A Technique for Tracing Memory Leaksin C++

Steven J. Beaty ~
NCR Microelectronics
2057 Vermont
Fort Collins, Colorado 80525
(303) 226-9622
Steve.Beaty @FtCollinsCO.ncr.com
beaty @l ongs.|ance.col ostate.edu

Abstract

Dynamic memory usage in C++ can lead to unrecovered allocations. A method of overloading the builtin new
and del et e functionsis introduced that can ameliorate this problem.

1 Introduction

This approach was originally implemented in half aday a number of years ago (at a company that no longer exists.) It
has evolved and matured over the intervening years into something that is only mildly better than the original.

A need locate memory leaks was identified in along-running program (a highly optimizing, retargetable compiler
[1].) Thissenseof a“leak” was dynamic memory being newed without being del et ed. The executable size quickly
outgrew the size of memory in the machine, requiring an undesirable amount of swapping activity. The program was
writtenin C++ and was running on aUNIX machine. Thefirst step to attacking the problem was to find where memory
was being requested, used, and not returned.

2 Approach

In C++, itiseasy tooverload thebuiltinnewand del et e operatorswith user-supplied versionsand thereby determine
when memory is requested and returned. While this is useful information, it is more desirable to know where the
memory requests are coming from. A solutionisto find the address where new or del et e routinewill return to and
then find which function this address residesin.

With the calling information available, a useful form of output is needed. It was decided that other tools could
perform the cull of good versus bad memory requests, if the following information was present:

e which function, either newor del et e, was called,
¢ thefunction from which it was called,

o what address was requested or rel eased, and

e anoverall order for requesting/releasing.

The last item is needed to correctly match up new and del et e pairs. This memory tracing activity was seen as a
development activity, deemphasizing the need for rapid run times. Therefore, a quick-and-dirty, minimalist approach
was chosen and implemented.

*the author is an affiliate faculty member at Colorado State University

3 TheCode

The code for this approach will be placed inline! (using amonospaced font for readability.) The comments have been
stripped; arunning commentary will take their place. It is hoped that this presentation approach will benefit both the
casual reader who isinterested only in the method, and the reader who wishesto use the code. First, then, the top of
thefile“ Space.C":

#i ncl ude <stream h>
#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

i nt space_debug = 0;

The space_debug variable alows the programmer to decide whether or not to trace a particular portion of code.
When tracing is desired, two statements are added to the program where tracing is to begin:

extern int space_debug;
space_debug = 1;

These may be littered throughout a program, wherever memory is thought to be escaping. When memory tracing isto
end, place thefollowing linesin the program:

extern int space_debug;
space_debug = 0;

Some global information is kept in the following variables:

char *executabl e name = "a.out";

static int nunmber_of calls;
static int first_time = 1;
static FILE *space_out;

The name of the executing program must be supplied by the programmer, as there is no portable way in UNIX to
deduce this name from a running program. The nunber _of _cal | s variableisused to keep the memory requests
and releases in the order they occurred in the running program. Theimportance of thisordering will become apparent.
Fi rst_ti me simply keeps track of whether the symbol table has been read in or not. Space_out isthefilethat
will contain the raw memory trace information.

3.1 TheSymbol Table

The information on the names and addresses of al the functionsis available in the executable file in the form of the
symbol table that contains name/type/vaue tuples. Our concern is only for the name and address (value) fields. We
need only pay attention to those entries that have types corresponding to function and file names. An array of these
valuesis built using the following structure:

struct symi st
{
char *nane;
i nt address;
b
#define START_SI ZE 1000
static int sym i st _count;
static struct symist *symist;

land is also available from the author via email

A difficulty for this application is that the UNIX operating system strips the symbol table from the file just prior
to execution. Therefore, this information must be read in from the file resident on the disk. Function calls exist
(e.g. nli st) that can read this raw information into memory, however, for simplicity it was decided to let existing
system-level programs do the work. The following functionr ead_sym() creates afile caled syt ab and then
reads the pertinent information into an array of st ruct sym i st s. First, local declarations are made and space is
allocated to hold the information.

void read_sym ()

{

i nt symist_size = START_SI ZE;

symist = (struct symist *)
mal | oc (sizeof (struct symist) * symist_size);

Then, acdl to syst emcreatesthe synt ab file. The only interesting entries are those with either at oraT (i.e.
those that are function addresses or file names.) The addresses are aso sorted in ascending order so that subsequent
searching iseasier. The argumentsto sort specify sorting based on the first field (the address) and the reverse order
of the second (so that file names appear in the list before the functions that appear in them.)

char nane[512] ;

fprintf (stderr, "creating syntab...");

sprintf (name, "nm% | egrep’ t | T' | sort +0 -1 +1r > syntab",
execut abl e_nane) ;

system (nane);

fprintf (stderr, "done\n");

FILE *infile = fopen ("syntab", "r");

i f (infile == NULL)

{
fprintf (stderr, "error opening syntab\n");
exit (1);

}

Notethat C library 1/0 functions (e.g. f pri nt f) are used here. Thisallows for debugging to take place before the
C++ streams are constructed. Then, the information contained in thefileisread in.

i nt addr ess;
char type;

symist_count = 0;
while (fscanf (infile, "% % %", &address, & ype, nane) != EOF)
{
symist[symist _count].address = address;
symist[symist _count].name = malloc (strlen (nane) + 1);
strcpy (symist[symist_count].nane, nane);

If the information overflows the alocated array, the array isrealocated.

if (++symlist_count >= synlist_size)

{
symist_size += START_SI ZE;
symist = (struct symist *)
realloc ((char *) symist,
sizeof (struct symist) * symist_size);
}

With theinformation now inthesym i st array, afunction’sname may be determined if itsaddress is known and
the following function, pri nt _sym accomplishes thisfeat. It is possiblethat the address isless than any present in
the program. This condition occurs when astack trace goes past the address for mai n.

voi d print_sym (unsi gned address)

{
if (address < symlist[0].address)
{
fprintf (space_out, " the operating system");
return;
}

Then pri nt _symperformsabinary search for the correct address.

int [ower = O;
int mddle;
int upper = symist_count;

while (1)
{

m ddl e = (upper + lower) / 2;

If addr ess is between the current address and the one immediately below, mi ddl e points to the correct symbol.
That is, addr ess isintherange of addresses contained in the symbol (function name) pointedto by i ddl e. 2

if (address > symist[niddle].address &
address < symist[nmddle + 1]. address)

{

fprintf (space_out, "9%", symist[niddle].nane);

A searchupsymi i st frommiddleisthen madeto find the name of the source file where the function is defined. File
names do not start witha _; if the Gnu compiler was used, gcc_conpi | ed can be ignored.

int i = mddle;
do
{

}
while (symist[i].name[0] == " _" ||
I'strcmp (symist[i].name, "gcc_conpiled."));

fprintf (space_out, " in % ", symist[i].nane);
br eak;

}

If the address was not found, continue the search.

else if (lower >= upper)

{
fprintf (space_out, " an unknown address ");
return;
}
el se
{
address > symist[niddle].address ? upper : lower = m
}

2|f mi ddl e pointsto afile name, it cannot be true that the next addressis less than addr ess, resolving any confusion.

ddl e;

3.2 Newanddel ete

With the ability to print the name of afunction givenitsaddress, itisdesirableto report thisfromthenewand del et e
functions. The rea action takes place in these functions, and some slight-of-hand is necessary to retrieve the return
address.

voi d* operator new(size_ t size)

{

In Motorola680x0 architectures [2], the stack frame is as follows:

return address

frame pointer

locds

Therefore, if weknow wherealocal variableis exactly, we can find the return address. With the assumption that local s
grow downward on the stack, the first declared local will be just below the frame pointer which isjust below the return
address. With the further assumption that each of these are the size of an i nt eger , the following code places the
return addressin thevariableaddr ess.

#if sun & (nt68000 || nt68020)
int i;
int address = (*(& +2));

#endi f

Inthe SPARC architecture, the return addressisplaced inregister i 7. Anasmstatement istherefore used to placethe
return addressin avariable.

#if sun && sparc

regi ster int address;
#endi f

char *p;

#if sun && sparc && _ GNUC
asm ("mov % 7,%0");
#endi f

#if sun && sparc && ! GNUC
asm ("mov % 7, % 5");
#endi f

If thespace_debug variableison, print out the relevant information for thiscall to new.

i f (space_debug)
{

If thisisthefirst timeto print out information, open the space. r awfile and read in the symbol table information.

if (first_tine)

{
if ((space_out = fopen ("space.raw', "w')) == NULL)
{
fprintf (stderr, "error opening space.rawn");
exit (1);
}
first _time = O;
read_sym ();
}
fprintf (space_out, "new(%l) called in: ", size);

print_sym (address);

}
Once the calling information is printed, memory is actualy set aside.

if ((p = mlloc (unsigned (size))) == 0)

fprintf (stderr, "out of malloc space\n");
exit (1);
}

The actual location and the sequence number are also printed to enable later matching of request/rel ease pairs.

i f (space_debug)

{
fprintf (space_out, "returning: %98x %©8d\n",
p, nunber_of calls);
++nunber _of calls;
}

return (void*)p;

The del et e operator is very similar. Once again, the address of the calling function is found and printed if
space_debug isturned on. A del et e might be called before the first traced new, so the symbol table might need
to beread here a so.

{
int i;

#endi f

#if sun && sparc

#endi f

#endi f

#endi f

{
{

}

}

voi d operator del ete(void* p)
#if sun & (nt68000 |

int address = (*(& +2));

regi ster int address;

#if sun && sparc &&
asm ("mov % 7,%0");

#if sun && sparc && ! GNUC
asm ("mov % 7,% 5");
i f (space_debug)

if (first_tine)

fprintf (space_out, "delete called in: ");
print_sym (address);

fprintf (space_out, "with: %98x %©8d\n", p, nunber_of_calls);
++nunber _of calls;

mc68020)

GNUC

if ((space_out = fopen ("space.raw', "w')) == NULL)

{
fprintf (stderr, "error opening space.rawn");
exit (1);

}

first _time = O;

read_sym ();

[3] defines releasing the memory if the pointer is non-null, so the followingi f statement is needed.

}

if (p) free ((char *)p);

3.3 Wheat and chaff

After program execution iscomplete, thereisafile space_r awthat containstheraw newand del et e information.
An example newline from thisfileis:

new(40944) called in:

_build_a declarator in synmbolic.o returning: 002af 688 00

The name of the function may be mangled, but it is certainly possible to apply some de-mangling to achieve a more

human-readable format. An example del et e lineis:

‘delete called in: _$ Set iterator in Set.o with: 0029b730 00000055

000008

The UNIX program sor t isinvoked to pair the requests up with their associated releases. Sorting on the eighth field
and beyond uses both the address and the calling sequence information for the sort.

‘cat space.raw | sort +7 | ./throwout

After the sorting, the results are piped into a program t hr owout . Thisis an awk script that removes matching
(i.e. onadjacent lines) newand del et e pairs. There are several notables.

1. Thr owout does not check to seeif thenewand del et e are caled within the same file so asto allow for the
splitting of class functionality across multiplefiles.

2. Two files are produced by t hr owout : space. r ecover ed and space. bugs. The former isthe pairs of
matching request/rel ease pairs and may be used to double check the results. The later isthe non-matching pairs
and should be used to find and remove memory allocation errors.

3. The overal scheme involves recognizing adel et e line and seeing if the previouslineisanew. If itis, and
the previous new' s address is equiva ent, then that space is considered recovered.

So, the codefor t hr owout . First, create two empty output files.

#! /bin/awk -f

BEGA N {
print "" > "space.recovered";
print "" > "space. bugs";

}

When adel et e lineisrecognized, the program determinesif the previous lineis non-null and the address matches.
If so, thisspaceisrecovered. When pr evi ous_| i ne isnull the previouslinewasadel et e line. This convention
was decided upon because it does not matter what followsadel et e line; either it matched anew, or itisabug (either
not matching the previous new' s address, or having two del et esinarow.)

/~del ete/ {
if (previous_ line !="" && previous_address == $8)
{
print previous_line >> "space.recovered"
print $0 >> "space. recovered"
}
el se
{
if (previous_Iline)
{
print previous_line >> "space. bugs";
}
print $0 >> "space. bugs";
}
previous_line = "";
previ ous_address = $8;
}

When anewlineisrecognized and the previouslineisnon-null (it was also anewlineg), the previouslineis placed
into the bugsfile. Thisline and address are then saved for comparison.

[“new {
if (previous_line)

{
}

previous_|line = $0;
previ ous_address = $8;

print previous_line >> "space. bugs";

There is obviously great reliance upon UNIX commands with this method. This reliance was chosen to speed up
the implementation. Certainly other methods of filtering the data exist; bundling the sorting and matching functions
into the program certainly is one of these.

4 Porting

In porting these functions to different machine/compiler combinations, the greatest difficulty has been retrieving the
return address information. Most machines/operating systems enforce some calling conventions while leaving others
to the discretion of the language trand ator. For example, a particular machine might enforce where the return address
isplaced, but does not specify whereloca s variables may be stored. This allows compilersthe flexibility of choosing
from the many types of storage that may hold changing values for a given function.

Inthenewand del et e functionsabove, there are numerous #i f sto control where the return addressis placed.
The machine/compiler combinations covered are:

1. Sun-3's(680x0 based) with any compiler,
2. Sun SPARC’swiththe AT& T 2.0 compiler, and
3. Sun SPARC’swith the GNU 1.39 compiler.

A difference between the GNU and the AT& T compiler is where the local register variablei is placed on a SPARC
machine. In the AT&T compiler, it is placed in register i 5, whereas the GNU compiler placesit in | 0. Another
differenceisthe AT& T compiler does not allow variablesto be declared after an as mstatement (probably areasonable
stipulation) whilethe GNU compiler does.

The optimizationlevel being used for compilation may a so affect the placement of locals. No effort to compensate
for optimization level was made in thisimplementation.

On machines where function return values reside in memory a trace can easily be made for as many levels as
desired. The following isan example for retrieving the next calling level for a 680x0-based machine.

#if sun & (nt68000 || nt68020)
fprintf (space_out, "from ");
print_sym(*(int *)((*(& +1)) +4));

#endi f

On machines with register windowing (such asthe SPARC [4]), only one return address is guaranteed to be present in
the current window. Any others may have been spilled to memory because of a window overflow. For simplicity it
was chosen to print only one level; one can certainly regenerate more levels, either by forcing a window spill, or by
recognizing the spill condition and examining the spill memory.

5 Strengths and Weaknesses

There are severd benefits to using this method. First and foremost, it produces information that facilitates the
removal of memory request/release errors in C++ programs. This has proven useful in many different programming
circumstances. Secondly, it was easy to program and is easy to use. Reliance on other utilitiesmade it easier to both
implement and comprehend. Also, the only change in the executable is the addition of the Space. o module; no
changeto source codeisrequired, amajor benefit. Thirdly, no special compilation methods are required. For example,

the - g isunneeded; however an unst r i pped executableisrequired. Finaly, the ability to selectively trace different
parts of code has shown to be very handy. This can keep the size of the output manageable and allows for an iterative
approach to memory tracing.

There are certainly shortcomings with this method.

e Thereisaneed to port thenewand del et e functionsto every new machine/compiler combination. This must
be done by someone fairly familiar with the workings of the pair.

e Thereisan associated run-timespeed penalty. The method has some overhead duringinitialization of the symbol
table information, and during new and del et e calls, athough the major penalty is accrued during the output
tothespace. r awfile. If debuggingis not turned on, there is very little overhead (note that the symbol table
is created and read only if debugging actually takes place.)

o If the executable is dynamicaly linked to a library, the names of the functions supplied by that library are
not available in the executable. This difficulty can be solved severa ways, the easiest probably being smply
statically linking the entire executable for memory debugging purposes.

¢ Inlinefunctionscan create some confusion about whereanewor del et e iscaled from. It will report that the
function was called from a C++ source file, when in fact the actual function reference may bein an header file.

There are severa competing approachesworth noting. Garbage collectionisone[5], but dways has some run-time
penalty. This paper’s method has a run-time penalty, but only when debugging the memory usage of a program. Once
al memory defects have been removed, the process is turned off and there is no run-time penalty. A commercia
program, Purify [6], does what this paper’s method does, and a whole lot more. Another commercia program,
Centerline's ObjectCenter C++ [7], is an interpretive C++ environment that can catch many types of memory errors,
but may not be able to catch the types of memory leaks this paper’s method does.

References

[1] Jeremy L. Young. The software foundary: Almost too good to be true. Electronics, 61(2):47—48, Jan 1988.

[2] T.L. Harmon and B. Lawson. The Motorola MC 68000 Microprocessor Family. Prentice Hall, Englewood Cliffs,
NJ, 1985.

[3] Margaret A. Ellisand Bjarne Stroustrup. The Annotated C++ Reference Manual. Addison Wesley, 1990.
[4] Sun MicrosystemsInc, 2550 Garcia Avenue, Mountian View, CA 94043. A RISC Tutorial, May 1988.

[5] NiesChristian Juul. Workshop: Garbage collection in object-oriented systems. In OOPSLA/ECOOP ' 90 Report,
pages 35-41. SIGPLAN, acm Press, 1991.

[6] Reed Hasting and Bob Joyce. Purify: fast detection of memory leaks and access errors. In Winter USENIX
Conference, Jan 1992.

[7] Stephen Kaufer, Russell Lopez, and Sesha Pratap. Saber-c an interpreter-based programming environment for the
¢ language. In Summer USENIX Conference, pages 161-171, 1988.

