
DISSERTATION

INSTRUCTION SCHEDULING USING GENETIC ALGORITHMS

Submitted by

Steven John Beaty

Department of Mechanical Engineering

In partial ful�llment of the requirements

for the degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall 1991

COLORADO STATE UNIVERSITY

October 29, 1991

WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED

UNDER OUR SUPERVISION BY STEVEN J. BEATY ENTITLED INSTRUC-

TION SCHEDULING USING GENETIC ALGORITHMS BE ACCEPTED AS

FULFILLING IN PART REQUIREMENTS FOR THE DEGREE OF DOCTOR

OF PHILOSOPHY.

Committee on Graduate Work

Adviser

Department Head

ii

ABSTRACT OF DISSERTATION

INSTRUCTION SCHEDULING USING GENETIC ALGORITHMS

Genetic algorithms are a robust adaptive optimization technique based on a biologi-

cal paradigm. They perform e�cient search on poorly-de�ned spaces by maintaining

an ordered pool of strings representing regions in the search space. New strings are

produced from existing strings using the genetic-based operators of recombination

and mutation. Combining these operators with natural selection results in the e�-

cient use of hyperplane information found in the problem to guide the search. The

searches are not greatly inuenced by local optima or non-continuous functions.

Genetic algorithms have been successfully used in problems such as the traveling

salesperson and scheduling job shops. Instruction scheduling are also modeled as

these types of problems, which motivated the application of genetic algorithms to

this domain.

Steven J. Beaty
Department of Mechanical Engineering
Colorado State University
Fort Collins, Colorado 80523
Fall 1991

iii

ACKNOWLEDGEMENTS

As with all e�orts of this magnitude, rarely does one work without a large

amount of support.

My deepest thanks go to Phil Sweany, my compiler compadre, for his work on

the ROCKET milieu, for his deep understanding of the problems involved in the

translation of one language to another, and for his friendship that made all of this

bearable.

I would like to thank my committee for their exibility and interest in this

work. Thanks go to Dr. Darrell Whitley for his expertise with genetic algorithms.

My special thanks to Dr. Gearold Johnson, for recognizing Engineering when he

sees it and for taking special care of me.

I would like to thank two members of the Usenet community: Thanasis Tsanti-

las (thanasis@cs.columbia.edu) for pointing me in the direction of Peter Winkler

(pw@bellcore.com.) Peter provided me with an early copy of the work on counting

linear extensions.

My family played a part, each contributing, both historically and recently, a

part of themselves that has always helped me reach my goals.

A large part of my support for this e�ort came from my wife, Paula. She

was there when I needed intellect, compassion, and someone to support me. She

understood what I was going through, as she herself has walked the same path. If

mine is the brain behind this work, hers is the soul.

This work was self-funded.

iv

DEDICATION

Dedicated to everyone who has bet on a dark horse that came in.

In memory of Susan Gayle Kennedy.

v

CONTENTS

1 Introduction 1
1.1 Microcode : 3
1.2 Compaction : 5
1.2.1 Previous Methods : 7
1.2.2 Heuristics : 9
1.3 From Compaction to Instruction Scheduling : : : : : : : : : : : : : : : : 11
1.4 Challenges : 12
1.5 Requirements : 13

2 The Scheduling Problem 16
2.1 A Formal De�nition of the Instruction Scheduling Problem : : : : : : : : 16
2.1.1 Adding Encoding Conicts : 18
2.1.2 Types of Failures : 19
2.1.3 Similar Problems : 19
2.2 Representation : 19
2.2.1 Dags and Orders : 20
2.2.2 Enumerating Orders : 21
2.3 Dags to Represent Data Dependence : 22
2.3.1 Necessary Edges : 24
2.4 Timing on Edges : 25
2.5 Timing on Nodes : 27
2.5.1 Absolute Timing : 27
2.6 Summary : 35

3 Compiler Technology 36
3.1 MILC Complexities : 36
3.2 The ROCKET Compiler : 39
3.2.1 Code Generation Phases : 40
3.2.2 Machine Description : 41
3.3 Reduction of Anti-dependencies : 43
3.4 Register Assignment : 45
3.4.1 Terminology : 46
3.4.2 Graph Coloring Register Assignment : : : : : : : : : : : : : : : : : : : 47
3.4.3 Interference : 51
3.4.4 When? : 52
3.4.5 Results : 57
3.5 Summary : 59

vi

4 List Scheduling 60
4.1 Methods : 60
4.1.1 Speci�cs : 60
4.2 Direction : 65
4.3 Complexity : 66
4.4 Heuristics : 69
4.4.1 Speci�cs : 70
4.4.2 Enumeration : 73
4.4.3 Update Interval : 76
4.5 Foresight : 77
4.5.1 Hindsight : 79
4.5.2 Incremental : 81
4.6 Lookahead : 83
4.7 Summary : 85

5 Genetic Algorithms and Instruction Scheduling 86
5.1 Foundations : 86
5.1.1 GENITOR : 89
5.2 Results from Related Work : 90
5.2.1 The Traveling Salesperson Problem : 90
5.2.2 Job-Shop Scheduling : 91
5.2.3 A Warehouse/Shipping Scheduler : 93
5.3 Instruction Scheduling using Genetic Algorithms : : : : : : : : : : : : : : 94
5.3.1 Methods : 94
5.3.2 Approaches : 99
5.3.3 Studies : 104
5.4 Summary : 109

6 Conclusions, Contributions, Directions 110
6.1 Conclusions : 110
6.2 Contributions : 114
6.2.1 DDD constraints : 114
6.2.2 List scheduling : 114
6.2.3 Genetic Algorithms : 115
6.3 Directions : 116
6.4 Summary : 117

7 REFERENCES 118

vii

LIST OF FIGURES

1.1 A hypothetical machine word : 6

2.1 Topological sort : 21

2.2 Original absolute timing algorithm : 28

2.3 A graph where the absolute timing algorithm can fail : : : : : : : : : : : 29

2.4 Update successor timing : 31

2.5 Update predecessor timing : 32

2.6 Update timing : 34

2.7 Example for the need to iterate : 34

3.1 A Pathological Graph : 50

3.2 Possible placements of register assignment : : : : : : : : : : : : : : : : : 54

4.1 List scheduling : 61

4.2 Exhaustive list scheduling algorithm : 62

4.3 Non-exhaustive list scheduling : 64

4.4 Critical path comparison : 70

4.5 A DDD where the critical path heuristic fails : : : : : : : : : : : : : : : 72

4.6 A DDD where the heuristics compete. : : : : : : : : : : : : : : : : : : : 73

4.7 Critical path competition : 77

4.8 Need for dynamic schedule range calculation : : : : : : : : : : : : : : : : 78

4.9 Foresight ok() routine : 79

4.10 Schedule an operation using foresight : 80

4.11 Recursive foresight : 82
viii

5.1 Sampling in a three-dimensional hypercube : : : : : : : : : : : : : : : : : 88

5.2 Livermore Kernel Number 1 : 105

5.3 Livermore Kernel Number 2 : 106

5.4 Livermore Kernel Number 4 : 106

5.5 Livermore Kernel Number 8 : 107

5.6 Livermore Kernel Number 10 : 107

5.7 Linpack cgefa.c : 108

ix

Chapter 1

INTRODUCTION

As the desire for computation speed is increasing at an apparently unbounded

rate, di�erent methods have been applied to increase the amount of computation

accomplished in a given amount of time. One current approach is advanced by the

Reduced Instruction Set Computer method [Kat85, PS81]. The basic tenet is to

speed up the processor clock as much as possible. For this to occur, the processor

must be simpli�ed so deleterious physical e�ects, such as gate delay and the speed

of light in the media, are reduced. With this simpli�cation, each instruction cannot

manipulate much information. The overall speed of the processor is increased by

raising the basic clock rate to ever greater heights. These processors appear to work

well in the general consumer computer �eld.

Another approach to increase the amount of computing work done per unit time

is to increase the amount of information processed during each processor clock tick.

Proponents of this approach purport that the inherent �ne-grained parallelism found

in virtually all computer programs will map better, and therefore run more rapidly

on machines supporting some form of low-level parallelism. Fine-grained parallelism

describes architectures implementing parallelism at an instruction or smaller level,

thereby executing more than one operation in a single instruction cycle. Historically,

machines exploiting this type of architecture have been application speci�c, realizing

the inherent performance bene�t while not being required to support general purpose

computing. This type of system includes high-end graphics processors, language

speci�c computers, and embedded systems. More general purpose processors are

2

now becoming available that take advantage of this type of parallelism [KA91].

These machines may be contrasted to those with course-grained parallelism that rely

on the parallelism present at the function/subroutine level for speed enhancement.

Of course these two opposing methods should not be taken to represent the en-

tire spectrum of compute engine possibilities. The RISC approach has been termed

\vertical" because of the way the code appears, with many short instructions. CISC

has been termed \horizontal," with fewer long instructions. Most machines are

somewhere on the \diagonal" continuum between the two. It might be clearer to

picture a pyramid with RISC at the \top" and �ne-grained parallel machines at the

\bottom."

Terminology used to describe architectures continually evolves, making any

description somewhat transient. This work will use the term \MILC" (Machine

with Instruction-Level Concurrency), because no other term exists that describes

all the types of machines instruction scheduling pertains to. At a minimum, a

MILC has the ability to initiate more than one operation per instruction cycle, and

therefore bene�ts from instruction scheduling. MILCs include at least the following

as subsets:

1. Complex Instruction Set Computers (CISCs). This type of machine has \high-

level" instructions that programming languages are (supposedly) easy to trans-

late to. The VAX 11/780 [Pat89, Dig81] is an instance of a CISC; e.g. it

includes an instruction operating on arbitrary polynomials.

2. Superscalar computers. These machines use hardware to determine whether

operations can be executed simultaneously. The order instructions are pre-

sented to the execution unit can have a profound e�ect on the speedups possi-

ble, necessitating intelligent instruction ordering. Recent examples of this type

of machine include the Intergraph Clipper [Pat90], the IBM RS6000 [IBM90],

the MIPS chips [Kan87], and the Intel i860 [Int90].

3

3. Microcoded machines. Used as a basis for the instruction scheduling methods

in this paper, they are discussed in Section 1.1.

4. (Very) Long Instruction Word ((V)LIW) architectures. These have replicated

processing units with lengthy (currently up to 1000 bits) instructions contain-

ing the data and control information for each unit. Fisher [FERN84], Ellis

[Ell86] and Colwell et al. [CNO+88] discuss VLIW architecture and transla-

tion methods suited for them. The Multiow TRACE series of computers were

based on VLIW techniques. VLIW architectures have both local and shared

processor memories, an issue not addressed here.

1.1 Microcode

This work leverages previous work done in microarchitectures. Much of today's

MILC heritage lies in yesterday's microcoded machines. The visibility of underly-

ing machine features is the most pronounced similarity. To forestall any confusion

regarding the use of the term \microcode," some clari�cation is necessary. The

microcode world has been divided into four distinct groups. Tredennick [Tre82]

enumerates these various \cultures" of microprogramming:

� The commercial machine culture uses microprogramming to implement a sin-

gle instruction set on a variety of di�ering machines. The IBM System/360

[AST67] are good examples of machines with various internal hardware micro-

programmed to accept the same \high-level" assembler language.

� The bit-slice culture uses generic bit-slice components programmed to perform

one speci�c task. These machines are generally programmed by their designers

so high performance is achieved. However, there currently is interest in having

the end user program these machines to better match the machine and its

intended application. The AMD2900 is an example of this type of architecture

[Adv85].

4

� The microprogrammable machine culture builds machines intended to execute

native code for various architectures by modifying (at run time) the microcode

control store. The Nanodata QM1 is an example of this type of machine

[KD81, Nan74].

� The single chip culture has a control store (usually a Read Only Memory) on

the chip which is microprogrammed. A processor of this type is microcoded as

an implementation technique and the microcode usually manages the low-level

register{to{register and register{to{functional-unit transfers. The Motorola

68000 series chips are an example of this type of \microprogramming" [HL85].

This work is targeted to, and MILCs are related to, the bit-slice culture. The other

three cultures are based on implementing a speci�c instruction set in the target

machine. Implementing instruction generally requires short sequences of microcode

independent from one another. Compilers are less useful for this type of code because

both the amount of program information and the amount of global optimization

possible are less.

Traditionally, �ne-grain architectures have been programmed by hand, and in

some sense \close" to the actual hardware. There have been few programming ab-

stractions used in order to fully utilize the available resources. Compilers become

useful when complex control and data structures are desired to increase programmer

productivity. Compilers also allow persons not intimately familiar with an architec-

ture to use it e�ectively. If a compiler can use the resources present in a machine,

e.g., as e�ectively as hand-generated code, there is no reason to hand code. It has

been shown that, for the most part, programmer output is invariant upon the lan-

guage chosen. This speaks to the usefulness of high-level languages when creating,

modifying and maintaining any code.

The use of microcode has advantages beyond the basic one of speed. In [Veg82]

four more advantages are listed:

5

� Flexibility. Many design decisions can be delayed until later in the design

cycle.

� Extensibility. Once an architecture is on the market, it can be extended with

additional microcode, perhaps to tailor the machine to a speci�c application.

� Cost. The number and type of components can be reduced using a microcoded

control store; the information density is higher in such a store compared to

hardwired logic.

� Simplicity. Complex instructions such as string compare and table translation,

both of which are simple algorithmically, are simple to realize in microcode.

1.2 Compaction

Because this work owes much to previous work done in microcode compaction

techniques, a review is in order. A thorough survey of local compaction techniques

is found in [LDSM80]; much of this section's terminology and content relies on that

paper. Microprogrammable processors allow the simultaneous control of multiple

hardware resources. This is achieved by not greatly encoding the control word of

the machines. Compaction involves choosing, from the large solution set of possible

concurrent instructions, one packing that hopefully reduces both the execution time

and the space of the program.

A microprogram is composed of microinstructions (MIs). During execution, the

MI is the control word for the machine. Each separate machine operation within an

MI is called a microoperation (MO). A �eld within the instruction word of a machine

controls a primitive machine activity. An MO may use one or more �elds in order to

execute its functionality. Expanding upon the earlier de�nition, if only one or a very

few MO's �t within a machine's MI, the machine is said to be vertical. Conversely,

if many MOs �t in an MI, the machine is said to be horizontal. See �gure 1.1 for

a �ctional MI with 64 bits. This particular MI has �elds to control the behavior of

6

adder 1 adder 2 mult/div shifter addr. gen.cond. code const

64 54 44 29 21 9 5 1

Bit Position

Figure 1.1: A hypothetical machine word

two adders, a pipelined multiply/divide unit, a barrel shifter, an address generator,

a condition code register, and has room for program constants. Each operation is

independent of all others, allowing a large amount of instruction-level parallelism.

A straight line microcode sequence (SLM) is a set of MOs with a single entry at

the top and a single exit at the bottom. These are also known as basic blocks. When

a function is performed on one SLM, the function is termed local. If a function is

performed on multiple SLMs, the function is called global. Data dependency analysis

provides the partial ordering on the MOs, by representing in some form (usually a

dependence graph) the semantic-preserving ow of data of the original program.

Semantics are said to be preserved if, after a transformation, a program produces

an identical set of outputs when given an identical set of inputs. Conict analysis

determines whether or not a set of MOs can �t within a given MI without violating

the constraints of the processor. Compaction has been erroneously termed horizontal

optimization; horizontal improvement is more to the point as it cannot guarantee

optimality without exponential time.

The problem compaction tries to solve then, is placing a group of microopera-

tions necessary for correct execution of the algorithm into as few microinstructions

as possible. An optimal answer has been shown by DeWitt [DeW76] to be NP-

complete, i.e. computationally intractable. There are many problems related to

compaction such as the Traveling Salesperson Problem and processor scheduling

problem but, Landskov et al. [LDSM80] states compaction is an example of job-

shop scheduling, giving a direction of attack.

7

1.2.1 Previous Methods

Astopas and Plukas [AP71] are credited with developing the �rst method of

microcode compaction. Their method examines all combinations of MOs that do

not violate data dependencies, and chooses the combination, containing no resource

conicts, producing the shortest MI sequence. This is an exhaustive method and

cannot be bounded by reasonable execution time. Landskov et al. [LDSM80] eluci-

date four methods of non-exhaustive microcode compaction that follow.

Linear Analysis (LA), developed by Dasgupta and Tartar [DT76], works on an

SLM, starting with an empty list of MIs. It attempts to add MOs in the order they

appear in the SLM into an existing MI. If LA cannot �nd an MI that can accept

all the constraints on the MO, it creates a new MI and places the MO into it. The

word \linear" describes the method of examiningMOs in the SLM, not the execution

complexity. To search for a place for an MO within a list of existing MIs, LA starts

at the bottom of the list and proceeds upwards until a data dependency stops the

process. This �nds the earliest MI the MO under consideration may be placed. This

location is termed the rise limit. Now the MIs are searched for resource conicts

that disallow packing of the MO. If a rise limit was found, this search proceeds back

down the list of MIs. If no MI below the rise limit can accept the MO, a new MI

is placed at the rise limit to allow other MOs data dependent upon the current one

to be placed as high as possible. If no rise limit was found and no MI can accept

the current MO, a new MI is placed above the top of the list and the current MO

is placed into it. This, as before, reduces data dependence as much as possible. LA

is a �rst come, �rst served algorithm that places MOs as high as possible in the MI

list.

The Critical Path (CP) method, used by Ramamoorthy and Tsuchiya [RT74],

determines how few MIs can be used for the given set of MOs, and �rst places the

MOs that must occur at a certain time for the schedule to be optimal. The minimum

8

length for a list of MIs is simply the depth (length of the longest path) of the

dependence graph. First, an early partition of MOs is formed. This schedules MOs

into \frames" based only upon their data dependence relationship. All nodes in the

graph at the same level are \scheduled" to occur at the same time, disregarding any

resource conicts. After the early partition is formed, a late partition is produced in

an analogous method. The late partition is a \bottom up" early partition. In fact, if

the dependence graph is represented by an adjacency matrix, the late partition may

be computed by inverting the matrix and applying the early partition algorithm.

With these two sets generated, the critical partition calculation is simple: any MO

having an identical early and late partition is in the critical partition. For an optimal

schedule, an MO in the critical schedule must be placed within an MI on its level

in the critical partition. Because resource and encoding conicts have not yet been

considered by CP, this is not always possible. A revised critical path is formed by

taking these conditions into account and placing critical path MOs in MIs. The next

step is to place all remaining non-critical MOs within the critical path MIs. Resource

and data dependent conicts also arise during this process, possibly necessitating

the addition of more MIs to the list.

Branch and bound (BAB), promulgated by Yau et al. [YST74], creates a tree

whose nodes represent microinstructions. A path from the root to a leaf corresponds

to one possible ordering of microinstructions. The tree branches whenever there is

more than one possible MI that could be placed at a point in the MI list. If the tree

is complete, it represents all possible MI orderings and is known as BAB exhaustive.

It runs in exponential time and space based on the size of the MO list. Heuristics

are usually used to prune apparently extraneous branches from the tree. This can

make the time polynomial but is not guaranteed to produce an optimal answer. If

the algorithm �nds a path the length of the longest path through the dependence

graph, it has found an optimal answer as noted above and may stop the search. The

branching may also stop if the shortest path through the tree so far is remembered

9

and compared to all new paths. At every node, BAB attempts to form as complete

an MI as possible. BAB examines the data ready set (DRS) for each MI it processes.

The DRS is the set of MOs not data dependent upon any unplaced MOs. Multiple

MIs can be formed from the DRS, by permuting its order, and because it is unknown

which will produce a shorter schedule, branches are made for each.

List Scheduling (LS) is BAB with only one branch followed at each node. LS

chooses the branch that appears to contribute the most in producing a short, valid

schedule. List scheduling starts with an initially empty MI list, and MOs are placed

within this list when they are:

1. data ready (that is, when all the resources they depend upon have the neces-

sary values), and

2. highest on the data ready list as judged by a weighting heuristic.

This weighting function has great inuence upon the �nal schedule and therefore

must be chosen with care.

1.2.2 Heuristics

All methods thus far rely on heuristics to remove the examination of parts of the

search space that appear fruitless. Linear analysis tries to place MOs in the highest

possible MI, reducing interference with other MOs needing placement. It also uses

a �rst come, �rst served order on the MOs. Critical path places MOs not on the

critical path heuristically. Branch and bound reduces the building and searching

of the trees by guessing which branches will not lead to more compact code. The

packing of MOs into MIs is ranked according to some metric. List scheduling has

a similar approach in that MO placement is based on a set of weights assigned to

each MO. The MO placed next in the MI list is the one on the data ready list with

the highest weight.

10

Using heuristics can be di�cult when attempting to arrive at an e�cient yet ef-

�cacious compactor. This di�culty is compounded by several factors. The heuristics

generally must be regenerated for each machine targeted. The heuristics themselves

are not in a form easily understood by humans, thus making it di�cult for humans

to correctly guess and modify a compactor's behavior. It is also possible the heuris-

tics do not address an issue having great import on the �nal code. Heuristics that

work well for one ordering of MOs may not work well for another.

As noted before, the entire compaction problem is NP-complete. There are

currently no methods guaranteed to produce optimal MI schedules without requiring

either exponential time or space, or both. Because all previous methods rely on

heuristics to reduce the amount of time used to obtain a solution, they are intimately

bound to the heuristics chosen. These heuristics are picked before the execution of

the compaction routine and remain static throughout. They have no ability to learn

from previous runs or to take advantage of anomalous situations existing in speci�c

compaction situations that lead to shorter code sequences. It would be desirable to

use a search technique that does not involve heuristics yet provided a robust and

e�cient examination of the problem space. If such a method is available, and its

execution time can be easily bounded, its application to the microcode compaction

problem would be attractive.

Recent e�orts have focused on inter-block compaction as well. Trace scheduling

and percolation scheduling are two methods. Trace scheduling extends local com-

paction methods by allowing them to operate on more than one block at a time

[Fis81, HMS87]. A trace is a loop-free section of code containing multiple basic

blocks. When an entire trace is scheduled, the possibility for creating incorrect code,

by moving operations past branches, arises. A bookkeeping phase makes copies of

operations along other traces to correct the semantics. Traces are chosen in order of

most-likely-to-execute �rst. Other traces can then be compacted. This emphasizes

11

the frequently traversed paths at the possible expense of the infrequently traversed

ones. This method relies upon the availability of good quality local compactors.

Percolation scheduling, as described by Nicolau [Nic85] and Aiken and Nicolau

[AN88], has a small set of operations allowed between MIs in a program graph.

These allow deletion of empty MIs, non-ow-control MO motion, movement of a

conditional jump, and removal of redundant MOs. The operations are de�ned so

program semantics are always preserved. Inverses of these functions are also allowed.

The application of the operators is guided by higher-level heuristics.

Vegdahl [Veg82] states that more emphasis needs to be given to local com-

paction. Fisher et al. [FLS81] state that list scheduling may not be general enough

for advanced compaction techniques. Wijaya and Allan [WA89] conclude \Local

compaction methods other than list scheduling should be considered." This work

will explore local compaction only, with the assumption that producing quality local

schedules can improve intra-block methods.

1.3 From Compaction to Instruction Scheduling

General instruction scheduling is concerned with many of the same issues as

microcode compaction. As noted before, there is increasing visibility of underlying

hardware features so that intelligent exploitation of these features result in increased

run-time performance. These features remain hidden from the casual programmer

in order to speed the development of useful end-user code. Historically, when a par-

ticular routine needed enhanced performance, a human would hand code a vertical

migration (to lower levels of machine abstraction) in order to increase speed. With

the advent of language translation tools that take advantage of di�cult-to-program

architectural features, all programs generated bene�t from a \virtual vertical mi-

gration."

While this work is based upon microcode compaction, di�erent terms will be

used in order that compaction will be easily di�erentiable from instruction schedul-

ing. The term operation will replace microoperation, and instruction will likewise

12

replace microinstruction. This minor change in naming is important as it commu-

nicates visibility. Terms prefaced with micro are invisible to the casual user of an

architecture. These types of features must be addressed by someone intimate with

the entire design of the machine.

1.4 Challenges

With all the advantages, why aren't there more horizontal processors? A typical

MILC may be characterized by wide-word instructions, heavily pipelined functional

and execution units, Single Instruction/Multiple Data (SIMD) processing, and com-

plex timing between operations. These all add to the complexity for generating

e�cient software for this type of processor. Because such architectures are designed

for e�cient exploitation of �ne-grain (low-level) parallelism, hand programming at

the machine level is a slow, tedious, and exacting process. The use of higher-level

tools has met resistance because it was felt these tools would remove the advantages

these architectures have by not properly exploiting the machine's resources. If all

the resources are not kept busy, the machine will be executing in a RISC-like fash-

ion, albeit at a slower clock rate. When a large investment has been made in the

development of hardware, the software must wring out all possible performance.

These architectures have multiple, and often replicated, functional units. This

allows for many arithmetic, logical and addressing functions to be performed per

clock cycle. Each of the functional units can access di�erent types of data contained

in di�erent types of memories such as immediate �elds, CPU registers, and o�-chip

memories. A bene�t realized by MILCs is the lack of the communication bottleneck

found in MIMD computers, because resource usage can be determined before the

program is run. Each instruction is broken into many �elds, each �eld controlling

a di�erent aspect of the architecture. There is complexity inherent in �lling each

�eld in each instruction, and this may be complicated by the presence of pipelined

13

functional units. These units compute complex results, such as oating point multi-

plication or division, requiring more than one cycle of the clock. Operands are placed

in the pipe and the results are available after some speci�ed number of clock cycles.

Properly �lling and emptying all pipes is crucial in taking the fullest advantage of

the machine.

Another di�culty in programming these machines is the nature of the code to

be run on them. The trend, escalated by rapidly dropping memory prices, is to

place more and more code into lower levels of machine abstraction to receive the

speed bene�t associated with this migration. The lifetime of processors in general

is also decreasing, requiring that code be generated more frequently. All of this

speaks to a need for tools to automate part of the di�cult process of MILC code

generation. Tools would allow programmers removed from the design process to use

the architectures in their fullest potential.

1.5 Requirements

What should tools do to increase the usefulness of MILC machines? There are

several principles that would increase their acceptance.

The �rst is machine abstraction. The use of a high level language would increase

the number of potential end users by decreasing the learning curve required to

program a machine. The rapid spread of the C/UNIX (tm) environment to many

platforms displays the bene�ts of having a machine abstraction. If the end users

are already familiar with the high level language chosen for the tool, the speed they

can write useful programs is, of course, notably increased.

The second issue is retargetability. The lifecycle for all architectures is de-

creasing, necessitating the migration of code from one generation of a processor to

another. Tools, such as high level languages that directly specify desired algorithms,

ease this burden by providing the capability of rapid transference of working code

from one machine to another. If the description of the machine is not static within

14

the tools, only the machine description needs to change between di�ering architec-

tures. The descriptions of the algorithms and the tools using the machine description

remain unchanged between platforms. This would also remove the need for end user

familiarity with the minutiae of the machine, and free the designers from the task

of providing continuing support. The designer could provide a description for the

tools and return to other projects.

The third issue is optimization. This involves reducing both the (usually op-

posing) time and space requirements for a program. For tools to be accepted by

the programming community, they must produce quality code. There is no absolute

measure for the quality of produced (correct) code, but the margin quoted by some

is two to three times as long in time and space complexity as a human who is very

pro�cient on a given architecture [BDM+88]. This is a tall order for automated tools

to provide, but not an unreasonable one given the current state of the art. As has

been mentioned before, the tools must utilize the available resources well so they do

not turn a MILC into a slow, expensive, RISC. Also, because this programming is

at the lowest level of a system, its e�ciency directly inuences the e�ciency of the

rest of the system.

The advantages to have automated code generation tools for horizontal ma-

chines are manifold. Code can be generated for a machine before it is committed

to silicon. This can point out bottlenecks in the architecture design that would

confound both humans and tools alike. This interaction could close the design loop

between hardware and its associated software, bene�ting the total performance of

the system. Most hardware in the past has been designed in a vacuum; input from

software engineers was usually neither encouraged nor accepted. With increasing

performance competition from many areas, this sort of designing becomes more

di�cult to tolerate as it negatively inuences the overall system performance.

There should also be more con�dence that the system will achieve its goals. This

is especially true of migrating code from one platform to another. If an algorithm

15

description produces working code for one, there should be reason to believe that

it will work for another. The transference of code to higher performance versions

of an architecture should be particularly straightforward. Tools would provide the

capability to \hit the ground running" with a new machine. The software could be

written at the same time the hardware is being designed/debugged/produced.

To realize all these bene�ts, multiple tools are required. The �rst is a compiler

to take some form of high level algorithm description and produce well optimized

code as output. An assembler usually receives this code and produces machine

executable code. This allows the exibility of human created assembly code should

some critical section require intervention. This intervention should not be necessary

with a well written compiler/optimizer, and a better response to this impulse would

be to redirect the e�ort required to hand tune the code into improving the compiler's

ability to generate quality code. A retargetable simulator is needed for checking,

before and after the machine is in silicon, the conformity and e�ciency of the code

produced by the compiler. All the tools should be based upon one coherent, complete

machine description. This allows for rapid retargeting.

This work is only concerned with a compiler's generation of quality code and

assumes a supportive environment is available.

Chapter 2

THE SCHEDULING PROBLEM

Much work has been undertaken in methods that schedule event occurrences.

This has been, in part, motivated by the impact that quality scheduling imparts

to many diversi�ed areas. In Co�man [Cof76], a thorough treatment is given to

many di�erent kinds of scheduling problems. The general scheduling problem is

there stated as

is there a schedule for the set of n tasks T1; T2; . . . ; Tn with precedence

constraint � and execution times �1; �2; . . . ; �n, on m processors with

�nishing time ! or less?

This problem has been shown to be NP-complete. Co�man [Cof76] further states

that even by restricting the scheduling problem various ways (i.e. an empty prece-

dence constraint and only two processors) the problem is still NP-complete. DeWitt

[DeW76] shows the Local Compaction Problem is NP-complete by simplifying it to

the Unit Execution Time Scheduling Problem, another known NP-complete prob-

lem. With the assumption that P 6= NP, exhaustive search for an optimal answer is

usually out of the question.

2.1 A Formal De�nition of the Instruction Scheduling Problem

Gasperoni [Gas89] gives the formal de�nition of the Local Compaction Problem

that follows. Let N be the set of naturals and Z be the set of integers. Given:

1. a machineM, a set of resources R = fr1; . . . ; rmg that the machine possesses,

17

2. a resource con�guration vector ~RM of Nm, where the kth entry of ~RM (de-

noted ~RM(k)) gives the number of units of resource rk available in the machine

con�guration 1,

3. a set of l operations O = fop1; . . . ; opj ; . . . ; oplg,

4. a duration function d : O ! N, where d(opj) if the number of machine cycles

opj takes to execute,

5. a resource usage function ~RO : O � Z! Nm (~0 is the null vector):

~RO(opj ;X) =

(
the vector of the xth step of opj if 0 � x < d(opj)
~0 otherwise

the kth entry of ~RO(opj ;X) (denoted ~RO(opj ;X)(k)) gives the number of

units of resource rk needed in the xth time step of operation opj ,

6. a data dependence dag DDD = (O; E) imposing a partial ordering on O (DDD

embodies the data dependences of O's operations),

7. a delay function � : E ! N, de�ned on the edges of DDD, where for e =

(opj1 ; opj2); �(e) is the delay that has to be respected before scheduling opj2 ,

once opj1 has been scheduled.

The goal of the Local Compaction Problem is to �nd a schedule � : O ! N

such that:

1. minimality: � is of minimum length. The length of a schedule �; len(�) =

maxop2O(�(op) + d(op))

2. dependence constraints: 8e = (opj1 ; opj2) 2 E; �(opj2)� �(opj1) � �(e)

1ROCKET allows easy expression of a replicated storage and functional resources.

18

3. resource constraints: de�ne vector addition the usual way, and vector compar-

ison � to be: ~v1 � ~v2 $ 8kfk j 0 � k � mg ~v1(k) � ~v2(k), then the resource

constraints are:

8tft j 0 � t � len(�)g
lX

j=1

~RO(opj ; t� �(opj)) � ~RM

2.1.1 Adding Encoding Conicts

An issue the above de�nition does not address is that of encoding conicts.

These can occur within an instruction if more than one operation uses the same

�eld. A way of adding this complication, similar in nature to resource conicts, to

the Local Compaction Problem follows. Given:

1. a �eld con�guration vector ~FM of Nm, where the kth entry of ~FM (denoted

~RM(k)) gives the number of units of �eld fk available in the machine con�g-

uration 2,

2. a �eld usage function ~FO : O � Z! Nm (~0 is the null vector):

~FO(opj ;X) = f
the �eld use of the xth step of opj if 0 � x < d(opj)
~0 otherwise

the kth entry of ~FO(opj ;X) (denoted ~FO(opj ;X)(k)) gives the number of units

of �eld fk needed in the xth time step of operation opj ,

The schedule � must be consistent with:

8tft j 0 � t � len(�)
lX

j=1

~FO(opj ; t� �(opj)) � ~FM:

2ROCKET allows easy expression of a replicated �elds.

19

2.1.2 Types of Failures

With this de�nition, three types of failures are possible [SDX87].

� Timing failure: at least two paths do not allow a correct partitioning due to

incompatible timing.

� Resource failure: there does not exist enough of a certain resource to allow a

correct partitioning in the target machine.

� Scheduling failure: the algorithm used does not �nd a correct partition when

one is available in the DDD.

The �rst two failures are not produced in any architecture that supports all the

semantics of the source. It is the last item addressed in this work.

2.1.3 Similar Problems

As mentioned before, the Local Compaction Problem is said, in Landskov et

al. [LDSM80], to be similar to the Job-Shop Scheduling Problem. Co�man [Cof76]

demonstrated that Job-Shop Scheduling is an NP{complete problem. Co�man also

proposes several polynomial methods for attacking the problem, one of which is list

scheduling. Chapter 4 goes into detail about the list scheduling algorithm. With

the similarity to Job-Shop Scheduling, an investigation into methods producing good

results for that problem should be explored for use in instruction scheduling.

2.2 Representation

The choice of how to represent a problem in a data structure often plays a

major role in how the problem is solved. This allows the bene�t of using existing

algorithms along with the possible deleterious e�ects of using existing algorithms (i.e.

using methods ill-suited for the current application.) A natural representation of

dependencies between program operations has been that of a directed acyclic graph

20

(dag). Operations are only dependent upon operations preceding them, resulting

in the acyclic nature of the graph. Nodes in a dag represent the operations that

must be executed in order to perform the semantics speci�ed in the source. Usually

additional information is included in each node to identify both the �elds needed and

the resources used and de�ned by the operation. This provides all the information

needed by the scheduler at each node.

2.2.1 Dags and Orders

Edges provide a partial order on the nodes such that an edge between nodes

speci�es when nodes can execute relative to each other. [Knu73] de�nes a partial

order on a set S is a relation between the objects of S, denoted with \�," satisfying

the following properties for any objects x, y, and z (not necessarily distinct) in S:

1. If x � y and y � z, then x � z. (Transitivity.)

2. If x � y and y � x, then x = y. (Antisymmetry.)

3. If x � x. (Reexivity.)

If x � y and x 6= y then we write x � y. � is termed \precedes or is equal to",

and � is termed \precedes." For the relation �, transitivity is de�ned as are the

two additional properties:

1. If x � y, then y 6� x. (Asymmetry.)

2. x 6� x (Irreexivity.)

Either way of de�ning partial order may be used where appropriate.

Given a partially ordered dag, a question that arises is determining the total

orders consistent with the partial order. That is, to embed the partial order in a

linear order, i.e., to arrange the objects into a linear sequence a1; a2; . . . ; an such

that whenever aj � ak we have j < k [Knu73]. A method for producing this result

21

topo sort (dag)
f

set Q = dag(N)f8a;N j a � N = ;g;
while (Q 6= ;)
f

x = zfz j z 2 Qg;
print x;
dag � x;
Q� x;
Q [yf8a; y j a � y = ;g;

g
g

Figure 2.1: Topological sort

is called a topological sort. Figure 2.1 gives an algorithm for topologically sorting a

dag from Hecht [Hec77].

A desirable property the topological sort algorithm has is the operation is possi-

ble for every partial ordering. This means it will always produce a total order, of the

possibly many available, given a partial order. Topological sorting is one method of

creating total orders from partial orders, but certainly not the only method.

2.2.2 Enumerating Orders

The number of edges in a dag are a concern because they limit the number

of di�erent possible total orders. A lower and upper bound can be calculated to

demonstrate this. In a completely inter-connected dag, the number of di�erent

possible orderings is

D(N;E)
l<=levelsY

l=0

(number of nodes in l)!

The level of a node in a dag is de�ned to be length of the longest path from the

roots to the node. This formula can be derived by observing that all nodes at level l

must be chosen before any nodes in level l+1. The number of di�erent orderings at

any level is the number of permutations for the nodes at that level. This results in

22

a lower bound for a dag. The upper bound may be calculated by using a completely

unconnected graph. The function is then simply

D(N;E) N !

This is simply the number of permutations of all the nodes. This is the upper bound

for a dag and represents the ultimate in exibility. As the number of orderings

increase, the number of di�erent �nal schedules increase, allowing a scheduler more

opportunities to create good schedules. A di�culty with reducing the number of

edges is the resultant increase in the size of the search space. To make use of the

increased exibility, a powerful search technique must be used.

Recent work by Brightwell and Winkler [BW90] has shown that determining the

actual number of total orders in a dag, given a partial ordering, is #P{complete.

That is, the problem is at least as hard as �nding all the Hamiltonian circuits

existing in a graph [GJ79]. #P{complete enumeration problems are thought to be

\harder" than their corresponding NP{complete existence problems. For example,

if P=NP, and it could be shown in polynomial time that an arbitrary graph contains

a Hamiltonian circuit, it is not apparent that this would provide a polynomial time

method of knowing how many Hamiltonian circuits exist. This has a large impact

on the existing methods of instruction scheduling.

2.3 Dags to Represent Data Dependence

Data dependence between operations in a program is usually represented in a

data dependence dag (DDD). Data dependence concepts and standard terminology

are widely discussed in the literature [BSKT79, PKL80, Veg82, PW86, Ban88]. The

three basic types of data dependence are

� Flow Dependence | sometimes called true dependence or data dependence.

An operation m2 is ow dependent on operation m1 if m1 executes before m2

and m1 writes to some memory location read by m2. (This is read-after-write

dependency.)

23

� Anti-Dependence | sometimes called false dependence. An operation m2 is

anti-dependent on operation m1 if m1 executes before m2 and m2 writes to

some memory location read by m1, thereby destroying the value read by m1.

(This is write-after-read dependency.)

� Output Dependence An operation m2 is output dependent on operation m1 if

m1 executes before m2 and m2 and m1 both write to the same location. (This

is write-after-write dependency.)

For completeness (with two operations: read and write, taken two ways), it may

be noted that read-after-read usually does not create a dependency and therefore

does not require an edge in the graph. Reading a value multiple times does not

destroy it, except in the presence of volatile resources. If, for example, reading from

a port removes a value from a queue and the next value from the queue is placed

in the port, an edge is required so the reading occurs in the order speci�ed in the

source. This type of edge can be termed an input dependence edge.

A code fragment is illustrative

...

first_char = readchar (port1); /* 1 */

second_char = readchar (port1); /* 2 */

if (first_char == 'a')

...

Here, there is no data dependence between statements (1) and (2) intimating their

order of operation is unimportant. However the order of operation must be preserved

in the resultant code in order to retain program semantics. An input dependency

edge must be added to reect this. Output dependencies can result from writing

similar volatile machine resources.

24

2.3.1 Necessary Edges

Of the four types of edges, only true dependency edges are usually required for

program correctness. These result from the expression of semantics in the source.

In the presence of volatile resources, input and output dependencies can be added

to express the lexical ordering of operations 3.

Without volatile resources, read-after-read does not destroy information and

therefore requires no edge in the DDD. Also, without volatile resources the other

two are remnants from decisions made by the translation from the source. This is

a reection of modern architectures and languages. In architectures, a write to a

resource destroys information that might be needed later. In non-single-assignment

languages, variables may hold di�erent values during the course of program execu-

tion. A variable's value is well de�ned by language rules such as lexical ordering

and control ow constructs.

A write-after-write dependency reects dead code, either in the source program

or in operations generated by the compiler. A dead code removal phase should

remove these dependencies before instruction scheduling occurs. Write-after-read

dependencies are created by the desire to reuse a resource before its value has been

used for the last time. The removal of this type of dependency has a large impact

upon the resulting schedule. Resource binding should occur as late as possible to

ameliorate this impact. Section 3.4 and Sweany and Beaty [SB90] discuss a method

of delaying resource binding so fewer anti-dependencies will exist in a DDD. When

there are not enough resources of the necessary type to hold all values live at a point

in the program, anti-dependencies may have to be introduced.

Edges in a DDD describe the order the operations must appear in the �nal

schedule. It does not restrict the order operations may be placed during scheduling.

The reason for this emphasis will be apparent.

3Volatile resources are easy to model in ROCKET.

25

2.4 Timing on Edges

In the previous de�nition of the Local Compaction Problem, a function �(e)

speci�ed the duration of an operation. This is the amount of time after an operation

start its value is ready for use. If �(e) = 0, then a � relation is de�ned by the edge.

If �(e) > 0 then a � relation is de�ned by the edge. The �(e) allows for expression

of multi-cycle operations. It does not allow expression of operations having either

transient results or results latched into a resource upon completion. These types

are prevalent in architectures that, for example, contain visible pipe stages.

In order to model these two types of resources, a new function �(e) is de�ned.

�(e)min;max speci�es the range the output from an operation is valid. That is, if op

is scheduled at time T , the resultant value may be used any time from T +min to

T + max. For operations that latch their output, t = 1. Edges in the DDD are

then labeled with their corresponding �(e) values. This allows for great exibility

in describing architectural features to the scheduler.

With the addition of �(e), more machine features can be described, allowing

the scheduler to remove some of the hardware requirements in the processor. If

the scheduler can operate directly on a DDD with �(e) specifying an operation's

duration range, a larger variety of architectural features can be exploited. For

example, synchronous pipes may be directly modeled and scheduled as easily as

other operations. The need for explicit pipe advances is not needed (although they

can be modeled as well, if needed.)

Pipes doing arithmetic on integer and oating point types usually have varying

completion times. For example, an add can take two cycles, a multiply 11, and a di-

vision 19. Some pipes have transient outputs, requiring �(e)min;maxfmin;max j

min � max < 1g. If the pipe operation includes a destination resource,

the use of the value may occur any time after the operation's completion:

�(e)min;maxfmin;max j min � max = 1g. Individual pipe stages can be mod-

eled with chains of operations. For example, a multi-stage pipe operation of length

26

L can be modeled with �(e)min;maxfmin;max j min = max = Lg. Another ap-

proach, possibly exposing more of the actual hardware implementation, is to model

each stage of the pipe individually, each separated by �(e?)min;max = fmin;max j

min = max = 1g. In this case, e? represents a stage of the entire pipelined opera-

tion. The entire pipe is then modeled by the chain

LX
1

�(e?)

where L is the length of the pipe.

When this approach of modeling each stage in a pipe is used, it simulates

a pipe reservation station at code generation time. This reduces the amount of

hardware resources needed in the pipe by guaranteeing that operation semantics are

preserved. Hennessy et al. [HJP+82] 4 give several reasons for shifting complexity

from the hardware to the software:

1. the complexity is paid for only once (during compilation) and therefore the

architectural overhead required otherwise is not present during the execution

of all programs, and

2. allows the concentration of e�ort on software instead of a complex hardware

engine.

Software is not necessarily easier to design but can pay more dividends on time

spent. If a function can be handled in software, more chip space will be left for

functionality that cannot either be derived in software or will bene�t greatly from

its on-chip inclusion.

4There they use \MIPS" to denote Microprocessor without Interlocked Pipeline Stages.

27

2.5 Timing on Nodes

If only �(e) is used, only the for an operation minimum time �(op) can be

calculated. The calculation is simply the longest path from the roots of the DDD

to op. This produces the earliest instruction � that op can be scheduled. � is used

during scheduling as the basis for placement within the instruction list. �(op) is

su�cient for machines where �(e) is su�cient to describe the architecture. The

assumption is the maximum timing for �(e) =1.

2.5.1 Absolute Timing

When an architecture description requires the use of non-in�nite maximum

timing by �(e), the simple node timing algorithm must also be updated. With the

de�nition of �(e) on edges, timing can be assigned to the nodes (operations) as well.

Using �(e), a range of values the operation can be scheduled in can be calculated.

This range will be termed �(op)min;max meaning op can be scheduled in instruction

�f� j min � � � maxg. This is termed the absolute timing for op. Figure 2.2 displays

the algorithm for calculating the absolute timing for the nodes in a DDD given in

[AM88].

The addition and subtraction operations above must take into account the

possibility of 1 values.

The idea behind the algorithm is to keep the operations as early as possible but

as late as necessary. Keeping them as early as possible allows for better scheduled

results by creating more exible DDDs. Because operations must remain in semantic

order, increasing their start times may be necessary. Note that either successors or

predecessors of a node can change the range where its operation is valid.

A complication not addressed in [AM88] is the possibility of legal loops in the

timing. In Figure 2.3, if the absolute timing algorithm is run, the following occurs:

1. Starting with �(2) = (10;1): �(1) = (11;1), �(3) = (11;1).

28

set time (node)
f

for each successor, succ, of node
f

if update time (succ, node, SUCC) alters timing for succ
f

set time (succ);
g

g
for each predecessor, pred, of node
f

if update time (pred, node, PRED) alters timing for pred
f

set time (pred);
g

g
g
update time (this op; prev op; direction)
f

if (direction == PRED)
f

�(this op)min = max(�(this op)min;

�(prev op)min ��(prev op! this op)max);
�(this op)max = min(�(this op)max;

�(prev op)max ��(prev op! this op)min);
g
else // direction == SUCC
f

�(this op)min = max(�(this op)min;

�(prev op)min +�(prev op! this op)min);
�(this op)max = min(�(this op)max;

�(prev op)max +�(prev op! this op)max);
g

g

Figure 2.2: Original absolute timing algorithm

29

��
��
1
Z
Z
Z
Z
Z
Z
Z
Z
ZZ~

11;1

1;1

1; 1

��
��
2

�
�

�
�

�
�

�
�

��=

10;1

?
1;1

��
��
3 11;1

?
1;1

��
��
4 12;1

?
1;1

��
��
5 13;1

Figure 2.3: A graph where the absolute timing algorithm can fail

30

2. Recurse to �(3): �(4) = (12;1).

3. To �(4). �(5) = (13;1).

4. At �(5), change predecessors: �(1) = (12;1), �(4) unchanged.

5. Recurse to �(1), change predecessors: �(2) = (11;1), goto 1.

The di�culty occurs because the routine follows a (n;1) edge to a previous node,

changing its timing. An important observation is

there is no reason to follow (n;1) edges to predecessors. The absolute

timing algorithm is only interested in making the timing on nodes later,

and with 1 maximum timing on an edge, no reason exists to make a

predecessor node later. The operation may occur as early as possible

and the value will remain valid forever.

With this observation, a revised algorithm may be created. The routine in Figure

2.4 de�nes how successor node's timings are updated.

The assertions check for timing errors. For example, a timing error is created

when, for a scheduled node, its time must be updated in order to ful�ll the con-

straints of the surrounding nodes. This is an obvious impossibility as a scheduled

node has its timing completely restricted. Also, for example, if a node's earliest

time becomes later than its latest time, a timing error with respect to its neighbors

is present. The assertions provide a means for detecting timing errors in the DDD

when the order of packing being attempted is erroneous. This has the same result as

extended timings [SDX87] have, although not necessarily as early in the scheduling

process.

To correctly set predecessor times, the routine in Figure 2.5 may be used. The

assertions for this routine are similar, they also check to see whether the timing is

still valid.

31

update succ time (prev op, this op)
f

changed = FALSE;
if (�(this op)min < �(prev op)min +�(prev op! this op)min)
f

assert (!scheduled);
�(this op)min = �(prev op)min +�(prev op! this op)min

changed = TRUE;
g
if (�(this op)max > �(prev op)max +�(prev op! this op)max)
f

assert (!scheduled);
�(this op)max = �(prev op)max +�(prev op! this op)max

changed = TRUE;
g
assert (�(this op)min � �(prev op)min +�(prev op! this op)min);
assert (�(this op)min � �(prev op)max +�(prev op! this op)max);
assert (�(this op)max � �(prev op)min +�(prev op! this op)min);
assert (�(this op)max � �(prev op)max +�(prev op! this op)max);
assert (�(this op)min <1);
assert (�(this op)min > 0);
assert (�(this op)min � �(this op)max);
return changed;

g

Figure 2.4: Update successor timing

32

update pred time (succ op, this op)
f

if (�(prev op! this op)max =1)
f

return FALSE;
g
changed = FALSE;
if (�(this op)min < �(succ op)min ��(succ op! this op)max);
f

assert (!scheduled);
�(this op)min = �(succ op)min ��(succ op ! this op)max);
changed = TRUE;

g
if (�(this op)max > �(prev op)max ��(prev op! this op)min);
f

assert (!scheduled);
�(this op)max = �(prev op)max ��(prev op! this op)min);
changed = TRUE;

g
assert (�(this op)min � �(prev op)min ��(prev op! this op)max);
assert (�(this op)min � �(prev op)max ��(prev op! this op)min);
assert (�(this op)max � �(prev op)min ��(prev op! this op)max);
assert (�(this op)max � �(prev op)max ��(prev op! this op)min);
assert (�(this op)min <1);
assert (�(this op)min > 0);
assert (�(this op)min � �(this op)max);
return changed;

g

Figure 2.5: Update predecessor timing

33

Nota bene: there are two possibilities worth consideration when computing

�(op)min for a predecessor node:

1. �(this op)min = �(succ op)min ��(succ op ! this op)max.

2. �(this op)min = �(succ op)min ��(succ op ! this op)min.

Both produce valid �(op)min. The �rst produces more liberal �(op)min allowing

more exibility during scheduling and is therefore chosen. The same logic may be

used in calculating �(op)max for a predecessor node.

These two routines guarantee �(op) is within the permissible range. If it already

is, they do not change it. Notice it is an error to change the timing to be earlier

than it currently is. The node is as early as it can be in relation to some node; if

another requires it earlier a timing error is present.

As before, a recursive routine may be used to calculate the correct absolute

timing for an entire DDD (Figure 2.6 .) The recursive method has the impediment of

possibly visiting a node multiple times to correctly set its absolute timing. A better

method would only visit a successor (predecessor) node once all its predecessors

(successors) had been visited. This is possible by setting the absolute timing in

successor nodes in a reverse post�x depth-�rst order, and similarly the predecessor

nodes in a post�x depth-�rst order. Whenever an entire traversal in either direction

is made without any absolute timing changing, the method may stop. In this way,

nodes are visited as few times as possible.

The subgraph in Figure 2.7 demonstrates the need to iterate an undetermined

number of times. Consider the following ow of events:

1. Originally, nodes 1 and 2 are set to 1;1 and node 3 and 4 are set to 2;1.

2. Because of timing (not visible in the subgraph), node 2's timing changes to

15;1.

34

update time (node)
f

for each succ node in node:successors

f
if (update succ time (node, succ node))
f

update time (succ node);
g

g
for each pred node in node:predecessors

f
if (update succ time (node, pred node))
f

update time (pred node);
g

g
g

Figure 2.6: Update timing

��
��
1 1;1 ��

��
2 1;1

��
��
3 2;1 ��

��
4 2;1

�
�
�
�
�
�
�
�
��

1; 5

A
A
A
A
A
A
A
A
AU

1; 1

�
�
�
�
�
�
�
�
��

1;1

Figure 2.7: Example for the need to iterate

35

3. A pass down through the graph notices that node 2's timing has changed,

necessitating the possible updating of its successors and predecessors.

4. Node 4's time is updated to 16;1. Node 1 and 3 are una�ected.

5. On a pass back up, node 4's timing changed in the previous path, and its

neighbors must be updated. Node 1's timing is changed to 15;1 due to the

restricted edge from node 4.

6. This leaves node 3 in need of updating, and another pass must be made to

reect this.

2.6 Summary

This chapter has shown how di�cult the general scheduling problem, and a

speci�c instance: the Local Compaction Problem, are. Scheduling problems are

usually represented in a directed acyclic graph, giving a partial order to the opera-

tions. Enumerating all total orders consistent with a partial order in a dag is shown

to be #P{complete. Dags are used to represent the data dependence information in

the Local Compaction Problem using extensions to model both architecture-speci�c

and translation-related information.

Chapter 3

COMPILER TECHNOLOGY

There are many di�erent phases involved in producing quality code from a high

level language algorithm description. Many are familiar to compiler writers and can

be found in Aho et al. [ASU86]. These include lexical analysis, parsing, dead code

removal, loop invariant code hoisting, induction variable simpli�cation, operator

strength reduction, constant folding, copy propagation and common subexpression

elimination. These code improvement routines are more di�cult to implement for

MILCs because it is not known whether an apparent improvement actually decreases

the time or space in the resulting program.

3.1 MILC Complexities

As an example of how MILCs can complicate traditional optimizations, consider

hoisting a loop invariant expression out of a loop and into its header. If the expres-

sion does not add to the length of the scheduled code within the loop boundary but

adds instructions when placed above, because of resource or encoding conicts, then

the \optimization" is not an optimization at all. Leaving the expression in the loop,

and recomputing it each time the loop executes, costs nothing in time and space.

With this in mind it can be seen that simple minded code improvements need good

heuristics or proper feedback to do their job well.

Phases not usually found in compilers generating code for traditional machines

are also present. In MILCs, more options exist in choosing resource bindings. An

integer for example may reside in an integer register, a oating point register, an

37

address register, an external memory, a graphics vector or a volatile latch within the

machine. The choice for where to place an arbitrary integer then becomes one of

great di�culty, also having a large impact on the resulting code. The information

needed to make a good choice is usually available too late in the compilation process

to do any good. Only after instruction scheduling has completed is information

known about unused machine resources, and instruction scheduling cannot complete

without all values being bound to a machine resource. In simpler machines, there

are fewer choices about the placement of values into resources.

The scheduling of computations to functional units is another di�cult process

in MILCs. With replicated functional units or units with redundant capabilities

(such as oating point units that can also do integer arithmetic), choosing where a

computation is performed is di�cult. Work done in scheduling problems in oper-

ating systems might be applicable here but �nding an optimal solution is certainly

computationally intractable. With simpler machines, there exist very few functional

units to do calculations and so the choice is trivial. The di�culty in the ordering

of translation processes has been termed the phase coupling problem, and Allan

[AM87] discusses di�erent approaches attempting to reduce its impact.

Many of the code improvement routines require a large amount of analysis to

perform e�ectively. These must preserve the semantics of the original code while

producing as exible a representation as possible to operate upon. These analyses

include:

� Dataow analysis. Local dataow analysis computes the uses and de�nitions

for all variables within a basic block. Global dataow analysis uses this in-

formation to form live-in and live-out sets for each basic block. This allows

complete dataow information to be found for a function, allowing the use

of semantic-preserving transformations and correct register save and restore

operations. If the dataow procedures look beyond the function boundaries

38

to encompass the entire program, the information is more accurate and less

conservative transformations may take place. The intelligent passing of pa-

rameters is a particularly rich area for these transformations.

� Dominator analysis. Dominator relationship provides a partial ordering of

basic blocks within a function. A block A is said to dominate a block B if all

paths to B pass through A. This reveals the loop structures within a function,

for example.

� Symbolic evaluation, origin, and cover analysis. These analyses provide, for

each expression, a completely expanded expression based upon previous ex-

pressions and initial values, and are discussed by Reif and Tarjan in [RT81].

They provide information as to the origin of each expression, useful in delimit-

ing the amount of code motion allowable while maintaining program semantics.

They are also used to remove global common subexpressions and to propagate

both copies and constants globally.

� Memory reference disambiguation. This procedure attempts to identify pro-

gram variables that are aliases of one another. For example, this can occur

in C with pointers and parameters. Memory reference disambiguation also

attempts to resolve which array references are actually the same memory lo-

cation [Nic84, Ell86].

With the information provided by these analyses, a compiler produces a repre-

sentation semantically equivalent to the original program, but in a form much more

amenable to code improvement. That this process must take place, i.e. a process

generalizing the algorithm which the human entered, speaks to the fact that more

abstract descriptions of the desired results would bene�t the production of good

quality code. That it would bene�t the person who wants a problem solved should

be beyond doubt.

39

The problem of code selection, present in all machines, is exacerbated in MILCs

by the plethora of instructions available to perform a speci�ed task. The expression:

A * 8 may be calculated in a variety of ways using various di�erent functional units

and resources. For example, it could be performed by a multiply, a shift by three

bits, or even a repeated add. Choosing the best method depends at least upon

the surrounding machine resource and functional unit usage. If the expression is

part of a larger address calculation whose result is used to reference a memory,

a multiplicity of addressing modes increases the di�culty in determining a good

sequence of instructions to compute the expression.

When all of the previous phases have completed, instruction scheduling is per-

formed. Instruction scheduling is not explicitly present in non-MILC architectures,

but is implicit when the code selector produces actual machine code as its product.

Because only one operation may occur per cycle, no instruction issuance issues exist.

In compilers producing scheduled code, the code selector instead produces an inter-

mediate representation (usually a graph) denoting which operations must occur, in

which order, in the �nal code. The scheduler takes the graph and attempts to reduce

it into as few instructions as possible. Operations may be combined into a single

instruction when there are no data dependencies, encoding conicts, or resource

conicts among them. This is the phase this work addresses.

3.2 The ROCKET Compiler

This work is supported by the ROCKET compiler developed to research many

areas of MILC architecture compilation. ROCKET is an o�shoot of the Hori-

zon compiler, described by Mueller et al. [MDSW88], also developed at Colorado

State University. Like Horizon, ROCKET focuses on machine resource usage as

the primary issue in both retargetability and production of highly optimized code.

ROCKET targets to a wide variety of architectures which are assumed to have

a single control store and to operate synchronously (such machines correspond to

40

what Dasgupta and others [Das84, DDMS86] have called \clocked microarchitec-

tures.") Beyond that, they may have arbitrarily wide control words; polyphase or

monophase execution; pipelined fetch/execute; pipelined functional execution; per-

manent or transient storage elements with arbitrary (discrete) setup and hold times;

machine operations with side e�ects; and branches with arbitrary (discrete) branch

delays.

3.2.1 Code Generation Phases

To translate C into highly optimized code for MILC architectures, ROCKET

�rst produces an abstract representation of an input C program and then performs

global optimization which modi�es the intermediate representation to improve ex-

pected program speed; code selection, which replaces abstract representations of C

statements with collections of machine operations; parallelization, which determines

resource dependencies and timing; instruction scheduling, which assigns machine

operations to (a hopefully minimum number of) instructions satisfying data de-

pendency and machine resource constraints; and register assignment, which assigns

variables to machine resources.

ROCKET's global optimization includes common subexpression elimination,

copy propagation, constant folding, constant propagation, algebraic simpli�cation,

induction variable simpli�cation, and reduction in strength. Aho, et al. [ASU86].

describe these \traditional" compiler optimizations. Unfortunately, although many

traditional optimizations produce improved code e�ciency on vertical architectures,

they do not always do so on horizontal machines. This can be attributed mainly

to the need to take advantage of the available concurrency in a MILC architecture

during instruction scheduling. Often, traditional optimizations perturb code in a

manner that inhibits a scheduler's ability to minimize the number of instructions

required to execute a program. Rather than disregard these traditional optimiza-

tions, ROCKET includes modi�ed versions that consider parameters in the target

41

machine description to evaluate when an optimization is likely to provide improved

code. Beaty et al. discusses a similar optimization scheme in [BDM+88].

After global optimization and code selection a serial-parallel coupler/decoupler,

builds the data dependency dag (DDD) for each basic block that is an abstract

intermediate representation of the source program. The result forms the input to

the instruction scheduler. The coupler/decoupler, originally implemented in the

Horizon compiler [MDSW88, MS86], creates and manipulates DDDs, performing

ROCKET's parallelization phase in the process.

The ROCKET instruction scheduler receives generated DDDs and places the

represented operations into instructions. These instructions, in a list form, are then

passed to a routine that produces an output �le based on information present in

the machine dependent con�guration database. This usage of the con�guration

database for this procedure allows the compiler to be \targeted" to a variety of

assemblers. Information is available on the syntax the assembler expects, and few

preconceptions about the �nal output form are made.

3.2.2 Machine Description

The ROCKET machine description is patterned after the Horizon machine

description [MDSW88]. The ad hoc machine description language indicates how

data passes among storage resources, and how data is transformed by functional

resources, as well as specifying resource timing data, and �eld attributes of the

instruction word.

A ROCKET target machine description includes:

� Machine Resources | Each machine resource has an associated setup and

hold time. ROCKET views this timing abstractly in terms of instruction

cycles. Resources can include replication, as with registers, such that the

resource allocation process must be extended to consider the placement of

42

values in each. Replicated resources may also be divided into reserved regions

and regions under the resource allocator's control.

� Machine Instruction Word Fields | The compiler assumes a number

of distinct encoding �elds comprise the instruction word. A �eld's encoding

values are symbolically represented in the speci�cations of target machine op-

erations. ROCKET allows any number of distinct instruction formats; the

scheduler correctly chooses the appropriate one. This allows the usage of

pseudo�elds to describe machine idiosyncrasies as described by Linn and Ar-

doin in [LA89].

� Machine Operations| Each machine operation has a distinct identi�er as

well as a collection of instruction �elds that invoke it during execution.

� Machine Data Paths | The code selector must extract information about

how data can be moved among storage resources, how functional operations

are invoked, and how instruction sequencing is invoked. This information

forms the bulk of ROCKET'S machine description.

� Activation Description | Three di�erent types of activation records can

be described: default, non-recursive, and leaf procedures. This allows the

compiler to use procedure-speci�c information when creating an activation

record so the special cases may use faster methods. Each description contains

information on how to pass and return each basic type, to call and return from

a procedure, and the conventions used in ordering locals and parameters.

� Assembler Syntax | This includes the

{ format of labels,

{ delimiters of programs, functions, blocks, instructions, and operations,

{ prede�ned constants, and

{ constant formats.

43

3.3 Reduction of Anti-dependencies

Vegdahl [Veg82] discusses how data anti-dependencies a�ect the quality of code

produced by compilers, and suggests methods to reduce anti-dependencies (including

a constant unfolding technique.) At least three traditional optimization techniques

may increase the execution time required by a scheduled program by adding anti-

dependent edges to the DDD.

Common subexpression elimination is a process replacing replicated computa-

tions with a reference to the resource holding the value of the �rst computation.

This reduces the amount of computation a program performs, but increases

the demand placed on the resource holding the value of the operation. The

operations are not limited to programmer-supplied operations, but may be

present in code generated during the translation process (such as addressing

expressions.) Anti-dependencies are formed, for the life of the computed value,

with any other value that could use that resource.

Copy propagation replaces references to known resource aliases with a reference

to one resource. This can occur with such statements as x = y, where all later

references to y are replaced with references to x, thus allowing the copy state-

ment to be removed. In non-MILC architectures, this can increase program

execution speed. The di�culty produced is the lengthening of the live range

of x. This range now includes the entire range of y, whereas it originally did

not, possibly adding to the anti-dependencies present. If the copy operation

can be performed at low cost, and lengthening the live range produces undue

pressure on the resource holding the value, the optimization is unadvisable.

Both of these conditions can be present in a variety of architectures.

Constant folding replaces references to expressions known at translation time to

be constant with the computed value of the expression. If there is an imme-

diate �eld in the instruction word capable of containing the constant and no

44

contention exists for that �eld in all instructions requiring the constant, this

optimization reduces the execution time of the program. Vegdahl states that

immediate �elds are expensive in terms of instruction bits, and limit the choice

of instruction formats available for an operation. He suggests the method of

constant unfolding that attempts to replace translation-time constants with

simple expressions requiring fewer machine resources.

These methods also su�er from the phase coupling problem; the information needed

to make correct decisions about each is unavailable until instruction scheduling has

completed.

The removal of superuous data anti-dependencies has a bene�cial impact upon

the �nal, scheduled, code. Several circumstances contribute to the production of

unnecessary anti-dependent edges.

The �rst occurs when two references to memory cannot be di�erentiated, that

is, are not known to be di�ering locations. To be conservative in insuring pro-

gram semantics, undi�erentiable references to the same memory must have an

anti-dependent edge between them. Single assignment languages, such as Sisal

[Can90], disallow the reuse of memory locations, removing the source of the prob-

lem. ROCKET currently compiles C and therefore must deal with the problem in

a di�erent manner. As mentioned before, memory reference disambiguation is used

in an attempt to di�erentiate memory references. This can notably increase par-

allelism in the resulting code and is explored by Ellis [Ell86] and Nicolau [Nic84].

ROCKET includes memory reference disambiguation.

The second occurs when a given register is assigned more values than necessary,

resulting in its unavailability for reuse. This situation occurs because most modern

compilers attempt to use as few registers as possible. The goal of minimal register

usage is a noble one that can easily increase execution speed by reducing references

to o�-chip memories. Competing with this goal is the e�ective usage of all on-chip

registers. Consider the following code fragment:

45

r1 = 300

r2 = r1 + 4

r1 = 7

r5 = r1 + 5

If, instead of re-using r1 for the second computation, r3 was used, the two com-

putations could be performed in parallel. An anti-dependency (sometimes termed a

\false" dependency [Wal91]) exists between the �rst use of r1 and the second de�ni-

tion of r1, limiting parallelism. The di�culty in choosing which registers to use to

hold which values is again one of phase coupling, as register usage for a particular

area of code is not known until scheduling is complete.

3.4 Register Assignment

Various methods have been tried to reduce the impact of register anti-

dependencies. A hardware approach is register renaming that imposes a level of

indirection between the register number referenced in the code and the actual ma-

chine resource. When an instruction sets a register value, the hardware maps that

value to a resource (possibly distinct from the register number present in the in-

struction) for the duration of the value. This, in e�ect, performs register allocation

at run time, possibly producing better resource usage than a compiler's static anal-

ysis could. Wall [Wal91] discusses the impact of register renaming and reports an

additional bene�t: the machine can contain more registers than the instruction for-

mat is able to describe. Register renaming can increase the length of the instruction

pipeline, increasing the branch delay penalty. It also adds more circuitry on the die,

a process that inherently slows the processor's clock rate. Wall concludes that reg-

ister renaming is an important method for increasing performance if the compiler is

unable to cope with the parallelism available in the machine. The question of where

the e�ort of intelligent register assignment is best performed is an important one

dealt with in the following sections.

46

3.4.1 Terminology

In order to avoid misconceptions about terms used in the remainder of this

chapter, some de�nitions must be introduced.

Variable. A non-traditional de�nition is chosen for this term. Historically, a vari-

able is a program entity that a human declares, de�nes, and uses. This de�ni-

tion is too narrow. For example, a compiler often generates its own variables

to produce expressions that can be understood by the target architecture (e.g.

temporaries.) Another possibility often overlooked is program variables that

do not vary. This may be due to a programmer mistake or a compiler opti-

mization removing the variability of a value. A better term for a variable may

be a changeable value which better reects the usage of the value, however

variable is the accepted nomenclature and will be used for the rest of this

chapter.

Symbolic or Pseudo Register. These represent a variable's current value in the

compilation process until register assignment is executed. They may or may

not directly reect programmer-declared variables. In ROCKET, they do

not. ROCKET's symbolic registers represent the livetrack of a value, albeit a

changeable value, which may di�er greatly from the programmer's view of a

variable. ROCKET's register assignment phase maps all symbolic registers to

actual machine resources, be they registers or other location capable of storing

variables.

Register Uni�cation. ROCKET initially gives the destination of each assignment

operation a di�erent symbolic register. In the absence of control ow, this

produces correct code. With control ow, variables are propagated through

di�ering paths, and those symbolic registers referencing the same value must

be recti�ed. ROCKET contains a process, register uni�cation, that performs

47

this recti�cation. Register uni�cation uses the control ow and dataow infor-

mation produced earlier to assure all references to a value reference the same

symbolic register.

3.4.2 Graph Coloring Register Assignment

The graph coloring method proposed by Chaitan [CAC+81, Cha82] performs

register allocation and assignment at the same time. Allocation decides which vari-

ables will reside in physical (hard) registers at run time; assignment places those

variables into their respective hard registers. The aim is to place as many program

variables into hard registers as possible. This increases the program's execution

speed and reduces the code size, both desirable e�ects. This process is limited by

the fact that variables live at the same time cannot share a hard register. The graph

coloring method uses graph nodes to represent variables, and places edges between

nodes whose variables are live simultaneously. The solution then involves �nding

an n-coloring of the graph, where n represents the number of the target machine's

available hard registers. A graph is considered correctly colored if each node's color

di�ers from all its neighbor's. As an architectural paradigm, this implies each vari-

able is assigned a register di�erent from all other variables live during the same

execution cycles.

It is well known that given a graph G and a natural number n > 2, the problem

of determining whether G is n-colorable is NP-complete [HS80]. That is, there exist

graphs that have a search space that grows exponentially based upon the number

of nodes. An exhaustive method could randomly choose a color, from a pool of n,

and assign it to a node. This process could continue until the graph is colored or

adjacent nodes received the same color. If adjacent nodes received the same color,

the process would backtrack in search of a di�erent, correct, solution. This can be

a lengthly process, with no assurance of ever �nding a solution.

Criteria can be added to this process to speed the search for a solution. Each

node is given a metric of urgency, based on that variable's perceived importance,

48

and the order of assignment is based on the nodes' urgency. This speeds the search

in graphs that are, in some sense, easy to color (non-pathological graphs.) Unfortu-

nately, solutions based on urgency criteria will still create exponential search spaces

in the worst case. There is no way to easily predict the onset of exponential search,

leaving this method with obvious aws.

Another approach is possible with a simple observation about coloring graphs.

If a node is removed from the graph that has degree less than n, no matter how its

neighbors are colored, there will be at least one color left over for it. For example,

in a graph where a four-coloring is being attempted, if a node of degree three is

removed, each of its neighbors may be assigned any three colors leaving at least one

color for the removed node. Nodes are removed in this manner until the graph is

empty or no remaining nodes have degree less than n. This deterministic method

consumes non-exponential time and space. It is not guaranteed to �nd n-coloring

if one exists; however, it does produce excellent results in practice. Once a register

interference graph has been shown by this method to be n-colorable, nodes are

replaced in inverse order of removal, and colored by choosing a color not present in

their neighbors. The order of replacement is signi�cant; it is known that at the time

of removal the node can be given a color di�ering from all its neighbor's. Di�erent

orders can produce a lowered register usage, but cannot guarantee colorability. A

hard register (color) not used by any of a node's neighbors is chosen for it. Two

methods for choosing which hard register to assign next are

� pick the lowest numbered register not used by neighbors, or

� pick registers in a round-robin fashion. In this method, a record is kept of the

last hard register allocated and allocates the next higher numbered register

(mod the number of colorable registers, of course) not already allocated to a

neighbor in the interference graph.

49

The �rst method reduces the overall number of hard registers used, possibly reducing

the number of save and restores around call sites. The second method increases

the number of hard registers used, thereby possibly reducing the number of anti-

dependencies required, and possibly creating a more advantageous environment for

instruction scheduling.

It is possible for this method to produce erroneous solutions to certain graphs,

i.e. deem a graph uncolorable when it is not. Figure 3.1 shows an example where

the graph is 2-colorable, but has no nodes with order less than 2. Briggs et al.

[BCKT89] give a re�nement of the coloring process. They suggest removing the

node with the lowest degree instead of those with degree less than n. Then replace

them, as before, in inverse order of removal, giving each the lowest color not used

by its neighbors. This increases the likelihood of �nding a coloring because it is

possible multiple neighbors will have the same color, leaving more colors available

to a node. In the previous method, spilling would have already occurred. When

a node is unable to be colored, it is ignored (left uncolored), and the replacement

process continues. This gives an uncolored node's neighbors more colors to choose

from. When the assignment procedure is complete, uncolored nodes are reassigned

to another machine resource and a new interference graph is built. This method has

the di�culty of not using usage cost to determine which node to reassign. Briggs et

al. go on to make another improvement to the register assignment process. Nodes

with degree less than n are removed in arbitrary order. Any nodes remaining in the

graph are ordered for removal by their associated spill cost. All other parts of the

algorithm remain invariant. Briggs et al. report good results with this procedure;

ROCKET also implements this method.

When a graph is not found n-colorable, some program variables must be placed

in a non-register resource. This resource is usually an o�-chip read/write memory.

This creates a speed penalty so these variables must be chosen carefully. Code must

be generated to \spill" the variable out after each de�nition and to \spill in" before

50

��
��

��
��

��
��

��
��

��
���

�
�
��

@
@
@
@@

@
@

@
@@

�
�

�
��

Figure 3.1: A Pathological Graph

each use [ASU86]. This reduces the pressure on the internal register bank by re-

ducing the length of any spilled variables' live tracks. This reduces the interference

caused by spilled variables, hopefully allowing the graph to be completely colored.

Because the interference may not be reduced enough and hard registers are usually

still temporarily needed for spilled variables, a new graph is built and the color-

ing/spilling cycle repeated as necessary. Variables are chosen to be spilled based on

perceived cost. For example, those within nested loops or with a high number of

uses will be spilled last.

When a program executes a call statement, values residing in hard registers

may be destroyed by the called routine. A convention may be adopted specifying

which hard registers may be overwritten by a subroutine, but this practice removes

resources that could otherwise be well used. An alternative convention saves the

values needed before they are overwritten and restores themwhen control is returned

to the calling routine. Using this procedure, two choices exist: 1) the caller can save

the active values before transfer of execution and restore them upon return or, 2)

the callee can save upon entrance and restore before exit. The caller-save method

saves all those hard registers live before and after the call; the callee-save method

51

saves any register that will be destroyed during subroutine execution. The callee-

save method has the bene�t that the save/restore code is present only once whereas

the caller-save has to place code around each call. A re�nement to the callee-save

process saves hard registers only before they are modi�ed within the subroutine and

restores only those, after the last use. Control ow constructs within the subroutine

may cause certain registers not to be destroyed every time it is called. The caller-

save will save fewer registers if there are fewer registers live before and after the

call in the calling routine than exist within the subroutine. The inverse is true

for save by callee. ROCKET uses callee-save for its code space reduction and its

implementation simplicity.

3.4.3 Interference

To perform graph coloring register assignment, a register interference graph

needs to be built. Fortunately, ROCKET's method works equally well with either a

program's intermediate representation or �nal form as input. Whether to perform

register assignment before or after scheduling depends exclusively on factors other

than the register assignment procedure.

Before describing further how ROCKET builds the register interference graph, a

brief digression is required to discuss execution points. Intuitively, an execution point

can be thought of as a distinct step in the program's execution. Thus, the de�nition

of an execution point di�ers slightly depending on the program representation being

considered. In C source code, each \;" might be considered an execution point.

Program analysis considers each intermediate statement a distinct execution point.

After scheduling, each instruction is an execution point. The lifetime of a variable is

certainly di�erent in each form, with only the scheduled form correctly representing

the actual lifetime.

Given this malleable de�nition, it can be determined which variables have in-

tersecting lifetimes using two dataow sets that the ROCKET compiler maintains

for each di�erent type of execution point.

52

De�ned: the set of variables rede�ned during the execution of this point.

Live: the set of variables which \contain" values needed at this or some later exe-

cution point.

The interference graph is built using the following observation:

A variable, R, interferes only with those variables which are live at the

execution point(s) where R is de�ned.

Stating this notion in algorithmic form, the following pseudo-code outlines how the

interference graph is built:

foreach execution point, P, in the program:

{

foreach member, defR, of P->defined:

{

foreach member, liveR, of P->live:

{

add an edge between defR and liveR

}

}

}

To build the register interference graph the de�ned and live sets for each pro-

gram execution point must be calculated and the ability to traverse the execution

points must be maintained. Since ROCKET maintains the de�ned and live sets at

each execution point in both the intermediate and scheduled representations of the

program, it is equally easy to build the interference graph either before scheduling

(using intermediate statements), or after scheduling (using instructions).

3.4.4 When?

The important question remaining is when, during compilation, should regis-

ter assignment take place? At least �ve places are possible, three are shown in

Figure 3.2. Most traditional compilers perform register assignment on intermedi-

ate code, and ROCKET has this ability. For traditional architectures, this is a

53

benevolent environment for register assignment as the �nal code closely mirrors the

intermediate representation. This is not true for MILCs. A previous incarnation

(Horizon) performed register assignment on the DDDs produced by the code selec-

tor. This representation is closer to the �nal form with more parallelism exposed and

Beaty [Bea87] found this to be an e�ective method. The third place for register as-

signment is after instruction scheduling, where all the information is available about

the �nal form of the code. A fourth place is during the process of code selection,

long used in traditional compilers [ASU86]. Bradlee et al. [BEH91] integrate register

allocation with instruction scheduling, moving the process closer to the �nal form

of the code. These last two methods were found challenging to make completely

machine-independent, and were not implemented in ROCKET.

It is desirable that register assignment be done very late in the compilation

process. The myth of unlimited register resources can be maintained until after

optimizations, such as common subexpression elimination, copy propagation, and

dead code removal, are completed. Delaying register assignment provides several

bene�ts. If an optimization calls for creation of a new register, (or expansion of a

register variable's lifetime), the optimization can be performed given the assurance

that a later register assignment process will \make everything right" with respect

to the register values needed. Similarly, if an optimization (e.g. dead code removal)

removes the need for a register or shortens a register variable's lifetime, the lowered

register interference will be undoubtably noticed at register assignment time. Thus,

the basic rationale for performing register assignment late is the preference to assign

values to hard registers only after any optimizations that may change either the

number of register values needed or those values' lifetimes. If registers are assigned

before one or more of these optimizations, assignment and spilling decisions are

based on poor estimates of the register usage in the compiler's �nal product.

By delaying register assignment, some di�culties are encountered. The fact

cannot be ignored that no target architecture has an in�nite number of registers.

54

Parser

Traditional Analysis

and Optimization

Code Selection

Instruction Scheduling

Machine Independent
Intermediate Representation

Machine Independent
Intermediate Representation

Machine Dependent
DDDs

Scheduled Instructions

Register Assignment ?

Register Assignment ?

Register Assignment ?

Source

�

�

�

?

?

?

?

?

Figure 3.2: Possible placements of register assignment

55

Common optimizations must consider the consequences of adding to a program's

register interference. Indeed, if to eliminate a common subexpression, register inter-

ference is increased to the point that register assignment spills, the cost of evaluating

an expression multiple times must be great to outweigh the added spill cost. Thus,

a phase coupling problem is present where intermediate optimizations and regis-

ter assignment depend on one another. A common solution, discussed in Beaty et

al. [BDM+88] and used in ROCKET, performs register assignment after common

optimizations such as common subexpression elimination but includes a \register in-

terference" parameter in the target machine description. This parameter estimates

the probability that creation of a new register value would lead to register spilling,

and is larger in a machine with fewer registers.

So far, timing of graph coloring register assignment has been discussed only with

respect to traditional optimizations. How does inclusion of a scheduling phase a�ect

the optimal placement of register assignment? While scheduling itself will not create

or destroy register values, it will certainly alter the lifetimes of register values by

changing the relative order of operations from the intermediate code. Therefore, to

use the most accurate dataow information, register assignment is delayed until after

the compiler's scheduling phase. All known compilers perform register assignment

before instruction scheduling. It is assumed this is due to implementation di�culties

encountered. Speci�cally

� in those cases requiring spilling, it is not clear how to add spill code to already

scheduled instructions, and

� code for saving and restoring registers must be scheduled, causing a phase

coupling problem, because until register assignment is complete it cannot be

determined how many registers need to be saved/restored.

Having shown why it is useful to delay register assignment until after scheduling,

the implementation issues mentioned previously must be investigated, speci�cally

56

the di�culty in spilling registers in scheduled instructions and the uncertainties in

saving and restoring registers around procedure calls.

One of the nice consequences of performing register assignment based upon

intermediate statements is the ease with which spill code can be inserted into the

intermediate code. All that is needed is to

1. construct new intermediate statements to represent the actions of storing a

register's value to memory and later loading a register from that memory

location, and

2. insert the new statements into the list of intermediate statements for the pro-

gram being compiled.

Sadly, such insertion will not generally work with scheduled code. The scheduled

code probably will contain machine operations packed into di�erent instructions

but bound by restrictive timing. Arbitrarily inserting new instructions into the

scheduled code could violate the constraints under which the code was originally

scheduled.

Because inserting spill code into already-scheduled instructions is undesirable,

it might be desirable to add spill code to the DDD provided by the code selector.

While possible, this would be extremely messy. Rather than add spill code to ei-

ther the scheduled instructions or the DDD, the scheduled instructions are used to

choose candidates for spilling (providing good information about spill cost), but spill

code is added to the intermediate statements. With this approach spill code can

be easily inserted, and spill decisions are based on register usage in scheduled code.

This method's major disadvantage is the possible reduction of compilation speed.

Register assignment is a loop where the process assign, spill, assign, spill, . . . , con-

tinues until the assignment phase can allocate all the (remaining) variables to hard

registers. By assigning registers after scheduling but spilling in the intermediates,

57

this loop has been lengthened. Now, in addition to adding spill code for each iter-

ation of the assign/spill loop, DDDs must also be built from the intermediate and

scheduled for each iteration. A method to reduce the number of iterations register

assignment requires is to spill more variables than appear needed. This will reduce

the pressure on the registers being assigned, but care must be taken so that a good

estimate on the number of additional spills needed is found.

Delaying register assignment until after scheduling may also lead to implemen-

tation problems in saving and restoring registers around each procedure call. It

cannot be determined how many registers must be saved/restored until after reg-

ister assignment. But the save/restore code also needs to be scheduled. Thus,

save/restore code must precede scheduling but follow register assignment, playing

havoc with the decision to schedule before assigning registers. Luckily, the decision

to place the save/restore code in the callee rather than caller subprogram provides an

easy solution. A crucial observation in reaching a solution is: save and restore code

does not reference variables, only the hard registers that must be saved. The values

residing in the hard registers are meaningless to the subroutine, and must simply

be saved for the calling routine's bene�t. Therefore, register assignment can ignore

the register save/restore code. To insert register save/restore code in a function,

ROCKET inserts two dummy basic blocks, ENTRY and EXIT, into the function's

control ow graph. As the names imply, these blocks will be the �rst and last

executed. Through most of the compilation process these blocks contain no code.

After scheduling and register assignment, ROCKET inserts register save code into

the ENTRY block and register restore code into the EXIT block, saving/restoring

those hard registers referenced within the function. Finally, the ENTRY and EXIT

blocks are scheduled.

3.4.5 Results

Much of the foregoing is summarized in Sweany and Beaty [SB90]. A hypo-

thetical machine, a 68020-based engine with an o�-chip oating point adder and

58

an o�-chip oating point multiplier, was devised to study the performance of the

delayed register assignment process. Code size improvements of 20% where found

in some of the longer Livermore Loops [McM86]. Shorter code segments showed

less improvement. The reduction of anti-dependencies was responsible for most of

the improvements. Register usage was increased due to the increased parallelism.

The number of registers used by all examples did not exceed 32 integer or 32 oat-

ing point registers. With the current trend of having a larger number of registers

present on-chip, this method will pay large dividends with little risk of compilation-

time detriments.

Bradlee et al. [BEH91] give a schedule cost function, based upon the number

of registers, of

schedcostb(x) = c +
d

x2

where b is a particular basic block and x is the number of registers available. This

function is for general purpose code and relates well to results found by ROCKET.

For numerical code, the performance increase can be expected to be greater.

The delaying of register assignment until after instruction scheduling has several

obvious advantages.

1. It reduces anti-dependencies by performing the parallelization process without

consideration to resource usage. This exposes more parallelism to the sched-

uler by using the assumption that all scalar variables are independent. This

remains true if no spilling occurs. Fewer edges are present in the graph, for

no register reuse is present, increasing the scheduler's ability and exibility in

the production of quality code.

2. It directly reects the scheduled code, not the vagaries of the source program,

any intermediate form, or the target machine. If register assignment occurs

any time earlier, resource usage must be guessed at, and compilers guess con-

servatively in order to reduce the number of registers used. The reduction of

59

register usage is a worthwhile goal for it can save time at call sites; if done at

the expense of run-time performance, this goal is vacuous.

3. It incurs no hardware penalty. Techniques should be performed where the

cost/bene�t ratio is smallest. With the ease and e�cacy of post-scheduling

register assignment, a cogent argument can be made that resource allocation

decisions are better made at compilation time rather than run time, because

of the possibility of incurring the associated run-time penalties. The method

also works for any machine, reducing the design cost of all new machines.

3.5 Summary

This chapter has explored the issues surrounding the production of good quality

code for MILCs. Speci�c di�culties, such as non-improving code improvements,

were addressed and methods were given for response. Motivation for performing

good analyses was given. A high level description of the current ROCKET compiler

was discussed as it relates to MILC compilation issues. The necessity of reducing the

number of false dependency DDD edges was addressed. Several methods, including

an important change in the placement of register assignment, were included.

Chapter 4

LIST SCHEDULING

Of all the methods in Section 1.2.1, list scheduling is used the most in existing

schedulers. There are several reasons for this. There exists a known bound on the

time it takes to execute, and it is a polynomial bound based on the size of the DDD.

It has been shown by Davidson et al. [DLSM81] to produce good results in the

presence of good heuristics. List scheduling is also relatively easy to implement.

4.1 Methods

In Co�man [Cof76], an outline for general list scheduling is given. An ordered

list of tasks is constructed. The list is called a priority list because the tasks are

ranked with those with the highest priority �rst. When a processor becomes free,

the list is scanned for the �rst unexecuted task ready to be executed. A task can

be executed given all its predecessors have been executed and there exist enough

resources for the task. If not enough resources exist, the list is scanned further until

a task is found that can be executed or none are ready, in which case the processor

remains idle until a task on the list is ready. When the list is empty, the schedule

is complete.

4.1.1 Speci�cs

Algorithmically, [Gas89] gives the method in Figure 4.1 as a method of per-

forming list scheduling. This method runs in time based on the size of the DDD.

No backtracking is performed in the event of a schedule failure. The only method

61

list schedule (DRS)
f

while (DRS 6= ;)
f

choose op 2 DRS with highest priority;
for (� = �(op)min; � � �(op)max; � ++)
f

if (pack op in �)
f

DRS � op;
DRS [Nf8a;N 2 op:succ j a � N = ;g;
list schedule (DRS);

g
else
f

continue;
g

g
g

g
...
list schedule (DDD(N)f8a;N j a � N = ;g);

Figure 4.1: List scheduling

for not creating scheduling failures (of any of the three types mentions in 2.1.2) is

avoidance. Sections 4.4 and section 4.5 discuss two methods of avoidance.

Another approach would be to generate all the possible schedules by trying all

the possible operations when scanning the list instead of using the �rst one found and

using the shortest found. if list scheduling can produce the optimal schedule, this

would guarantee optimality because all possible combinations of forming instructions

from operations would be attempted. Algorithmically, see Figure 4.2.

Note this is a recursive routine, in order to simplify its expression. What this

routine does is:

1. Places each node in turn in the data ready set into the �rst available instruction

that can hold it.

62

list schedule (DRS)
f

foreach (node 2 DRS)
f

pack node in �, the �rst available instruction;
DRS � node;
add to DRS = Nf8a 2 DDD;N 2 node:succ j a � N = ;g;
DRS [add to DRS;
list schedule (DRS);
DRS � add to DRS;
DRS [node;
remove node from �;

g
g
...
list schedule (Nf8a;N 2 DDD j a � N = ;g);

Figure 4.2: Exhaustive list scheduling algorithm

2. Update the data ready set to reect the packing of the operation.

3. Calls itself recursively with the new data ready set.

4. Places the node back on the data ready set so that it is used while iterating

on all the other nodes at this level.

5. Removes the operation from the instruction it was placed in so its resources

and encodings are freed.

The routine is called with the sources of the DDD; the original data ready set. If it

is unable to place an operation in an instruction (on the basis of a timing conict), it

does not fail. The routine simply continues to check other possible schedules. If no

schedule is found, no list scheduling routine could schedule the DDD. This method

does not backtrack, it does exhaustive enumeration and searches all the valid �nal

schedules for the shortest.

63

It is interesting to note this method does not produce all possible schedules.

There is a heuristic even here: place a node in the �rst available instruction. In

the presence of (n;1) timing on any edge, it is possible for an in�nite number of

schedules to be generated. While this heuristic seems reasonable, optimal schedules

might not be found if delaying an operation would reduce the length of the resultant

schedule. All orderings of the list are attempted, not all placements of the orders.

Simple modi�cations are needed to change the exhaustive method into a non-

exhaustive method (See Figure 4.3.) This routine attempts to schedule the node

with the highest priority. If it fails, it tries the next highest node until it �nds an

operation it can pack. If it fails to pack any of the nodes from the list, the order

used created one of the failures from 2.1.2. No backtracking is attempted and other

possible schedules are not tried. The routine is a recasting of the while loop version

from Figure 4.1; it is recursive for clarity and comparison to Figure 4.2.

Comparing Figure 4.2 with Figure 4.3, few di�erences exist. Instead of all

orders being attempted, only one is tried. This eradicates the need to change the

information in the data ready set after a node is packed. It also eliminates the

need to remove any operations from their instructions as the �rst placement is the

�nal placement. If list scheduling is performed by these recursive methods, choosing

between them is easily possible during scheduling.

The non-exhaustive recursive method and the while-loop method execute equiv-

alently. Both choose the node with the highest priority to schedule next. They are

di�erentiated by the fact that the recursive version saves each DRS on the stack as

it executes. If backtracking or exhaustive methods are used in concert with the list

scheduling routine, this is an advantage. If not, the space on the run-time stack of

the scheduler is wasted.

4.2 Direction

64

list schedule (DRS)
f

choose opfop; n 2 DRS j n < op)
f

if (pack op in �, the �rst available instruction)
f

DRS � op;
DRS [Nf8a 2 DRS;N 2 op:succ j a � N = ;g;
list schedule (DRS);

g
else
f

n = op;
continue;

g
g

g
...
list schedule (DDD(N)f8a;N 2 DDD j a � N = ;g);

Figure 4.3: Non-exhaustive list scheduling

65

The direction a scheduler traverses a DDD can have a large impact upon its

e�cacy. Thus far, forward traversals have been discussed. To schedule in the back-

wards direction, no changes to the algorithms thus far enumerated are required.

The change occurs exclusively in the data structure representing the DDD. Here,

all the sources become sinks and vice versa, all the predecessors edges become suc-

cessor edges and vice versa, and all the operations are placed in instructions in a

backwards fashion. Upon completion of scheduling, the instruction list is reversed

to reproduce the original semantic ordering of the source.

Allan and Mueller [AM88] note the direction of scheduling has a large impact

on a per-architecture basis. One direction will succeed in producing a valid schedule

in a given architecture much more often than the other. Bias is predicted on the

presence of restricted timing within the DDD. Reasons for this bias include:

1. Presence of restricted branch delays. If branches in an architecture have (n;m)

(or more likely (n; n)) timing to the end of the DDD, there exist few (or

one) instructions in which they may be placed. Reverse traversal will tend to

place this type of operation in the correct instruction early in the scheduling

process, increasing the chance for a valid schedule. Forward traversal will tend

to schedule branch operations late in the process, when much less exibility is

available in the DDD because of the amount of already completely scheduled

instructions.

2. Presence of restricted pipe stages. As above with branch delays, (n;m) pipe

stages can cause failures when a pipe operation is not instantiated at the

proper time. Traversal direction is dependent upon whether

(a) the inputs of the pipe are latched,

(b) the outputs of the pipe are latched,

(c) both are, or

66

(d) neither are.

3. Use of transient condition code registers within the DDD.

It is also possible for the direction to have an e�ect on the length of the �nal

schedule without considering the impact of restricted edges. The reason is simple:

direction has an impact upon the order nodes are chosen to be placed. This is

because the formation of the data ready sets di�ers between the two directions. The

de�nition of data ready is intransigent, the calculation is applied to a di�erent set of

nodes. In this way, for a given DDD, di�ering directions of traversal may produce

two valid schedules with greatly di�erent lengths. It may be worthwhile to attempt

both and choose the shorter. If one direction fails to produce a valid schedule, the

other direction certainly should be tried.

4.3 Complexity

List scheduling has a complexity of O(n2) [LDSM80, Gas89]. This is because it

operates on a precedence graph; general precedence graphs haveO(n2) edges [Cof76].

Landskov et al. give another technique for viewing list scheduling's complexity:

consider the worst-case DDD, one where no data dependencies exist between nodes

and all nodes conict with each other. Then

� each node is checked (n�1)n
2 times to decide which to schedule next, and

� each node is then checked for conict (n�1)n
2 times against the nodes already

placed.

This bounds the problem by n2 � n or O(n2) (note either bounds the problem by

n2

2 or O(n2).)

Given this complexity bound, can an optimal schedule be found in polynomial

time? If list scheduling could generate all possible schedules in polynomial time,

the shortest could certainly be chosen in polynomial time. The question is therefore

67

transformed into: can all schedules be generated in polynomial time? The answer

is no.

Consider the generation of the data ready set list scheduling chooses operations

to be scheduled. To add a member to the DRS, all of the node's predecessors must

already have been scheduled (and in some fashion, removed from the graph.) If

a node has any unscheduled predecessors, it cannot be added. This operation of

�nding which nodes to add to the DRS is an example of producing a topological

sort in a precedence graph, which has complexity of O(n2) (topological sorting has

O(max(nodes; edges)), and precedence graphs can have O(n2) edges.) As this is

also the complexity of the entire list scheduling technique, list scheduling must be

as hard as producing a topological sort of a general precedence graph. As above,

calculating conicts adds to the complexity, but does not change the order. If both

resource and encoding conicts must be checked, complexity can become as great

as 3n2, still O(n2). If topological sorting was not required to properly schedule a

graph, a method with less complexitymight be possible. In Section 2.2.2, generating

the number of total orders consistent with a partial order is discussed. An upper

bound of O(n!) is given and any process to enumerate the total orderings is said to

be #P{complete.

The impact of recognizing list scheduling is topological sorting has several re-

sults:

1. Shows that it cannot generate a known optimal schedule in polynomial time.

2. Gives a method for viewing list scheduling, i.e. seeing it as topological sorting.

3. Produces a method for analyzing the algorithm.

4. Demonstrates that for valid input, valid output is possible.

Another interesting point is observed: list scheduling's building a data ready set, and

thereby performing a topological sort, is a heuristic used to create valid schedules.

68

The implicit heuristic is: scheduling nodes with no predecessors results in valid

orderings more often than scheduling nodes with predecessors.

As noted before, the edges of a DDD do not constrain the order nodes are

scheduled, only the order they appear in the �nal schedule. A topological sort of

the DDD reduces the search space of the scheduling problem. This produces several

results:

1. It increases the chances of �nding a valid schedule. This bene�t should not be

underestimated.

2. It reduces the chances for �nding an optimal or near-optimal schedule. This

is because order of placement is highly constrained by the DRS by reducing

the number of operations available to be placed in the schedule.

If methods can be found that produce valid schedules without the price of performing

a topological sort, scheduling might be simpler. Another advantage could result if a

method could be found that explores the search space of total orderings well; better

schedules might be produced. In list scheduling, a plethora of heuristics are used to

reduce the search space.

4.4 Heuristics

Because list scheduling uses heuristics to prune areas of the search space that

appear uninteresting, the heuristics must be chosen with great care so unsearched

spaces are truly uninteresting. The choice of giving one operation higher priority

than another can have great inuence on the �nal schedule. This is particularly true

in the presence of multi-cycle operations. Placing an operation at the wrong time,

so its output is delayed, will tend to serialize the code. In architectures where more

of the hardware features are visible in order to achieve greater performance, this is

counter-productive.

69

A heuristic often cited [All86, LDSM80, SDX87, Woo78] as one necessary for

e�cacious list scheduling is that of critical path. A critical path in a dag is de�ned

to be a longest path from any of the roots to any of the leaves [Gib85]. It is easy to

�nd a critical path in a dag if all the heights of the nodes are known. Computing

the height of any node is simple

� if the node is a leaf, its height is zero,

� else its height is the largest height of its successors, plus one.

To �nd a critical path, �nd a largest root node, and follow a highest successor node

until reaching a leaf. The path followed will be a critical path.

This de�nition is correct for unweighted dags, that is, those whose edges are of

unit length. With the introduction of weights on the edges of the DDD (denoted as

�(e) for simple timing or �(e) when more complex timing is present), the de�nition

must be slightly modi�ed. A schedule critical path is one with the greatest sum of

the edge weights from all the roots to all the leaves. De�ning the schedule height of

a node to be

� if the node is a leaf, its schedule height is zero,

� else its schedule height is the largest schedule height of its successors, plus the

length of the edge (either �(e) or �(e)min) to that successor,

allows the usage of the same routine that �nds a critical path to �nd the schedule

critical path. In Figure 4.4, node 1 would have a height of 1 and a schedule height

of 39. Node 2 would have a height of 3 and a schedule height of 3. Nodes 2, 3,

and 4 would be on a critical path, Node 1 would be on the schedule critical path.

Node 1 should, in all likelihood, be scheduled before any of the others, otherwise

its operation would happen in serial with the others. If scheduled before, parallel

execution is possible. Basing the choice of operations upon schedule critical path

instead of critical path would accomplish this. Nota bene: critical path and schedule

critical di�erent only if �(e) 6= 1 or �(e)min 6= 1.

70

��
��
1

@
@
@
@R39;1

��
��
2

?
1;1

��
��
3

?
1;1

��
��
4

�
�

�
�	 1;1

��
��
5

Figure 4.4: Critical path comparison

71

4.4.1 Speci�cs

Certainly, a vast number of heuristics are available to reduce the search space

of list scheduling. The search space is condensed by choosing one node in the DRS

that appears most promising for generating a short, valid schedule. In order to get

a short schedule, the schedule critical path is the most important priority heuristic.

This is because it de�nes the lower bound for the length of the schedule (the critical

path technique of Section 1.2.1 emphasizes this point well.) All other nodes might

or might not have an impact on the �nal length; those on a critical path will 1.

An example where critical path does not produce a valid schedule is shown in

Figure 4.5. Nodes 1, 3, 4, 5, and 6 form a critical path for this DDD. If the resource

usage for node 2 conicts with all the nodes on a critical path, this DDD will not

be properly scheduled. Nodes 1, 3, 4, and 5 will be placed �rst. Then node 2 will

attempt to be placed; no instruction is available with enough of the correct type of

resource and the instruction list is limited in length by the restricted timing from

node 5 to node 6. If node 2 had been placed before node 3, the DDD could be

scheduled.

Another heuristic often used to produce valid schedules is that of raising the

priority of nodes having restricted timing on successor edges. The logic behind this

is to �rst place nodes more \di�cult" to schedule. Nodes with unrestricted timing

only depend upon being data ready for placement 2.

In Figure 4.6, the critical path and the restricted successor heuristics form

competing, erroneous heuristics. Assume node 2's resources conict with those of

nodes 3, 4, and 5. If the critical path heuristic is given the most weight, followed by

1Note that there may be multiple critical paths, i.e. more than one longest path from the
sources to the sinks.

2As mentioned before, list scheduling uses the data ready condition as its foremost priority
heuristic.

72

��
��
1

�
�
�
�
�
�
�
�
��

1;1

@
@
@
@R

1;1

��
��
2

A
A
A
A
A
A
A
A
AU

1;1

��
��
3

?
1;1

��
��
4

?
1;1

��
��
5

�
�

�
�	

1; 1

��
��
6

Figure 4.5: A DDD where the critical path heuristic fails

73

��
��
1

@
@
@
@R

1; 1

��
��
2

?
1; 3

��
��
3

?
1;1

��
��
4

?
1;1

��
��
5

�
�

�
�	

1; 1

��
��
6

Figure 4.6: A DDD where the heuristics compete.

the restricted successor, nodes will be scheduled in the following order: 3, 4, 5, and

1. Node 2 will not be able to be placed due to its conicts with node 3, 4, and 5. If

the heuristic importance is switched, nodes will be scheduled in the following order:

1, 3, 4, and 5. Again node 2 is unable to be scheduled. Only if node 2 is scheduled

somewhere between nodes 3, 4, 5, and 6 will a valid schedule be achieved.

As can be seen, developing a set of heuristics that will guarantee a valid sched-

ule for any valid DDD can be challenging. Further, the most useful heuristics for

assuring validity during list scheduling vary from architecture to architecture. This

results from architecture-dependent di�culties: one may have a restrictive branch

delay while another may have a synchronous pipe that does not latch its output.

Di�ering machine features make the generation and reuse of heuristics di�cult when

a machine-independent scheduler is desired.

74

4.4.2 Enumeration

In ROCKET, many heuristics were developed in order to achieve valid schedules

for a variety of target architectures. The following list exists at the current time:

1. height { distance from the leaves of the DDD.

2. on_critical_path { node is on critical path.

3. on_compaction_critical_path { node is on schedule critical path.

4. lexical_order { ordering of nodes from source 3. Fisher [Fis79] shows that

program lexical order is not a good metric for list scheduling priority, our

experience agrees with this.

5. branch_node { the node is a branch node, especially useful in the presence of

delayed, restricted branching mechanisms.

6. schedule_range { the range of �(op), a measure of the exibility of placement.

7. resource_usage_of_this_type_in_dag { the amount of use of this node's

resource in this DDD. The more contention for resources, the earlier a node

should be placed in order to free the resource as soon as possible for reuse.

8. number_of_used_and_defined_resources { as above, nodes that use more

resources than others should be scheduled so they do not interfere with others

needing those resources.

9. least_recently_used_resource { a method of forming round-robin reference

to resources.

10. field_usage_of_this_type_in_dag { as with resources, try to minimize �eld

conicts.

3Easy in ROCKET because node numbers are generated in lexical order.

75

11. number_of_fields_used { as supra.

12. least_recently_used_field { as supra.

13. number_of_successors { the more successors a node has, the earlier it should

be scheduled, allowing its successors to become data ready as early as possible.

This exposes more parallelism to the scheduler.

14. number_of_restricted_successors { the more restricted successors a node

has, the earlier it should be scheduled so timing is more exible within the

DDD. Once timing becomes increasingly limited, restricted successors become

harder to place.

15. total_of_restricted_successors { total of �(e) for all restricted succes-

sors.

16. shortest_restricted_successor { restricted successors having a smaller

�(e) reduce exibility, and therefore the possibility for valid scheduling, di-

minishes.

17. distance_from_succs { a measure of how restricted the edges to the succes-

sors are.

18. average_restricted_successor { the average of �(e) for all the restricted

successors.

19. number_of_predecessors { as with successors, increase priority of those nodes

with many predecessors.

20. number_of_restricted_predecessors { as supra.

21. total_of_restricted_predecessors { as supra.

22. shortest_restricted_predecessor { as supra.

76

23. distance_from_preds { as supra.

24. average_restricted_predecessor { as supra.

All of these have proven useful in di�erent circumstances in ROCKET for a given

DDD.

ROCKET's scheduler has the ability to tune the weight given to each heuris-

tic using Discriminating Polynomial Selection as discussed in Allan and Mueller

[AM88]. Each heuristic value listed above, for a given DDD, is multiplied by a con-

stant speci�ed in a polynomial form. This weighting information can be contained

in the architecture description �le so it may be easily varied on a per-machine basis.

4.4.3 Update Interval

An issue exists as to when to update the priority weightings on the node in a

DDD. At least two possibilities exist:

1. calculating the weights once, before the list scheduling algorithm begins (de-

noted static weighting), and

2. calculating after each node is placed in an instruction (denoted dynamic weight-

ing).

Certainly, the �rst method requires the least amount of computational time. It also

gives a good estimate of the overall priorities present in the DDD. Its di�culty is that

a DDD does not remain static throughout the scheduling process. As operations

are placed into instructions, they are removed from the DDD, changing the shape

and makeup. This is not reected in the priorities if they are calculated only once.

One important heuristic that can change during scheduling is critical path. If

nodes are favored from a critical path, chances are favorable that that path will

become shorter than another remaining in the DDD. A simple example is shown in

Figure 4.7. Originally, nodes 1, 2, 3, and 4 are on a critical path. After nodes 1 and

77

��
��
1

?

��
��
2

?

��
��
3

?

��
��
4

@
@
@
@R

��
��
5

?

��
��
6

?

��
��
7

�
�

�
�	

��
��
8

Figure 4.7: Critical path competition

2 are scheduled, nodes 5, 6, and 7 constitute a critical path. Another particularly

important heuristic is that of schedule range (�(op)). Using the absolute timing

algorithm from Section 2.5.1 and Figure 4.8, node 3 will originally have �(3) = 1;1.

After the placement of node 2, node 3 will have �(3) = n; n where n is one greater

than the scheduled value of �(2). This is a much tighter bound on the range of

node 3 and should be reected in its priority.

The decision as to when to generate the priorities on the nodes is one that

must be considered carefully when producing a list scheduler 4. Empirical results

usually drive the decision; if the static method works well, no reason exists to use

the dynamic method.

4The ROCKET list scheduler can easily choose between either of the two methods mentioned.

78

��
��
1

?
1;1

��
��
2

?
1; 1

��
��
3

Figure 4.8: Need for dynamic schedule range calculation

4.5 Foresight

A powerful method to increase the likelihood of generating a valid schedule

called foresight is introduced in Wijaya and Allan [WA89]. The procedure checks

to see whether, after placing an operation in an instruction, all (direct and indi-

rect) successors with restricted timing can be \easily" placed in their respective

instructions. If so, the operation under consideration is placed. If not, the oper-

ation is moved to its next valid instruction and foresight is repeated. If no valid

instruction can be found, the schedule generated thus far is deemed invalid. This is

not a backtracking algorithm; on the contrary, it looks forward checking for valid-

ity of placing a node before the �nal decision is made. A routine, foresight ok()

(adapted from [WA89]), that checks all nodes restricted by a node's placement is

shown in Figure 4.9. An outline of a routine to schedule a single operation, based

upon foresight ok(), is found in Figure 4.10.

Several routines are assumed to exist in the algorithm presented

� can pack(op; �) checks the resource and encoding conict to assure that op can

be placed in �, and

79

foresight ok (constrained)
f

8op 2 constrained

f
8� 2 �(op)
f

if (can pack (op; �)
f

ok = TRUE;
break;

g
g
if (!ok)
f

break;
g

g
return ok;

g

Figure 4.9: Foresight ok() routine

� update absolute timing() assures that all the absolute times on all nodes are

not violated.

Note that both direct and indirect successors are checked with these routines. The

absolute timing algorithm from Section 2.5.1 assures that all nodes a�ected by the

placement decision are updated. Note also that routines to both add and remove an

operation in an instruction are assumed to exist. This can be complicated by the

machine having multiple instruction formats; care must be taken to assure that as

operations are added and removed from instructions, the instruction format changes

to reect the changing requirements.

4.5.1 Hindsight

Because foresight was developed for a list scheduling system, there was no reason

to check for conicts with predecessor node timings. Checking a predecessor does

80

schedule op (op)
f

8� 2 �(op)
f

if (can pack (op; �))
f

op 2 �;
g
else
f

continue;
g

update absolute timing ();
if (foresight ok (8afa 2 DDD(N) j �(a)max 6=1 g))
f

break;
g
else
f

�� op;
g

g
g

Figure 4.10: Schedule an operation using foresight

81

not make sense in a list scheduler: there must be no predecessors of a node under

consideration for if there are, the node is not data ready. In di�erent schedulers,

this condition can be removed, requiring the addition of hindsight 5. Hindsight

checks whether, after scheduling an operation, all of its restricted predecessors can

be easily placed into their respective instructions. The basic method does not change

appreciably; it is only an extension to foresight to add hindsight. A simple recursive

foresight and hindsight routine is shown in Figure 4.11 6.

4.5.2 Incremental

Because a substantial amount of information generated during each pass of the

foresight routine, Wijaya and Allan add the ability to keep data from one pass to

another, resulting in incremental foresight. The schedule ranges for operations have

a form of temporal locality, i.e. once they are constrained, they remain constrained.

The constrained set does not vary greatly between iterations. Rules may be formed

specifying when schedule ranges are a�ected by placement of operations and must be

updated. When incremental foresight cannot reuse information from a previous pass,

non-incremental foresight is used. In this way speedup is achieved and incremental

foresight fails only when foresight would.

Foresight certainly helps in the generation of valid schedules by checking the

validity of operation placement before committing to it. An assumption made by

foresight is successor nodes will be placed in either the instructions foresight checks

or other instructions can be found to hold them. This assumption can be invalidated.

If the successors cannot be placed in the instruction examined, foresight breaks

down. For example, if instead of the successor nodes being scheduled into the

instructions examined, nodes from another part of the DDD are scheduled into

5Giving the scheduler 20=20 vision?

6ROCKET's scheduler implements foresight/hindsight.

82

foresight ok (node)
f

8opfop 2 node:succ j �(op)max 6=1g
f

8� 2 �(op)
f

if (can pack (op; �)
f

ok = foresight ok (op);
if (ok)
f

break;
g

g
g
if (!ok)
f

return FALSE;
g

g
8opfop 2 node:pred j �(op)max 6=1g
f

8� 2 �(op)
f

if (can pack (op; �)
f

ok = foresight ok (op);
if (ok)
f

break;
g

g
g
if (!ok)
f

return FALSE;
g

g
return TRUE;

g

Figure 4.11: Recursive foresight

83

those instructions (either due to higher priority or the successor nodes not being

data ready), the validity of the examination is obviated.

4.6 Lookahead

Foresight performs a lot of work checking the validity of placing a node. This

work can be wasted in the event that the schedule checked does not become the

actual schedule. A method termed lookahead was developed to enhance the bene�ts

of foresight.

When the scheduler does not place the constrained nodes in the instructions

that foresight determined will produce a valid schedule, work is lost. Why not

perform the scheduling of those nodes immediately? Within the framework of list

scheduling, the reason is simple: those nodes are not data ready. If the data ready

criterion is removed, what is the impact upon forming a valid schedule? None.

As noted before, the edges in a DDD only limit the ordering in the �nal schedule.

So long as this order is preserved, the method of placing the nodes is irrelevant. The

absolute timing algorithm assures that nodes are placed such that their range is valid

in the �nal schedule. The value �(op) for a node, calculated by the absolute timing

routine, speci�es the range in the �nal schedule where an operation can be placed.

Because the foresight routine examines instructions in this range for node placement,

foresight �nding a valid schedule guarantees validity of that placement in the �nal

schedule. An alternative view is that not only a node can be placed where foresight

predicts, it should be placed there. If it is not, scheduling with foresight can fail on

a placement it previously judged valid.

A decision must be made as to whether to pack only the surrounding nodes with

�(e) = (n; n) (equivalently �(op) = (a; a)), or additionally to pack the surrounding

nodes with �(e) = (n;m)fn;m j n < m < 1g (�(op) = (a; b)fa; b j a < b < 1g.)

In the �rst case, no choice exists as to when to pack the nodes, they must be placed

in instruction � + n. The second case contains more exibility and requires the

84

analysis of a tradeo�. Having lookahead place them will result in a larger chance

of generating a valid schedule, similar to the improvement that lookahead has to

foresight. If lookahead does not place the �(op) = (a; b)fa; b j a < b < 1g nodes,

the scheduler may be able to produce a more compact �nal sequence. This tradeo�

varies with the amount of exibility in the operation's schedule range, in the current

DDD, and in the architecture, making it di�cult to analyze the tradeo� universally.

Lookahead also increases the speed of list scheduling by removing the number of

nodes that can be data ready in the graph. There is no need to change the de�nitions

or implementations of any routines within the list scheduler. The de�nition for data

ready remains the same. The only change applies to the foresight routine shown in

Figure 4.11: after the recursive call to foresight ok(), a call to pack(op; �) is made

to a�ect the placement. This assures that all restricted successor operations can

be placed in instructions. A further extension to lookahead, similar to hindsight, is

lookbehind 7. Because lookahead places nodes that are not data ready, it is possible

for a node under consideration to have restricted predecessors. With the same

logic that produced the packing of restricted successors, there is no reason to delay

the placement of restricted predecessors. Any failure to place either a restricted

successor or predecessor would result in a failure later in the scheduling process,

reducing the time spent on an infeasible schedule.

It is important to understand that lookahead is still an avoidance technique,

albeit a more powerful one than foresight, itself more powerful than nothing at all.

There still is the probability that valid DDDs exist that cannot be scheduled due

to poor choices made by the node priority algorithm. This is inherent both in the

use of avoidance techniques and in only searching a small subspace of the possible

solutions 8.

7Producing LOOKOUT! scheduling?

8ROCKET's scheduler contains both lookahead and lookbehind scheduling.

85

4.7 Summary

Several equivalent methods of list scheduling have been presented and com-

pared. The direction of traversal of the graph has a de�nite impact upon both the

length and validity of the schedule. The complexity of list scheduling is bounded (at

least) by the complexity of producing a topological sort of an unconnected graph, i.e.,

O(n2). The presence of other constraints on the nodes will increase the complexity.

Foresight (with the possible addition of hindsight) increases the probability of pro-

ducing a valid schedule by checking the impact that placing a node with restricted

successors (predecessors) has on the �nal schedule. Lookahead (lookbehind) greatly

increases this probability by actually placing restricted nodes in the �nal schedule in

their schedule range, obviating the chance that another (unrestricted and therefore

unchecked) node will preempt their placement. Lookahead also reduces scheduling

time by placing nodes that are not data ready and by stopping the production of

infeasible schedules.

Chapter 5

GENETIC ALGORITHMS AND INSTRUCTION SCHEDULING

Genetic algorithms (GAs) manipulate populations of strings representing the

parameterization of the optimization problem. The strings correspond to chromo-

somes or genotypes in biological terms. A mapping exists from this representa-

tion to the phenotype of the actual solution. GAs use a form of selective pressure

to encourage over-achieving and discourage under-achieving strings in the popu-

lation. A string's chances of reproducing correspond to its performance in the

current environment. This is an easily understandable method and it produces ro-

bust searches of di�cult parameter spaces as demonstrated by Holland and others

[Hol75, DeJ86, Gol89].

5.1 Foundations

Parameters are usually encoded into some form of binary representation. This

representation is then used for subsequent operations and evaluations. Consider the

string: 1100101001110110001. This could represent an integer, a �xed or oating

point real, or any other relevant model of the parameters to be optimized. Mul-

tiple parameters are simply appended together. The initial population is usually

generated by creating random strings.

To perform recombination, the basis for most genetic adaptation in nature,

consider also the string: xyyxxyxyxyxxxyyyxxy (with x for 0 and y for 1) and some

number of break points. The genetic material from one string is then swapped

between those break points with the corresponding material from the other. An

example with two break points is

87

11001 \/ 01001110110 \/ 001

xyyxx /\ yxyxyxxxyyy /\ xxy

resulting in the two children

11001yxyxyxxxyyy001

xyyxx01001110110xxy

Although a single break point is usually used in discussions of GAs, two have been

empirically shown by Booker [Boo87] to produce better results.

Another operation in the reformation of strings is mutation. This is accom-

plished by randomly toggling some of the bits in the o�spring. This creates genetic

diversity. It has been found, in the general case, that mutation rates should be

kept low (less than 5%) for best exploitation and least disruption of the information

present.

In standard GAs, all the strings in the population are reformed during a gen-

eration. Parents are crossed on the basis of their performance in comparison to

the average �tness of the population and mutation is allowed to occur on the o�-

spring. Selective pressure is provided by the �tness measure; the di�erential need

not be great to achieve good results. Both selective pressure and initial population

sizes may be tuned to match the problem space. The type of crossover and rate of

mutation needs selection based on the problem type.

To relate the encoding with the sampling of hyperspace, consider a string of

length three. This gives the ability to represent a three-dimensional hypercube. The

string 011 represents a corner of the hypercube. Edges have one of the bits as a

\don't care," i.e., 01*. Faces have two \don't cares:" i.e., 0**. The entire space

can be expressed by a complete \don't care string:" i.e., ***. Strings containing a

\don't care" in some position are termed schemata. Figure 5.1 demonstrates schema

sampling in a three-dimensional hypercube. In general, each binary encoding cor-

responds to one corner in the hypercube and samples 2L � 1 di�erent hyperplanes

in the search space where L is the length of the binary encoding. This is the idea

88

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

p p p p p
p p p p p
p p p p p
p p p p p p p p p p p p p p p p p p pppp
ppp
ppp
ppp
ppp
ppp

000

010

001

011

101

111

100

110*10

1**

J
JĴ

�

@@

@@

@@

@@
@@

@@

@@

@@
@@

@@
@@

@@

@@

@@
@@

@@
@@

@@
@@

@@

@@

@@
@@

@@
@@

@@

@@

@@
@@

@@

@@

@@

Figure 5.1: Sampling in a three-dimensional hypercube

of intrinsic parallelism whereby one string samples the productivity of many hyper-

planes [Hol75]. Schema theory indicates that individual hyperplanes will increase

or decrease their representation in a population based upon their relative �tness in

that population when reproduction and recombination are applied.

The more diverse the original population, the more global the search. The

search does not avoid or escape from local minima; it does a global search where

local minima are ignored in favor of higher-valued strings. If a local minima is found

to be best, it will tend to be competitive with all areas of the space searched. It

has been shown that if an area in hyperspace has above average performance and

is sampled by a schema in the population, that area's representation will increase

within the population. It has been calculated that for the processing of N structures

per generation approximately N3 schemata are sampled (intrinsic parallelism).

The ability to sustain search is dependent upon the genetic diversity in the

population. When a population lacks diversity, new areas of the space are not

examined. Mutation can be used to drive the search into these unexamined areas.

89

However, a �xed level of mutation has been shown to disrupt the search early and

then fail to provide enough diversity in the later stages. Adaptive mutation increases

the mutation rate based on the homogeneity of the population and gives better

performance.

5.1.1 GENITOR

The GENITOR GA program, developed by Whitley [WSF89, WSS90], has

some di�erences with \standard" GAs that appear to increase performance. It does

not replace the entire population with each generation. Instead it probabilistically

chooses two parents to reform into two o�spring. Recombination and mutation

occur, then one of the o�spring is discarded randomly. The remaining o�spring is

placed in the population according to its �tness in relation to the rest of the strings.

The lowest-valued string is discarded. This keeps high-valued strings within the

population, directly accumulating high-performance hyperplanes. It also bases the

reproductive opportunity upon rank with the population, not upon a string's �tness

value in comparison with the average of the population, reducing the impact of

selective pressure uctuation. It also reduces the importance of choosing a proper

evaluation function for �tness in that the di�erence in the �tness function between

two adjacent strings is irrelevant.

A recent improvement has been made to GENITOR in the form of a distributed

genetic search. This is not simply running subpopulations on di�erent processors

but also occasionally swapping the best members from neighboring subpopulations.

In this way, subpopulations are somewhat independent while still sharing some

information. The search speed is increased over the serial method, allowing the

exploration of larger populations in a given amount of time. Larger problems are

also approachable with the distributed genetic search. It is also a more robust

method, producing better results without as much sensitivity to population size or

selective pressure. The improvements are attributed to the maintenance of genetic

diversity by the interacting subpopulations.

90

5.2 Results from Related Work

Realistic scheduling problems are di�cult to represent using traditional mathe-

matical techniques. As a result, more traditional optimization methods are di�cult

to apply. GAs are capable of searching ill-structured spaces and also provide a global

method of search.

Genetic algorithms have been recently applied to three areas of interest with

good result: the traveling salesperson problem, job-shop scheduling, and ow shop

scheduling. The following three subsections discuss the motivation and results re-

ported by Whitley and others [WSF89, WSS90, CS89]. High quality solutions have

been found for each of these problems. The results are not based upon heuristics or

local optimization information. As is common with GAs, a method of ranking the

current population is required. In these problems, this is a simple task of summation

to �nd the length of each member of the population. This task is, if anything, easier

for instruction scheduling because the length of scheduled code is trivial to �nd.

5.2.1 The Traveling Salesperson Problem

This problem involves �nding the shortest Hamiltonian path or cycle in a graph

where nodes represent cities, and edges represent the paths and distances between

two cities. The optimal solution is one having the least distance and yet visits all the

nodes (cities). The TSP is an example of an NP-hard problem; all known methods

for �nding an optimal solution require searching a space that grows exponentially

with the number of nodes in the graph.

When using GAs to perform TSP optimization, maintenance of good subtours

present in the parents is desirable. This leads to shorter overall tours in the children.

A recombination operator that preserves edges will exploit the most amount of

information from the parents. In Whitley et al. [WSF89, WSS90] this is achieved

by making an edge map and having the recombination operator use this map. It is

possible to show that this method changes the sampling rate of hyperplanes in the

91

N-dimensional hypercube (where N is the length of the encoding of the problem)

in favor of high �tness hyperplanes. This method of optimization does not use any

information on the distance between cities, only the distance of the overall tour.

The use of this type of metric for the evaluation function is important because of

its simplicity and applicability to many forms of scheduling and sequencing.

The published results from this method are impressive. The best known solution

for a certain 30-city TSP problem is 420. With a serial version of GENITOR, a

population of 200 and allowing up to 70,000 recombinations, the GA found the best

known solution in 28 of 30 tries. It found a solution of 421 with the other two tries.

With the distributed version, it found the best known solution in 30 of 30 attempts.

On a 105-city problem, with the distributed version and 10 subpopulations of 1000

each and allowing for 200,000 recombinations in each subpopulation, the best known

value of 14,383 was found 15 out of the 30 times. In the remaining 50% of the

time, the solutions were within 1% of the best known. More recent enhancements

to the algorithm have further improved performance (solutions of 420 on 45 of

45 tries) while reducing search time by more than 50% (a maximum of 30,000

recombinations).

5.2.2 Job-Shop Scheduling

In scheduling machine usage on a job-shop oor, the exibility is usually found

in the sequence of jobs presented to the line. There are �xed setup, idle, and active

costs for machines. A strict amount of product needs to be produced in order to meet

the demand. Therefore, the approach taken is viewing the optimization problem as

one of sequencing the types of jobs presented to the �rst machine in the line. This

can then be viewed as a problem similar to the TSP. The sequence is then evaluated

on the basis of total cost and the GA performs the search accordingly.

In Whitley et al. [WSS90] a detailed description of an actual production line in

use at Hewlett-Packard in Fort Collins, Colorado is discussed. It contains 6 workcells

92

(groups of machines) in sequence, each performing a speci�c operation. Each has

a single input and a single output queue. Every workcell contains two identical

machines operating independently. The machines have costs associated with the

various tasks they perform. Twenty di�erent types of products are produced by the

line.

Two di�erent approaches were tried:

1. a strict FIFO where the GA controlled the sequence of jobs presented to the

line, and

2. a HYBRID where the GA attempted to optimize the initial sequence and a

greedy algorithm attempted to reorder jobs in the line for maximal machine

usage.

The FIFO task appears more di�cult because it is not allowed to reorder jobs within

the line. Both models try to keep all machines busy all the time. Surprisingly, the

FIFO model produced better sequences, i.e. kept more machines busy more of

the time resulting in lower cost. It also produced results faster than the HYBRID

method. The results were not greatly di�erent (approximately 3%) but the impli-

cations of not having to use a greedy, heuristic-based method (requiring more code

and e�ort) are great. It is thought that FIFO worked better than HYBRID because

of its ability to directly control all the global information. What appears good from

a local greedy point of view is not always good from a global perspective. The FIFO

is also probably a more realistic model of many scheduling tasks.

The implications of using only overall cost for the evaluation function are also

signi�cant. This allows for the application of GAs to other scheduling or sequencing

problems that are not well-structured enough for traditional optimization methods.

The only two areas that vary between problems are:

1. the representation scheme and

93

2. the evaluation function.

It has been shown empirically that these are easy to vary.

[WSS90] concludes \that one should not attempt to build heuristics into the

scheduling system, but rather let the genetic algorithm do the work." By doing this,

the implementation is simpli�ed, the computational complexity is reduced and the

quality of the results are not damaged.

5.2.3 A Warehouse/Shipping Scheduler

In Starkweather et al. [SMM+91], the development of a system to schedule the

production of beer at a large local brewery 1 is discussed. A simulator was developed

that mirrored the actual production constraints of the brewery. The objective of

the scheduler was the e�cient allocation of orders to loading docks based on some

�xed production cycle. Production occurs 24 hours a day on multiple lines, each line

capable of producing a certain beer type. There exists di�erent labeling and pack-

aging possibilities that complicate scheduling. Data were available on the di�erent

ow rates, start and stop times, and product type for each line. A set of orders to

be �lled was also available. The goal was the reduction of average inventory (costly

in many di�erent ways) while �lling as many orders as possible. The genetic al-

gorithm manipulated strings representing the sequence beer orders were processed.

Each sequence was run on the simulator to produce an evaluation, with the orig-

inal population generated randomly. Results from simulations demonstrated that,

for improvement, preserving relative order was more important than preserving ad-

jacency in the population's strings. This is not surprising as adjacency has little

meaning in this problem's context; items adjacent in the sequence were probably

unrelated, occurring on separate production lines. The order of tasks scheduled for

any particular line determines the �nal output.

1Coors Brewery, Golden Colorado.

94

Using the e�cient search possible with genetic algorithms and a modern work-

station, good daily schedules can be generated in �ve minutes. This is considered

real-time in the context of the problem. Line down-times, priority orders, and the

like can be adjusted for on the y.

5.3 Instruction Scheduling using Genetic Algorithms

The encouraging results presented above drove the use of GA's for instruction

scheduling. With the increasing complexity that expressing parallelism in both

the source code and in the architecture places on scheduling, and the concomitant

increase in the importance of producing good code, previous methods were found

too weak. The search space is certainly discontinuous, with good schedules adjacent

to bad ones, so that methods of local improvement (such as hill-climbing) cannot

be relied upon to �nd globally competitive solutions. Another important feature

provided by the removal of local methods is the time reduction realized by not

performing the analyses required to drive these methods. In the case of instruction

scheduling, the need to analyze the DDD and produce the metrics the heuristics use

is obviated. Finally, the time taken by genetic algorithms can be directly controlled.

The time taken by other global search methods, such as exhaustive search, cannot

be.

A distinction before some speci�cs. In Chapter 2, the problem of scheduling

was stated as that of placing tasks with precedence constraints on processors for

execution. The precedence constraints must not be violated by the scheduler. Given

a method of placing tasks in a schedule that ensures validity, the problem may be

changed into one of sequencing. Sequencing speci�es the order tasks are scheduled;

another method generates the schedule based on that order.

5.3.1 Methods

To use genetic algorithms for a particular problem domain, only a few ancil-

lary functions must be de�ned. One of these is an evaluation function that ranks

95

the �tness of a string from the population. Choosing a proper function, i.e., one

representing a string's relative worth in the population without inordinate bias, is

important. For instruction scheduling, a minimization problem, the result of the

evaluation function must reect the length of the �nal schedule that a member of

the population generates. A di�culty encountered is that not all strings will produce

valid �nal schedules. Failures will occur when a conict arises (i.e. timing, resource,

or �eld) due to a string's ordering. It is not surprising that certain orders will fail to

produce valid schedules for any given DDD; in fact, the impact of ordering on the

production of valid schedules is (over)emphasised in previous methods of instruction

scheduling.

One possible solution is to give failing strings some predetermined \bad" (large)

value. Di�culties with this method include

� all failing strings will be given the same value, no matter how close they got

to producing a valid schedule, and

� the evaluation function will produce undesirable bias among the poorly per-

forming strings, i.e., they will all appear equivalent.

This will interfere with the natural selection process of the genetic algorithm because

actual performance is not reected by the evaluation function. After consideration,

the method selected performs a \worst-case" evaluation when a string fails to pro-

duce a valid schedule. This evaluation is produced by assuming all unscheduled

operations have no parallelism available in them, necessitating their serial place-

ment. The calculation of the evaluation function is then trivial; it is the number of

instructions containing operations so far, plus the length of the path containing the

serial ordering of all the unscheduled operations. This produces a good estimate

in the event of schedule failure; those schedules with more operations placed will

receive a better evaluation. It also produces an exact evaluation in the presence of

a valid schedule.

96

Six di�erent operators were studied. Recall that in GENITOR, two parents are

chosen for an operation, and one child at a time results. A summary generated from

Starkweather et al. [SMM+91] of each operator follows.

Order Crossover #1: Developed by Davis [Dav85], this is very similar to \tradi-

tional" genetic crossover. The child inherits genes from between two crossover

points from one parent. The elements remaining unmentioned in the child

that exist in the alternate parent are placed after the �nal element from the

�rst in the order they occur in the alternate parent. Elements in the alternate

parent already present in the child are simply skipped. This method preserves

the order, adjacency, and absolute position from the �rst parent and relative

order of the alternate. An example follows.

Parent : a b c d e f g h i j

Cross : | |

Parent : C F A J H D I G B E

Child : I B c d e f g A J H

Order Crossover #2: Developed by Syswerda [Sys90], this method is similar to

Order Crossover #1. Instead of choosing two crossover points, however, several

crossover positions are chosen randomly, and the order of these elements in one

parent is preserved in the o�spring. All other elements are mapped directly

from the other parent.

Parent : a b c d e f g h i j

Cross : | | | |

Parent : C F A J H D I G B E

Child : a j c d e f g h i b

Partially Mapped Crossover (PMX): Goldberg and Lingle [GL85] detail this

operator. Again, two crossover sites are selected randomly and the information

97

between the sites in one parent is copied directly to the child. The genes in

the alternate parent between the crossover points are mapped to the child

by placing them in the spot corresponding to the genes placed by the �rst

parent. This maps genes between the crossover points in the alternate parent

to locations outside of the crossover points. Any remaining genes, i.e., those

not contained between the crossover points in either parent are inherited by

the child directly from the alternate parent. As with the �rst order operator,

the crossed section's genes retain order, adjacency, and position from the �rst

parent.

Parent : a b c d e f g h i j

Cross : | |

Parent : D I J H A G C E B F

Child : H I c d e f J A B G

Cycle Crossover: Developed by Oliver et al. [OSH87], this operator preserves

absolute position from the parent sequence. A starting position is chosen and

that element is placed into the child at the same position. The gene at this

place in the alternate parent cannot be placed in this position, so the gene is

found in the �rst parent and mapped to the child at the position it is found.

This cycle is repeated until the initial item from the �rst parent is encountered

in the alternate. Remaining genes are inherited from the alternate. Cycle

crossover maintains the order from one or the other parent without disruption.

Parent : a b c d e f g h i j

Cross : |

Parent : C F A J H D I G B E

Child : C b A d e f g h i j

Position-based Crossover: Also developed by Syswerda [Sys90], it is also similar

to Order Crossover #1. Some number of locations are chosen at random,

98

and those elements from the �rst parent are copied directly to the child. The

remaining elements are inherited in the order they appear in the alternate,

ignoring elements already placed. This maintains some relative order from

both parents.

Parent : a b c d e f g h i j

Cross : | | | |

Parent : C F A J H D I G B E

Child : A b c J H f D G i E

Edge Recombination: Whitley et al. [WSS90] developed the edge recombination

operator for use in problems where adjacency information is paramount, as is

the case in the Traveling Salesperson Problem. An edge table is built repre-

senting the paths into and out of a city. A child is formed by choosing elements

from the edge table and following the edges from each element. This assures

both a valid tour of the cities and the preservation of adjacency information.

Starkweather et al. demonstrate that each operator will perform di�erently for each

given problem domain. The performance di�erence can be measured in the speed

of convergence to a good solution. For example, edge recombination �nds good

solutions more rapidly on the TSP while performing more poorly than the others

on scheduling problems.

The conditions for stopping search must be examined. Halting is certainly

predicated on �nding one valid schedule, a possibly non-trivial requirement. Because

this requirement is present in all forms of instruction scheduling, it is not viewed

as a detriment to a GA-based approach. Another condition for stopping can be the

closeness to the theoretical best for the DDD. On \easy" DDDs (with simple timings

and dependencies), the theoretical best can be achieved with regularity. Therefore,

this condition should be checked to determine the credibility of continuing the search.

Another bound easily placed is the number of recombinations performed. Time

99

constraints certainly can be used to generate a value for this bound, unfortunately, a

direct relationship does not exist between time spent and the quality of the resulting

schedule; an optimal schedule may be found in the �rst generation, or not found after

innumerable generations. Such is the case with all non-deterministic optimizers;

unless a solution matches a known theoretical best, a stopping condition cannot be

reliably speci�ed 2. Genetic algorithms will generate solutions competitive with all

areas of the solution space searched. Increasing the number of recombinations, and

to a lesser degree the population size, will tend to produce \more optimal" solutions.

This provides motivation to perform as many recombinations as possible.

The number of generations should therefore be related to the relative di�culty

of producing an optimal schedule for a given DDD. DDDs with few simple operations

do not require as many generations to �nd good schedules as do those with many

complex operations. Basing the number of generations on a low-order polynomial

has proven e�ective. The size of the population is based on a di�erent lower-order

polynomial. The homogeneity of the population is an indirect indicator of conver-

gence. If all solutions are similar, either a competitive solution has been found or

unvisited areas of the search space contain better answers. In the �rst case, the

search may be halted. In the second case, mutation should be used to expand the

area of the search space covered. It is di�cult to di�erentiate these two conditions.

5.3.2 Approaches

Two genetic approaches to the instruction scheduling problem are outlined

in the following sections. Both are based on the manipulation of strings of non-

repeating integers. This representation is consistent with those used in the TSP

and shop scheduling problems previously mentioned. All populations are randomly

2Remember that theoretical best and optimal are not the same. The former speci�es the best
without the presence of any additional constraints, the latter considers those extra constraints.

100

initialized. For each member of the initial population, the evaluation function must

be executed in order to create a sorted gene pool. It is possible that a member

of the initial pool will generate the theoretical-best solution, removing the need to

perform any recombinations. This situation occurs most frequently in DDDs easy

to schedule. If information about the presence of possibly good-performing strings

is known (from another scheduling method), those strings can be added as seeds in

the population. The evaluation function is then unnecessary for the performance

of the string is known. One of the possible di�culties generated by seeding is the

corresponding reduction in the amount of space searched if the population is con-

strained by too many similar solutions. In the work presented here, no attempt was

made to seed the initial population.

A method for improving the overall performance of a genetic algorithm re-

peatedly restarts the process from the beginning. This essentially \randomizes"

the entire procedure by re-initializing the gene pool, and re-choosing the crossover

points. This e�ectively infuses the population with new, possibly more robust, ge-

netic information. Multiple runs with di�erent populations may result in a more

e�cient search than simply increasing the number of generations. This restart can

be viewed as a large-scale mutation operation (only those equivalent between pop-

ulations are free of disruption) and can therefore be used when the homogeneity of

a population becomes too great.

With List Scheduling

The �rst approach used a genetic algorithm in concert with a list scheduler.

Several immediate bene�ts accrued due to this method:

1. the use of existing list scheduling technology (requiring no additional schedul-

ing code),

2. the use of an already-understood scheduling method, and

101

3. the use of a method similar to both Syswerda's job-shop scheduling and Stark-

weather et al.'s brewery scheduling approaches.

These bene�ts allowed comparisons to be made against existing results, both to

verify the validity and e�cacy of the resultant schedules.

The strings in the population represented the priority ordering of the nodes in

the DDD. As nodes in ROCKET's DDDs are numbered consecutively from 1 . . .n,

where n is the number of nodes, a node number at a given place in the string has

priority over all appearing later. This information is used to pick which node, of all

those possible in the data ready list, will be placed next. This removes all heuristic

judgements based on node attributes.

Most of the schedules produced were valid. This is attributed to the power

of the implicit heuristic of list scheduling, placing only data ready nodes. In the

present implementation, integrating the GENITOR routines took less time than

tuning the list scheduling heuristics in order to achieve a high degree of reliability

in the production of valid schedules. Each machine targeted requires the re-tuning

of these heuristics, replicating this time spent. Using a genetic algorithm, nothing

needs modi�cation to target to another architecture. This can greatly increase the

exibility of an instruction scheduler, useful both for pre-production performance

studies where architectural features may be changed and their impact studied, and

where the production of code for many disparate machines is desired.

This combined list scheduling/genetic algorithm performed well. In simple

DDDs, it easily found solutions as good as list scheduling alone. These were in-

stances where timing was exible, and placement order was basically irrelevant. The

combination also found some new best-known solutions to di�cult DDDs. While

this may appear surprising, consider the great lengths required to generate a set

of heuristics that would usually produce valid schedules. The heuristic with most

impact on �nal schedule length, critical path, has been shown to produce erroneous

102

results in simple cases. Other heuristics, such as counting the number of restricted

edges a node has, must be emphasised in an attempt to assure schedule validity.

The emphasis therefore shifts (correctly) from the possibility of generating shorter

schedules to the probability of producing valid schedules. The use of GAs tends to

place nodes in an order producing shorter results, and with an evaluation function

reecting failure as a longer result, it will place nodes in an order that also produces

valid results.

A detraction from these encouraging results is the time complexity of the com-

bined algorithm. As shown before, list scheduling is at least O(n2), and repeatedly

performing this operation to evaluate a given string increases the time complexity.

If the number of generations is linear with respect to the number of nodes in the

DDD, the complexity becomes O(n3). Increasing the population size also results in

similar complexity increases.

Without List Scheduling

The time complexity of the GA-based list scheduling method motivated an ex-

ploration into other forms of scheduling. No existing methods had less complexity

and �t within the framework developed. The goal became the placement of oper-

ations in less than O(n2) complexity. It was noticed that, with the application of

the absolute timing algorithm, each node already \knew" approximately where in

the �nal schedule it must be placed. If the order of placement could be performed

intelligently, there was no reason for a top-down (list scheduling) priority in node

placement. Top-down priority had been used as a pseudo-intelligent form of or-

dering; it cannot adapt to vagaries of individual graphs. With genetic algorithms

an intelligent, adaptable method is present. The scheduling mechanism therefore

became using the GA to pick the order operations are placed in the schedule. This

works because each operation \knows" where it can be placed. Certainly, failures

can occur due to choosing an improper order, creating an invalid schedule.

103

To increase the likelihood of valid schedules, limited lookahead scheduling is

employed. Here, \limited" denotes lookahead packing only those nodes with (n; n)

absolute timing. That is, only nodes with no choice in their placement, due to the

placement of another by the GA, are scheduled. Nodes with �(op) = (n;m) absolute

timing are ignored by lookahead. This retains the greatest amount of exibility and

problem knowledge for the genetic algorithm to work with. If the GA places nodes

toward the end of the DDD �rst, lookahead compaction may do most of the work

in scheduling the DDD. This is not a detriment to the process as it only properly

reects the a�ects of the GA choice of node-placement order. As a by-product,

this lookahead e�ort decreases the time spent by the entire scheduling process, as

the GA is required to examine fewer nodes for placement. Most of the time spent

scheduling then resides in the absolute timing and lookahead algorithms.

A di�culty with this method is the increased potential of generating invalid

schedules. As node placement order is critical for success in creating a valid �nal

schedule, the original random generation of orders the genetic algorithm provides

tend to fail often. Several methods were used to increase the number of valid sched-

ules generated:

1. increasing the number of generations,

2. increasing the population size, and

3. seeding the initial population with a known good order. This order may be

generated with another form of scheduling.

All three of these methods produced an increase of valid schedules for di�cult-

to-schedule DDDs. The �rst method provides the genetic operator more diverse

material upon which to operate. The second enlarges the area of the search space

represented in the initial population. The third re�nes an initially correct schedule

while also searching for better solutions.

104

The ease of implementing this solution to the instruction scheduling problem

came due to all the work mentioned earlier on scheduling DDDs. Without a correct

absolute timing algorithm and a working lookahead mechanism, this approach would

have proved di�cult. As it was, the implementation required fewer lines of code

than the combined GA/list scheduler. This is important, the earlier lower-level

work supported the new algorithm well; it provides a platform whereby scheduling

research can be easily accomplished. Studies are then simple to make.

5.3.3 Studies

Various machines were targeted and studied. Figures 5.2 { 5.7 contain graphs

comparing the performance of each of the six di�erent operators on various problems

for the IBM RS/6000 architecture. The graphs also show the results from the

traditional list scheduler, and the theoretical best, for comparison. Some of the

problems were selected from the Lawrence Livermore Loops [McM86], translated to

C by Martin Fouts. Others were from the LINPACK [DBMS78] suite translated to C

by Stephan V. Schell. Both have been used to compare the performance of di�erent

computers on computational tasks. Each of the graphs represent the longest basic

block in each particular problem.

These results mirror the ranking of operators in the brewery production line,

indicating that operators that perform well in other scheduling tasks perform well

with instruction scheduling. This order of performance is reversed on problems, such

as the TSP, that rely on adjacency information. This is important in that it provides

more evidence in classifying the instruction scheduling problem and directing e�orts

in future approaches to the problem.

Not all of the blocks are presented; some produced uninteresting results. Inter-

esting results were considered those that had multiple correct answers, i.e., places

where the search capability of genetic algorithms played a part. There exist DDDs

with little exibility in the placement of operations. This can arise either from the

105

25

30

35

40

45

50

55

60

65

70

75

80

0 50 100 150 200 250 300 350 400 450 500

I
n
s
t
r
u
c
t
i
o
n
s

i
n

B
l
o
c
k

Generation

"edge.results"
"order1.results"

"pmx.results"
"order2.results"
"cycle.results"

"position.results"
"list.results"

"theorectical_best"

Figure 5.2: Livermore Kernel Number 1

nature of the targeted machine or the type of operations in the block. Machines

with little concurrency o�er little opportunity, or need, to schedule instructions.

Basic blocks with either few, or highly constrained operations also a�ord for lit-

tle optimization. Entry, exit, loop headers and trailers are examples of this type of

block. Most operations are load/store or comparison/branch, removing some ability

to optimize due to their sequential nature.

While all of the operators solved each problem, the rate of convergence to better

solutions varied. Those operators emphasizing order over adjacency in a string

perform better. The position operator most often produced the fastest convergence.

The edge recombination, best at the TSP, was always to slowest to converge. Note

in Figure 5.4 two competitive solutions exist, giving rise to two lines of convergence.

Figure 5.6 is the largest block presented, with 288 operations. An excellent result

of 135 instructions was found, the theoretical best being 133 instructions. This

suggests that using a genetic scheduling method bene�t larger blocks more than

106

25

30

35

40

45

50

55

60

65

0 50 100 150 200 250 300 350 400 450 500

I
n
s
t
r
u
c
t
i
o
n
s

i
n

B
l
o
c
k

Generation

"edge.results"
"order1.results"

"pmx.results"
"order2.results"
"cycle.results"

"position.results"
"list.results"

"theorectical_best"

Figure 5.3: Livermore Kernel Number 2

15

20

25

30

35

40

45

50

0 50 100 150 200 250 300 350

I
n
s
t
r
u
c
t
i
o
n
s

i
n

B
l
o
c
k

Generation

"edge.results"
"order1.results"

"pmx.results"
"order2.results"
"cycle.results"

"position.results"
"list.results"

"theorectical_best"

Figure 5.4: Livermore Kernel Number 4

107

40

50

60

70

80

90

100

110

120

0 100 200 300 400 500 600 700

I
n
s
t
r
u
c
t
i
o
n
s

i
n

B
l
o
c
k

Generation

"edge.results"
"order1.results"

"pmx.results"
"order2.results"
"cycle.results"

"position.results"
"list.results"

"theorectical_best"

Figure 5.5: Livermore Kernel Number 8

130

140

150

160

170

180

190

200

210

220

0 100 200 300 400 500 600

I
n
s
t
r
u
c
t
i
o
n
s

i
n

B
l
o
c
k

Generation

"edge.results"
"order1.results"

"pmx.results"
"order2.results"
"cycle.results"

"position.results"
"list.results"

"theorectical_best"

Figure 5.6: Livermore Kernel Number 10

108

40

45

50

55

60

65

70

75

80

85

0 100 200 300 400 500 600

I
n
s
t
r
u
c
t
i
o
n
s

i
n

B
l
o
c
k

Generation

"edge.results"
"order1.results"

"pmx.results"
"order2.results"
"cycle.results"

"position.results"
"list.results"

"theorectical_best"

Figure 5.7: Linpack cgefa.c

smaller; both the additional exibility and the desire for tighter code in long blocks

motivate this.

The GA-based method always performed as well as the list scheduling, and

often better. This came as no surprise, they have more opportunity and ability

to search for good solutions. They also take more time in doing so. A GA-based

approach is not a be-all or end-all method. Under at least two conditions they are

attractive:

1. the desire for a machine-independent method, to use for rapidly changing

targets, and

2. the desire for highly optimized code.

When code is needed as rapidly as possible, an architecture is mature, and an

investment to implement an exceptional heuristic-based scheduler can be made, a

GA-based approach may be displaced.

109

It is possible to vary various parameters of a genetic algorithm to increase its

e�ectiveness on a particular problem although no such e�ort was made in these

studies. The selection bias was 1.5. There was no mutation, adaptive or otherwise.

Each population was initialized with di�erent (random) values.

5.4 Summary

As the graphs bear out, order is more important than adjacency in optimizing

the instruction scheduling problem. Operators emphasizing order converged faster

than those emphasizing adjacency. This comes as no surprise; all previously e�ective

methods also emphasized order. This evidence does however shed additional light

on the nature of of the instruction scheduling process by providing more controlled,

empirical evidence.

The ordering of the placement of nodes by the genetic algorithm mirrors the

approach used by human coders. The nodes with the greatest impact on �nal

schedule length are placed �rst, with those having lesser impact placed later. The

order of placement that ensures validity is also reected.

Chapter 6

CONCLUSIONS, CONTRIBUTIONS, DIRECTIONS

In this, the �nal chapter, goals set forth for this work in the �rst chapter

will be addressed in a concise form. First, a section will review the motivation

for, and directions pursued by, this work. Another section will make explicit the

contributions to the current state of the art this work provides. A �nal section will

suggest directions for follow-on research that should bear fruit.

6.1 Conclusions

The single most motivating factor that produced this work was the desire to

produce an e�cacious instruction scheduler for code improvement in a retargetable

compiler environment. This goal produced several immediate concerns.

First, whatever representation is chosen to preserve the semantics of the source

during instruction scheduling must specify a minimal number of constraints, allowing

for a maximal amount of achievable parallelism. With the choice of dags to represent

the data dependencies, the removal of spurious edges is paramount. This removal

adds to the available parallelism, and was treated in great detail in Section 2.2.2.

Recent work has shown that computing the number of total orders consistent with

a partial order is #P{complete. There does not currently exist a method to solve

this class of problems optimally in polynomial time. Any polynomial-time method

to �nd a solution must therefore involve an incomplete search of the solution space.

This drove the exploration of increasing the e�ectiveness of an existing method,

list scheduling. When this process of exploration proved ultimately dissatisfying,

111

di�erent methods of search were explored. Promising work had been done locally

using genetic algorithms for scheduling problems. This avenue was then explored

with satisfying results.

The desire for as few edges as possible in the DDD predicated several methods of

edge reduction. By assigning changing values to register resources after instruction

scheduling, no register data anti-dependencies are created to restrict parallelism.

If spill code is required, less likely in current register-rich architectures, another

iteration of the code selection/instruction scheduling process is required. Empirical

evidence has shown that this approach can generate signi�cant speedups. Post-

scheduling register assignment has complete information on the �nal code, allowing

better assignment and better calculation of spill cost, should spilling be needed.

The removal of dead code, whether programmer- or compiler-generated, re-

moves all non-essential output dependencies. The only time either an input or

output dependent edge is required is in the presence of volatile machine resources

that must be so modeled.

A desire to model a wide range of machines, and therefore a wide range of

architectural features, necessitated an examination of the data dependence repre-

sentation. With the increasing exposure of low-level machine features to compiler

technology, a rich set of ordering information must be considered. Machine features

�nding favor in recent processors include

� multistage pipes,

� pipes without interlocked stages,

� synchronous pipes, and

� transient resources (i.e. used for communication between di�erent sections of

the processor.)

112

Simple timing on edges will not su�ce to model these types of resources. The

representation, and the algorithms operating upon the representation, must be ex-

tended to include the information necessary to reect these resources. The edges and

nodes in the DDD are therefore extended to include information about minimum

and maximum origination and completion times for the various operations avail-

able in a machine. Routines must either be updated or created to deal with this

increased richness in expression. Examples include the absolute timing, foresight,

and lookahead algorithms.

With the increased exibility in representation these methods achieve comes an

increased burden on the scheduling method. At one end of the di�culty spectrum

are machines with no parallelism and no transient resources. For these machines,

instruction scheduling is an implicit operation done during code selection. There is

no reason to try any one ordering over another; they all result in a schedule that is the

same length. The other end of the spectrum contains machines with a large amount

of instruction-level parallelism and a large amount of transient resources. These

mechanisms should be visible to the translator so that intelligent use of operations

result in a speed increase for a given complexity level in a given processor technology.

To realize this performance enhancement, and therefore recoop the investmentmade

in the production of the processor, the presence of an intelligent instruction scheduler

in the code-generation process is needed.

The possibility of exponential execution times that optimal instruction schedul-

ing takes requires methods to reduce the running time of any algorithm. Heuristic-

driven search is a favored method for reducing the running time of many optimization

methods. This ostensibly attempts to search only those areas of the solution space

that appear to reduce the length of the �nal schedule. If e�ective heuristics can be

found that usually generate optimal or near-optimal results, it would be desirable to

use them. There can be a number of heuristics that will produce good solutions for

any given instance of a problem; the di�culty lies in �nding heuristics that produce

113

acceptable (or even valid) solutions for all instances of a problem. An attempt was

made in this work to enumerate as many heuristics that could have an impact upon

the e�ectiveness of list scheduling. This resulted in �nding that heuristics failed to

always produce valid schedules, and additionally that the use of multiple heuristics

can lead to competing goals.

Non-heuristic methods also increase the chances for generating valid, high qual-

ity schedules. Foresight is an example from instruction scheduling that increases the

chances for schedule validity by checking the impact a certain placement decision has

upon the resulting �nal schedule. A drawback of this approach is that later place-

ment decisions might not reect the schedule examined earlier by foresight. This

motivated the development of lookahead compaction, a greedy method. Lookahead

not only examines the schedule resulting from the placement of an operation, it

places all operations that lose exibility due to that placement. This provides a

substantive increase to the probability of generating a valid schedule, but does not

guarantee validity. Lookahead uses only local information for its execution; global

data that might inuence the �nal schedule are not considered.

None of the methods attempted thus far produced completely satisfying results.

Genetic algorithms had shown that, for similar problems, good schedules could be

expected. A simple approach was tried wherein a GA prioritized the data ready list

for a list scheduler. This proved advantageous by �nding better schedules than had

been found by the heuristic-driven list scheduler. This should come as no surprise;

heuristics producing excellent results for certain code fragments certainly will not

produce such results for all code fragments. The GA-based list scheduling algorithm

also required more time due to the need to execute the entire list scheduling pro-

cess to evaluate a single priority list. This motivated the search for a GA-based

approach not predicated on list scheduling. An approach was found wherein the ge-

netic algorithm chose the order of placement of operations with the absolute timing

algorithm assuming increased responsibility for assuring that any order used would

114

tend to produce a valid schedule. Lookahead compaction also increased the chances

of producing a valid schedule by placing restricted operations in their respective

locations.

Given these di�erent methods suitable for scheduling dags with timing, it is

possible to choose the method used for a speci�c dag on the y. For example, if a

dag contains \easy" timing (few restricted edges), using the power of an advanced

technique is not only wasted, it is wasteful. However, the existence of powerful

techniques allows the method of solution to match the di�culty of the problem.

The di�culty of scheduling may either be observed by the examination of certain

descriptive parameters or by the failure of the less-powerful methods of scheduling.

6.2 Contributions

This section contains a brief outline of the contributions made by this work.

6.2.1 DDD constraints

A study of the meaning of the edges in a DDD was produced. Motivation for the

removal of any unnecessary edges, in order to increase the exibility of scheduling,

was given. Several processes to achieve this result were presented. Post-scheduling

register assignment was shown to be an important tool for the reduction of anti-

dependent edges. The minimal complement of edges required in a DDD to properly

reect program semantics was addressed. Recognition of the motivation and value

of input dependent edges was developed.

6.2.2 List scheduling

List scheduling was given thorough study by this work. A number of di�erent

heuristics were developed and used in attempts to derive an e�cacious scheduler.

It was discovered that increasing the number of heuristics does not increase either

the ability to create shorter or more likely valid schedules. Heuristics that had

previously been deemed important were found wanting. Heuristics were found to

115

compete within a DDD, each trying to emphasize an important characteristic in

either the length or validity of the �nal schedule. The interval of updating the

priorities within the data ready list was examined. Justi�cation for either static or

dynamic ordering of the priority list was found. Most importantly, the di�culty of

using only heuristics for a general-purpose, retargetable instruction scheduler was

demonstrated, motivating research into other areas of optimization.

The absolute timing algorithm was studied and improved by removing the pos-

sibility of timing loops. The least stringent conditions for the schedule range for an

operation were explored and enumerated. The need to iterate when computing the

timing on a graph was demonstrated. An observation was made on the number of

times a node was visited, leading to a non-recursive speedup method.

Foresight was studied in an attempt to produce valid schedules more often.

Conditions for failure of the algorithm were found, motivating the development of

lookahead scheduling. Both foresight and lookahead scheduling were extended to

include the possibility of examining nodes having predecessors. This allows for the

removal of the data ready condition for placing nodes in the schedule, providing

both a speedup in schedule generation and an increased likelyhood of generating a

valid schedule.

6.2.3 Genetic Algorithms

Genetic algorithms were applied to the instruction scheduling process. Two

methods were developed, one that performed the sequencing of the data ready list

and one that controlled the order of placement of operations. The second method

does not require the time spent to rank the apparent importance of each of the

operations. Both were found to produce promising results. Less time was required to

produce a working GA-based scheduler than to tune a heuristic-based list scheduler.

The GA-based methods were better able to cope with a variety of di�cult DDDs.

The addition of these methods allows for the choice of scheduling methods based

upon a DDD's characteristics.

116

6.3 Directions

With the framework provided by this work, many interesting directions for

future work exist. Three follow.

1. Software pipelining was not considered. Its ability to improve repetitive code

structure is impressive. Loops are important structures to optimize as more

execution time will be spent in them compared to straight line code. Previ-

ous methods have used an unrolling technique combined with local compaction

[SDX86, MSDP86]. Because of the power of the scheduling methods developed

here, their use on critical portions of code could create enhanced run-time per-

formance for a wide variety of code. Given a choice, \critical sections" of code

should be emphasized in the optimization process at the expense of less crit-

ical sections of code. The range of scheduling mechanisms presented herein

allows this type of exibility during code generation. For example, another

parameter used to decide the type of scheduling performed on a section of code

(other than the previously-mentioned parameters to account for dag proper-

ties), could be the importance of producing short schedules for a particular

part of the code. Exploring the impact of GA-based scheduling with respect

to these types of code sections would be interesting.

2. Inter-block scheduling was not considered. The problem of intra-block schedul-

ing needs to be addressed in more depth. Propitiously, methods exist that use

intra-block scheduling as a basis of inter-block scheduling. One that has re-

ceived much attention is Trace Scheduling due to Fisher [Fis81]. Work on

an earlier academic compiler at Colorado State University produced good re-

sults using trace scheduling in combination with an existing local compactor

[HMS87, How87]. A di�culty encountered in that work was the computa-

tional complexity of the scheduler, resulting in limiting the number of blocks

117

considered during instruction scheduling. Using methods suggested here, this

complexity may be reduced or bounded by a chosen amount of time.

3. The search capabilities of genetic algorithms could be used to generate better

weightings on the list scheduling algorithm. As these will vary on a per-

architecture basis, a suite of \typical" programs could be compiled while

changing the weights in the discriminating polynomial selection function.

Those weights found to produce good results for the current machine/program

combination could then be used for any program on that machine. This would

also provide feedback to the machine designers as to which features have a di-

rect bearing upon performance and which do not. Closing the loop that exists

between hardware and software design will increase the speed of both.

6.4 Summary

In summary, previous methods of local instruction scheduling were examined

and found lacking. Several new approaches were discovered and developed to address

speci�c de�ciencies uncovered. A wholly new method, applying genetic algorithms,

was explored and found bene�cial. The increasing complexity of machines man-

date the strengthing of instruction scheduling; genetic algorithms are a method of

achieving this.

REFERENCES

[Adv85] Advanced Micro Devices, Santa Clara, CA. Am2900 Family Data Book,
1985.

[All86] V.H. Allan. A Critical Analysis of the Global Optimization Problem
for Horizontal Microcode. PhD thesis, Computer Science Department,
Colorado State University, Fort Collins, Colorado, 1986.

[AM87] V.H. Allan and R.A. Mueller. Phase coupling for horizontal microcode
generation. In Proceedings of the 20th Microprogramming Workshop
(MICRO-20), Colorado Springs, CO, December 1987.

[AM88] V.H. Allan and R.A. Mueller. Microcode compaction with general syn-
chronous timing. IEEE Transactions on Software Engineering (Special
Section on Microprogramming), 14(5):595{599, May 1988.

[AN88] A. Aiken and A Nicolau. A development environment for horizontal
microcode. IEEE Transactions on Software Engineering, 14(5), May
1988.

[AP71] F. Astopas and K.I. Plukas. Method for Minimizing Computer Micro-
programs. Automatic Control, 5(4):10{16, 1971.

[AST67] D. Anderson, F. Sparacio, and R. Tomasulo. The ibm system/360 model
91: Machine philosophy and instruction-handling. IBM Journal of Re-
search and Development, 11(1), January 1967.

[ASU86] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley, Reading, MA, 1986.

[Ban88] U Banerjee. Dependence Analysis for Supercomputing. Kluwer, Boston,
Ma, 1988.

[BCKT89] P. Briggs, K.D Cooper, K. Kennedy, and L. Torczon. Coloring heuristics
for register allocation. In Proceedings of the SIGPLAN '89 Conference
on Programming Language Design and Implementation, Portland, Ore-
gon, June 1989.

[BDM+88] S.J. Beaty, M.R. Duda, R.A. Mueller, P.H. Sweany, and J Varghese.
Optimization issues for a retargetable microcode compiler. IEEE Mi-
croArch, 3(1):5{15, December 1988.

119

[Bea87] S.J. Beaty. Register allocation and assignment in a retargetable mi-
crocode compiler using graph coloring. Master's thesis, Computer Sci-
ence Department, Colorado State University, Fort Collins, CO, 1987.

[BEH91] D.G. Bradlee, S.J. Eggers, and R.R Henry. Integrating register alloca-
tion and instruction scheduling for riscs. In Proceedings of the Forth
Internation Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Santa Clara, California, April 1991.

[Boo87] L. Booker. Improving search in genetic algorithms. In Lawrence Davis,
editor, Genetic Algorithms and Simulated Annealing, pages 61{73. Mor-
gan Kaufmann, 1987.

[BSKT79] U. Banerjee, S. Shen, D.J. Kuck, and R.A. Towle. Time and parallel
processor bounds for fortran-like loops. IEEE Transactions on Com-
puters, C-28(9):660{670, Sep 1979.

[BW90] Graham Brightwell and Peter Winkler. Counting linear extensions is
#p-complete. DIMACS Technical Report 90-49, Bellcore, 445 South
Street, Morristown, New Jersey, 07960, July 1990.

[CAC+81] G.J. Chaitin, M.A. Auslander, A.K. Chandra, J. Cocke, and P.W. Hop-
kins, M.E.and Markstein. Register allocation via coloring. Computer
Languages, 6, 1981.

[Can90] D.C. et al. Cann. Sisal reference manual - language version 2.0. Techni-
cal report, Larrence Livermore National Laboratory and Colorado State
University, 1990.

[Cha82] G.J. Chaitin. Register allocation and spilling via graph coloring. In
Proceedings of the ACM SIGPLAN 82 Symposium on Compiler Con-
struction, pages 201{207, June 1982.

[CNO+88] R.P. Colwell, R.P. Nix, J.J. O'Donnell, D.B. Papworth, and P.K. Rod-
man. A vliw architecture for a trace scheduling compiler. IEEE Trans-
actions on Computers, 37(8), August 1988.

[Cof76] E.G Co�man. Computer and Job-Shop Scheduling Theory. Jon Wiley
& Sons, New York, 1976.

[CS89] Gary A. Cleveland and Stephen F. Smith. Using genetic algorithms to
schedule ow shop releases. In Proceedings of the Third International
Conference on Genetic Algorithms. Morgan Kaufmann, 1989.

[Das84] S. Dasgupta. A Model of Clocked Micro-Architectures for Firmware
Engineering and Design Automation Applications. In Proceedings of the
17th Microprogramming Workshop (MICRO-17), pages 298{308, New
Orleans, LA, November 1984.

120

[Dav85] L. Davis. Applying adaptive algorithms to epistatic domains. In Pro-
ceedings of the International Joint Conference on Arti�cial Intelligence,
1985.

[DBMS78] J. Dongarra, J.R. Bunch, C.B. Moler, and G.W. Stewart. Linpack user's
guide. Technical report, Society for Industrial and Applied Mathemat-
ics, Philadelphia, PA, 1978.

[DDMS86] W. Damm, G. Doehmen, K. Merkel, and M. Sichelschmidt. The
AADL/S� Approach to Firmware Design Speci�cation. IEEE Software,
3(4):27{37, July 1986.

[DeJ86] K. DeJong. An Analysis of Reproduction and Crossover in a Binary
- coded Genetic Algorithm. PhD thesis, University of Michigan, Ann
Arbor, 1986.

[DeW76] D.J. DeWitt. A Machine-Independent Approach to the Production of
Optimal Horizontal Microcode. PhD thesis, Department of Computer
and Communication Sciences, University of Michigan, Ann Arbor, MI,
1976.

[Dig81] Digital Equipment Corporation. VAX Architecture Handbook, 1981.

[DLSM81] S. Davidson, D Landskov, B.D. Shriver, and P.W. Mallett. Some exper-
iments in local microcode compaction for horizontal machines. IEEE
Transactions on Computers, C-30(7), July 1981.

[DT76] S. Dasgupta and J. Tartar. The Identi�cation of Maximal Parallelism
in Straight-line Microprograms. IEEE Transactions on Computers, C-
25(10):986{992, Oct 1976.

[Ell86] J. R. Ellis. Bulldog: A Compiler for VLIW Architectures. The MIT
Press, Cambridge, MA, 1986. PhD thesis, Yale, 1984.

[FERN84] J.A. Fisher, J.R. Ellis, J.C. Ruttenberg, and A. Nicolau. Parallel pro-
cessing: A smart compiler and a dumb machine. In Proceedings of
the SIGPLAN '84 Conference on Compiler Construction, pages 37{47.
ACM, June 1984.

[Fis79] J.A. Fisher. The Optimization of Horizontal Microcode Within and Be-
yond Basic Blocks: An Application of Processor Scheduling. PhD thesis,
Courant Institute of Mathematical Sciences, New York University, New
York, NY, October 1979.

[Fis81] J.A. Fisher. Trace scheduling: A technique for global microcode com-
paction. IEEE Transactions on Computers, C-30(7):478{490, July
1981.

121

[FLS81] J.A. Fisher, D. Landskov, and B.D. Shriver. Microcode compaction:
Looking backward and looking forward. In Proceedings of the National
Computer Conference, volume 50, pages 95{102, Montvale, NJ, July
1981. AFIPS Press.

[Gas89] F. Gasperoni. Compilation techniques for vliw architectures. Technical
report, Courant Institute of Mathematical Sciences, New York Univer-
sity, March 1989.

[Gib85] A. Gibbons. Algorithmic Graph Theory. Cambridge University Press,
Cambridge, England, 1985.

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide
to the Theory of NP{Completeness. W.H. Freeman and Company, San
Francisco, CA, 1979.

[GL85] D. Goldberg and R Lingle. Alleles, loci, and the traveling salesman
problem. In Proceedings of the International Conference on Genetic
Algorithms and their Applications, 1985.

[Gol89] David Goldberg. Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Addison-Wesley, 1989.

[Hec77] M.S. Hecht. Flow Analysis of Computer Programs. North-Holland, New
York, NY, 1977.

[HJP+82] J. Hennessy, N. Jouppi, S. Przybylski, C. Rowen, T. Gross, F. Baskett,
and J. Gill. MIPS: A Microprocessor Architecture. In Proceedings of
the 15th Microprogramming Workshop (MICRO-15), pages 17{22, Palo
Alto, CA, October 1982.

[HL85] T.L. Harmon and B. Lawson. The Motorola MC 68000 Microprocessor
Family. Prentice Hall, Englewood Cli�s, NJ, 1985.

[HMS87] M.A. Howland, R.A. Mueller, and P.H. Sweany. Trace scheduling op-
timization in a retargetable microcode compiler. In Proceedings of
the 20th Microprogramming Workshop (MICRO-20), Colorado Springs,
CO, December 1987.

[Hol75] John Holland. Adaptation in Natural and Arti�cial Systems. University
of Michigan Press, 1975.

[How87] M.A. Howland. Integration of a Trace Scheduling Optimizer in a Re-
targetable Microcode Compiler. Master's thesis, Computer Science De-
partment, Colorado State University, Fort Collins, CO, 1987.

[HS80] E. Horowitz and S. Sahni. Fundamentals of Computer Algorithms.
Computer Science Press, Potomac, MA, 1980.

122

[IBM90] IBM. IBM Journal of Research and Development, January 1990.

[Int90] Intel. i860 64-bit Microprocessor Programmer's Reference Manual,
1990.

[KA91] R.F. Krick and D. Apostolos. The evolution of instruction sequencing.
Computer, 24(4), April 1991.

[Kan87] Gerry Kane. mips R2000 RISC Architecture. Prentice Hall, Englewood
Cli�s, NJ, 1987.

[Kat85] M.G.H. Katevenis. Reduced Instruction Set Computer Architectures for
VLSI. The MIT Press, Cambridge, MA, 1985.

[KD81] A. Klassen and S. Dasgupta. S�(QM-1): An Instantiation of the High-
Level Microprogramming Language Schema S� for the Nanodata QM-1.
In Proceedings of the 14th Microprogramming Workshop (MICRO-14),
pages 124{130, Chatham, MA, Oct 1981.

[Knu73] D.E. Knuth. The Art of Computer Programming, volume I: Fundamen-
tal Algorithms. Addison-Wesley, Reading, MA, second edition, 1973.

[LA89] J.L. Linn and C.D. Ardoin. An example of using pseudo�elds to elimi-
nate version shu�ing in horizontal code compaction. In Proceedings of
the 22nd Microprogramming Workshop (MICRO-22), Dublin, Ireland,
1989.

[LDSM80] D. Landskov, S. Davidson, B.D. Shriver, and P.W. Mallett. Local mi-
crocode compaction techniques. ACM Computing Surveys, 12(3):261{
294, September 1980.

[McM86] F.H. McMahon. The livermore fortran kernels: A computer test of
numerical performance range. Technical report, Lawrence Livermore
National Laboratory, December 1986.

[MDSW88] R.A. Mueller, M.R. Duda, P.H. Sweany, and J.S. Walicki. Horizon:
A Retargetable Compiler for Horizontal Micro-Architectures. IEEE
Transactions on Software Engineering (Special Section on Micropro-
gramming), 14(5):575{583, May 1988.

[MS86] R.A. Mueller and P.H. Sweany. Horizon Code Generator Series-Parallel
DDG Coupler/Decoupler (Version 3.1). Technical Report MAD-86-10,
Firmware Engineering and Micro-Architecture Design Laboratory, Col-
orado State University, Fort Collins, CO, September 1986.

[MSDP86] R.A. Mueller, B. Su, M.R. Duda, and B. Plomondon. A Case Study in
Signal Processing Microprogramming with the URPR Software Pipelin-
ing Technique. In Proceedings of the 19th Microprogramming Workshop
(MICRO-19), New York, NY, October 1986.

123

[Nan74] Nanodata Corporation, Williamsville, NY. QM-1 Hardware Level
User's Manual, 2 edition, 1974.

[Nic84] Alexandru Nicolau. Parallelism, Memory Anti-aliasing, and Correct-
ness Issues for a Trace Scheduling Compiler. PhD thesis, Department
of Computer Science, Yale University, New Haven, Conn, December
1984.

[Nic85] Alexandru Nicolau. Percolation scheduling: A parallel compilation
technique. Technical report, Department of Computer Science, Cornell
University, Ithaca, New York, May 1985.

[OSH87] I.M. Oliver, D.J. Smith, and J.R.C. Holland. A study of permutation
crossover operators on the traveling salesman problem. In John Grefen-
stette, editor, Genetic Algorithms and Their Applications: Proceeding
of the 2nd International Conference, pages 224{230. L. Ebaum Assoc.,
1987.

[Pat89] Y.N. Patt. Microarchitecture choices (implementation of the vax). In
Proceedings of the 22nd Microprogramming Workshop (MICRO-22),
Dublin, Ireland, 1989.

[Pat90] Kimberly Patch. Intergraph issues superscalar clipper. digital review,
September 10 1990.

[PKL80] D.A. Padua, D.J. Kuck, and D.H. Lawrie. High speed multiproces-
sors and compilation techniques. IEEE Transactions on Computers,
C-29(9):763{776, Sept 1980.

[PS81] D.A. Patterson and C.H. Sequin. RISC-1: A Reduced Instruction Set
VLSI Computer. In Proceedings of the 8th Annual Symposium on Com-
puter Architecture, pages 443{458, Minneapolis, MN, May 1981.

[PW86] D.A. Padua and M.J. Wolfe. Advanced compiler optimizations for su-
percomputers. Communications of the ACM, 29(12):1184{1201, Dec
1986.

[RT74] C.V. Ramamoorthy and M. Tsuchiya. A High-Level Language for
Horizontal Microprogramming. IEEE Transactions on Computers, C-
23(8):791{801, August 1974.

[RT81] J.H. Reif and R.E. Tarjan. Symbolic program analysis in almost-linear
time. SIAM Journal of Computing, 11(1):81{93, February 1981.

[SB90] P. Sweany and S. Beaty. Post-compaction register assignment in a retar-
getable compiler. In Proceedings of the 23th Microprogramming Work-
shop (MICRO-23), Orlando, FL, November 1990.

124

[SDX86] B. Su, S. Ding, and J. Xia. URPR { An extension of URCR for Software
Pipelining. In Proceedings of the 19th Microprogramming Workshop
(MICRO-19), pages 94{103, New York, NY, December 1986.

[SDX87] B. Su, S. Ding, and J. Xia. Microcode Compaction with Timing
Constraints. In Proceedings of the 20th Microprogramming Workshop
(MICRO-20), Colorado Springs, CO, December 1987.

[SMM+91] T. Starkweather, S. McDaniel, K. Mathias, C. Whitley, and D. Whitley.
A comparison of genetic sequencing operators. In Proceedings of the
Fifth International Conference on Genetic Algorithms. Morgan Kauf-
mann, 1991.

[Sys90] Gilbert Syswerda. Schedule optimization using genetic algorithms. In
L. Davis, editor, The Genetic Algorithms Handbook. 1990.

[Tre82] N. Tredennick. Cultures of Microprogramming. In Proceedings of
the 15th Microprogramming Workshop (MICRO-15), pages 79{83, Palo
Alto, CA, Oct 1982.

[Veg82] S.R. Vegdahl. Local Code Generation and Compaction in Optimizing
Microcode Compilers. PhD thesis, Department of Computer Science,
Carnegie-Mellon University, Pittsburgh, PA, 1982.

[WA89] P. Wijaya and V.H. Allan. Incremental foresighted local compaction.
In Proceedings of the 22nd Microprogramming Workshop (MICRO-22),
Dublin, Ireland, August 1989.

[Wal91] D.W. Wall. Limits of instruction-level parallelism. In Proceedings of the
Forth Internation Conference on Architectural Support for Programming
Languages and Operating Systems, Santa Clara, California, April 1991.

[Woo78] G. Wood. On the Packing of Micro-operations into Micro-instruction
Words. In Proceedings of the 9th Microprogramming Workshop
(MICRO-9), December 1978.

[WSF89] D. Whitley, T. Starkweather, and D. Fuquay. Scheduling problems and
traveling salemen: The genetic edge recombination operator. In Pro-
ceedings of the Third International Conference on Genetic Algorithms.
Morgan Kaufmann, 1989.

[WSS90] D. Whitley, T. Starkweather, and D. Shaner. The traveling saleman and
sequence scheduling quality solution using genetic edge recombination.
In L. Davis, editor, The Genetic Algorithms Handbook. 1990.

[YST74] S.S. Yau, A.C. Schowe, and M. Tsuchiya. On Storage Optimization of
Horizontal Microprograms. In Proceedings of the 7th Microprogramming
Workshop (MICRO-7), pages 98{106, Palo Alto, CA, Oct 1974.

