e.g. arithmetic) MOs can be scheduled
that do not depend on a memory operation, they may com-
plete earlier and shorten the overall length of the instruction
sequence. The placement of memory operations cannot be
known until the schedule is at least partially constructed.
The schedule may then be examined and the priority of the
various non-scheduled MOs modified to better reflect the
partially constructed final schedule.

2.3 Scheduling without Sequencing

It is possible to have scheduling without having sequencing
associated. This type of problem occurs when the order
of placement has no impact on the final schedule; i.e. all
orders of job placement produce identical final schedules.
For the production of valid schedules, the scheduler must
either backtrack in the presence of a resource conflict or
there must be no such conflicts possible during job place-
ment. Note that this is not the same as having the sequence
become the schedule; that assumes there are no conflicts
that must be examined and resolved. The scheduling step
is necessary to ensure the correct placement of jobs. An
example of scheduling without sequencing is lookahead in-
struction scheduling [Bea91b]. Here, a number of MOs may
be constrained to specific instructions; if an MO cannot be
placed in its specified instruction the entire schedule fails.
The process that constrains the MOs basically determines
an earliest and latest start time for all MOs in a Data Depen-
dency DAG (DDD). When the earliest start time equals the
latest start time for an MO, calculating its priority compared
to other MOs is irrelevant: it can only be placed in one
slot. If that slot is unavailable, the schedule generated so
far is deemed invalid. Lookahead scheduling schedules all
completely constrained MOs at each point during schedul-
ing, thereby decreasing schedule generation time without
any deleterious effects.

2.4 Sequencing without Scheduling

It is also possible to have sequencing without the need for
scheduling. Baker [Bak74] calls this the “pure sequencing
problem” and notes it is a specialized scheduling problem.
A simple example is having a independent set of jobs and
a single machine that can complete all tasks by itself. A
critical point is there are no resource conflicts possible (one
resource, one stream of jobs), and hence no need to form a
schedule distinct from the sequence.

Within this model, it is possible that the order of tasks is
irrelevant (e.g. all operations have equivalent setup and/or
takedown times) so all final orders generated from the partial
order produce schedules of equivalent length. This model
is similar to processors with no form of parallelism and
whose instructions all take one clock cycle [HL85]. The



final schedule of instructions is usually based on the order
of source code as this is a “natural” ordering.

It is also possible that operation costs vary for differ-
ent orders of execution (e.g. operations having differing
setup/takedown times.) The Traveling Salesperson Prob-
lem (TSP) is example of this type of problem. The sequence
generated is the order cities are visited and there can be no
resource conflict, but the distance between any two cities
vary by the route chosen between them. If the cities and the
connecting roads are viewed as resources, only one resource
may be consumed at a time and there can be no contention
(for there is only one consumer.)

2.5 Summary

In this section four combinationsof sequencing and schedul-
ing were discussed. One case not discussed is scheduling
then sequencing. Once a schedule is formed, there is no
reason to determine priorities on the jobs in the completed
schedule.

3 Genetic Algorithms for Sequencing
and Scheduling

For a thorough introduction to genetic algorithms (GAs)
please see Goldberg [Gol89]. Briefly, GAs are a robust adap-
tive optimization technique based on a biological paradigm.
They perform efficient search on poorly-defined spaces by
maintaining an ordered pool of strings that represent regions
in the search space. New strings are produced from existing
strings using the genetic-based operators of recombination
and mutation. Combining these operators with natural se-
lection efficiently uses the hyperplane information found in
the problem to guide the search. The searches are not greatly
influenced by local optima or non-continuous functions.

A number of different genetic recombination operators
(GROs) have been developed; each operates differently and
is useful under different circumstances. The current set
include operators that emphasize

� adjacency,

� relative position, or

� absolute position

within the parent strings when recombining [SMWM92].
GAs have been used in various sequencing and scheduling
problems, and their efficiency for each is directly related to
the type of recombination operator used. In pure sequencing
problems, the GROs that emphasize adjacency find better so-
lutions faster than those that emphasize order; for scheduling
problems, the opposite occurs. Intuitively, this makes sense.
In pure sequencing, there is no resource contention and the

order of the sequence becomes the schedule. In scheduling
problems, where resource contention exists, the relative or-
dering of the jobs has a large impact on the resource usage.
Indeed, preserving adjacency in the sequence can form poor
schedules. For example, if job � must precede job � and
both use the same (expensive) resource, keeping them ad-
jacent in the sequence might disallow a scheduler placing
any other tasks until both � and � complete. If, however, �
precedes but is not adjacent to � any intervening jobs in the
sequence may be scheduled.

3.1 Genetic Sequencing for Pure Sequencing
Problems

When using GAs to perform TSP optimization, it is desir-
able to maintain any good subtours present in the parents
as this leads to shorter overall tours in the children. A re-
combination operator that preserves edges, where an edge
represents the connection between two cities, will exploit
the most information available in the parents. In Whitley
et al. [WSF89, WSS90], this preservation is achieved by
making an edge map (edges are represented by adjacency
in the sequence) and having a recombination operator use
this map. This method does not use information on the dis-
tance between cities, only the distance of the overall tour,
creating what is known as a “blind” traveling salesperson
problem. The use of the overall tour length metric for the
evaluation function is important because of its simplicity
and applicability to many forms of sequencing and schedul-
ing. The published results from this method are impressive
[WSS90, UPvL+90].

In scheduling machine usage on a flow shop floor, the
flexibility is found in the sequence of jobs presented to
the line. There are fixed setup, idle, and active costs for
machines. A strict amount of product needs to be produced
in order to meet the demand. Therefore, this optimization
problem is one of sequencing the types of jobs presented to
the first machine in the line, and can then be viewed as a
problem similar to the TSP. The sequence is then evaluated
to find the total cost which is passed back to the GA to drive
the search.

In Whitley et al. [WSS90], a detailed description of an
actual production line in use at Hewlett-Packard in Fort
Collins, Colorado is discussed. It contains 6 workcells
(groups of machines) in sequence, each performing a spe-
cific operation. Each has a single input and a single output
queue. Every workcell contains two identical machines op-
erating independently. The machines have costs associated
with the various tasks they perform. There are twenty differ-
ent types of products that can be produced by the line. Two
different optimization approaches were tried: 1) a strict
FIFO where the GA controlled the sequence of jobs pre-
sented to the line,and 2) a HYBRID where the GA attempted



to optimize the initial sequence and a greedy algorithm at-
tempted to reorder jobs in the line for maximal machine
usage. The FIFO job is more difficult because it is not al-
lowed to reorder jobs within the line. Both models try to
keep all machines busy all the time. Surprisingly, the FIFO
model produced better sequences, i.e. kept more machines
busy more of the time resulting in lower cost. It also pro-
duced results faster than the HYBRID method. The results
were not greatly different (approximately 3%) but the impli-
cation of not having to use a greedy, heuristic-based method
(that requires more code and effort) is great. It is thought
that FIFO worked better than HYBRID because of its ability
to directly control all the global information. What appears
good from a local greedy point of view is not always good
from a global perspective. The FIFO is also probably a more
realistic model of many other sequencing tasks.

In both of the TSP and flow shop problems, the edge
recombination GRO worked best, as is expected due to the
lack of resource conflicts.

3.2 Genetic Sequencing for Schedules

In Starkweather et al. [SMM+91], the development of a
system to schedule the production of beer at a large lo-
cal brewery1 is discussed. A simulator was developed that
mirrored the actual production constraints of the brewery.
The objective of the scheduler was the efficient allocation
of orders to loading docks based on some fixed production
cycle. Production occurs 24 hours a day on multiple lines,
each line capable of producing a certain beer type. Different
labeling and packaging possibilities exist that can compli-
cate scheduling. Data were available on the different flow
rates, start and stop times, and product type for each line
as was a set of orders that needed to be filled. The goal
was the reduction of average inventory (costly in many dif-
ferent ways) while filling as many orders as possible. The
genetic algorithm manipulated strings representing the se-
quence beer orders were processed. Each sequence was run
on the simulator to produce an evaluation, with the original
genetic population being generated randomly. Results from
simulations demonstrated that, for improvement, preserving
relative order was more important than preserving adjacency
in the population’s strings. This is not surprising as adja-
cency has little meaning in this problem’s context; items
adjacent in the sequence were probably unrelated, with their
completion occurring on separate production lines.

Beaty [Bea91a] discusses the results of combining in-
struction scheduling and genetic algorithms. Two ap-
proaches were reported.

The first approach used a GA in concert with a list sched-
uler. The strings in the population represented the priority
of the nodes in the DDD, thereby creating the data ready

1Coors Brewery, Golden Colorado.

sets. Most of the schedules produced were valid, and can
be attributed to the power of the implicit heuristic of list
scheduling: placing only data ready nodes. This combined
list scheduling/genetic algorithm performed well. In simple
DDDs, it easily found solutions as good as list scheduling
alone. The combination also found some new best-known
solutions to difficult DDDs. While this may appear sur-
prising, consider the great lengths required to generate a
set of heuristics that usually produce valid schedules. The
heuristic with most impact on final schedule length, critical
path, has been shown to produce erroneous results in sim-
ple cases [Bea91b]. Other heuristics, such as counting the
number of restricted edges a node has, must be emphasised
in an attempt to assure schedule validity. The emphasis
therefore shifts (correctly) from the possibility of generat-
ing shorter schedules to the probability of producing valid
schedules. The GA tends to place nodes in an order that pro-
duces shorter results, and with an evaluation function that
reflects failure as a longer result, the GA will place nodes
in an order that also produces valid results. A detraction
from these encouraging results is the time complexity of
the combined algorithms. List scheduling has a complexity
of at least O(n2) [LDSM80], and this algorithm must be
performed repeatedly.

A second method arose when it was noticed that with
the application of the absolute timing algorithm [SDX87,
WA89], each node already “knew” approximately where in
the final schedule it must be placed. If the order of placement
could be performed intelligently, there was no reason for a
top-down (list scheduling) priority in node placement. Top-
down priority has been used as a pseudo-intelligent form of
ordering; it certainly increase the probability of valid sched-
ules but it cannot adapt to vagaries of individual DDDs.
With genetic algorithms an intelligent, adaptable method of
node sequencing is available. The scheduling mechanism
therefore became using the GA to pick the order operations
are placed in the schedule. This works because each opera-
tion “knows” where it can be placed. Certainly, failures can
occur due to choosing an improper order, thereby creating
an invalid schedule. GROs emphasizing order converged
faster than those emphasizing adjacency. This is no surprise
as all previously effective instruction scheduling methods
also emphasize order.

In summary, both the production and instruction sched-
ulers are related to job shop scheduling, and in both GROs
that emphasized order performed significantly better than
those emphasizing adjacency.

4 Conclusions

Sequencing and scheduling are not the same and should not
be treated as such. There are at least four different combina-
tions of the two, each useful for different sets of problems.



Using Genetic Algorithms to solve different types of se-
quencing and scheduling problems, it was determined that
in pure sequencing problems, the GROs that emphasize ad-
jacency find better solutions faster than those that emphasize
order. Conversely, for scheduling problems, the GROs that
emphasize order produced better results. Thus, the differ-
ent efficiencies the genetic recombination operators produce
reflect the nature of the problem.

References

[Ash72] S. Ashour. Sequencing Theory. Springer-
Verlag, New York, 1972.

[Bak74] K. R. Baker. Introduction to Sequencing and
Scheduling. John Wiley and Sons, Inc., New
York, 1974.

[Bea91a] S. Beaty. “Genetic algorithms and instruction
scheduling”. In Proceedings of the 24th Mi-
croprogramming Workshop (MICRO-24), Al-
buquerque, NM, November 1991.

[Bea91b] S.J. Beaty. Instruction Scheduling Using Ge-
netic Algorithms. PhD thesis, Mechanical En-
gineering Department, Colorado State Univer-
sity, Fort Collins, Colorado, 1991.

[BW90] Graham Brightwell and Peter Winkler.
“Counting linear extensions is #p-complete”.
DIMACS Technical Report 90-49, Bellcore,
445 South Street, Morristown, New Jersey,
07960, July 1990.

[Cof76] E.G Coffman. Computer and Job-Shop
Scheduling Theory. Jon Wiley & Sons, New
York, 1976.

[Gol89] David Goldberg. Genetic Algorithms in
Search, Optimization, and Machine Learning.
Addison-Wesley, 1989.

[HL85] T.L. Harmon and B. Lawson. The Motorola
MC 68000 Microprocessor Family. Prentice
Hall, Englewood Cliffs, NJ, 1985.

[LDSM80] D. Landskov, S. Davidson, B.D. Shriver,
and P.W. Mallett. “Local microcode com-
paction techniques”. ACM Computing Sur-
veys, 12(3):261–294, September 1980.

[SDX87] B. Su, S. Ding, and J. Xia. “Microcode Com-
paction with Timing Constraints”. In Proceed-
ings of the 20th Microprogramming Workshop
(MICRO-20), Colorado Springs, CO, Decem-
ber 1987.

[SMM+91] T. Starkweather, S. McDaniel, K. Mathias,
C. Whitley, and D. Whitley. “A comparison of
genetic sequencing operators”. In Proceedings
of the Fifth International Conference on Ge-
netic Algorithms. Morgan Kaufmann, 1991.

[SMWM92] T. Starkweather, K. Mathias, D. Whitley, and
S. McDaniel. “Sequence scheduling with ge-
netic algorithms”. In New Directions in Oper-
ations Research. Springer-Verlag, 1992.

[UPvL+90] N. Ulder, E. Pesch, P. van Laarhoven, H. Ban-
delt, and E. Aarts. “Improving tsp exchange
heuristics by population genetics”. In Parallel
Problem Solving in Nature. Springer-Verlag,
1990.

[WA89] P. Wijaya and V.H. Allan. “Incremental fore-
sighted local compaction”. In Proceedings
of the 22nd Microprogramming Workshop
(MICRO-22), Dublin, Ireland, August 1989.

[WSF89] D. Whitley, T. Starkweather, and D. Fuquay.
“Scheduling problems and traveling salemen:
The genetic edge recombination operator”. In
Proceedings of the Third International Con-
ference on Genetic Algorithms. Morgan Kauf-
mann, 1989.

[WSS90] D. Whitley, T. Starkweather, and D. Shaner.
“The traveling saleman and sequence schedul-
ing quality solution using genetic edge recom-
bination”. In L. Davis, editor, The Genetic
Algorithms Handbook. 1990.


