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Abstract

Dynamic memory usage in C++ can lead to unrecovered allocations. A method of overloading the builtin new
and delete functions is introduced that can ameliorate this problem.

1 Introduction

This approach was originally implemented in half a day a number of years ago (at a company that no longer exists.) It
has evolved and matured over the intervening years into something that is only mildly better than the original.

A need locate memory leaks was identified in a long-running program (a highly optimizing, retargetable compiler
[1].) This sense of a “leak” was dynamic memory being newed without being deleted. The executable size quickly
outgrew the size of memory in the machine, requiring an undesirable amount of swapping activity. The program was
written in C++ and was running on a UNIX machine. The first step to attacking the problem was to find where memory
was being requested, used, and not returned.

2 Approach

In C++, it is easy to overload the builtinnew and delete operators with user-supplied versions and thereby determine
when memory is requested and returned. While this is useful information, it is more desirable to know where the
memory requests are coming from. A solution is to find the address where new or delete routine will return to and
then find which function this address resides in.

With the calling information available, a useful form of output is needed. It was decided that other tools could
perform the cull of good versus bad memory requests, if the following information was present:

� which function, either new or delete, was called,

� the function from which it was called,

� what address was requested or released, and

� an overall order for requesting/releasing.

The last item is needed to correctly match up new and delete pairs. This memory tracing activity was seen as a
development activity, deemphasizing the need for rapid run times. Therefore, a quick-and-dirty, minimalist approach
was chosen and implemented.

�the author is an affiliate faculty member at Colorado State University



3 The Code

The code for this approach will be placed inline 1 (using a monospaced font for readability.) The comments have been
stripped; a running commentary will take their place. It is hoped that this presentation approach will benefit both the
casual reader who is interested only in the method, and the reader who wishes to use the code. First, then, the top of
the file “Space.C”:

#include <stream.h>
#include <stdio.h>
#include <stdlib.h>

int space_debug = 0;

The space_debug variable allows the programmer to decide whether or not to trace a particular portion of code.
When tracing is desired, two statements are added to the program where tracing is to begin:

extern int space_debug;
space_debug = 1;

These may be littered throughout a program, wherever memory is thought to be escaping. When memory tracing is to
end, place the following lines in the program:

extern int space_debug;
space_debug = 0;

Some global information is kept in the following variables:

char *executable_name = "a.out";

static int number_of_calls;
static int first_time = 1;
static FILE *space_out;

The name of the executing program must be supplied by the programmer, as there is no portable way in UNIX to
deduce this name from a running program. The number_of_calls variable is used to keep the memory requests
and releases in the order they occurred in the running program. The importance of this ordering will become apparent.
First_time simply keeps track of whether the symbol table has been read in or not. Space_out is the file that
will contain the raw memory trace information.

3.1 The Symbol Table

The information on the names and addresses of all the functions is available in the executable file in the form of the
symbol table that contains name/type/value tuples. Our concern is only for the name and address (value) fields. We
need only pay attention to those entries that have types corresponding to function and file names. An array of these
values is built using the following structure:

struct symlist
{

char *name;
int address;

};

#define START_SIZE 1000
static int symlist_count;
static struct symlist *symlist;

1and is also available from the author via email



A difficulty for this application is that the UNIX operating system strips the symbol table from the file just prior
to execution. Therefore, this information must be read in from the file resident on the disk. Function calls exist
(e.g. nlist) that can read this raw information into memory, however, for simplicity it was decided to let existing
system-level programs do the work. The following function read_sym() creates a file called symtab and then
reads the pertinent information into an array of struct symlists. First, local declarations are made and space is
allocated to hold the information.

void read_sym ()
{

int symlist_size = START_SIZE;

symlist = (struct symlist *)
malloc (sizeof (struct symlist) * symlist_size);

Then, a call to system creates the symtab file. The only interesting entries are those with either a t or a T (i.e.
those that are function addresses or file names.) The addresses are also sorted in ascending order so that subsequent
searching is easier. The arguments to sort specify sorting based on the first field (the address) and the reverse order
of the second (so that file names appear in the list before the functions that appear in them.)

char name[512];

fprintf (stderr, "creating symtab...");
sprintf (name, "nm %s | egrep ’ t | T ’ | sort +0 -1 +1r > symtab",

executable_name);
system (name);
fprintf (stderr, "done\n");

FILE *infile = fopen ("symtab", "r");
if (infile == NULL)
{

fprintf (stderr, "error opening symtab\n");
exit (1);

}

Note that C library I/O functions (e.g. fprintf) are used here. This allows for debugging to take place before the
C++ streams are constructed. Then, the information contained in the file is read in.

int address;
char type;

symlist_count = 0;
while (fscanf (infile, "%x %c %s", &address, &type, name) != EOF)
{

symlist[symlist_count].address = address;
symlist[symlist_count].name = malloc (strlen (name) + 1);
strcpy (symlist[symlist_count].name, name);

If the information overflows the allocated array, the array is reallocated.

if (++symlist_count >= symlist_size)
{

symlist_size += START_SIZE;
symlist = (struct symlist *)

realloc ((char *) symlist,
sizeof (struct symlist) * symlist_size);

}
}

}



With the information now in the symlist array, a function’s name may be determined if its address is known and
the following function, print_sym, accomplishes this feat. It is possible that the address is less than any present in
the program. This condition occurs when a stack trace goes past the address for main.

void print_sym (unsigned address)
{

if (address < symlist[0].address)
{

fprintf (space_out, " the operating system ");
return;

}

Then print_sym performs a binary search for the correct address.

int lower = 0;
int middle;
int upper = symlist_count;

while (1)
{

middle = (upper + lower) / 2;

If address is between the current address and the one immediately below, middle points to the correct symbol.
That is, address is in the range of addresses contained in the symbol (function name) pointed to by middle. 2

if (address > symlist[middle].address &&
address < symlist[middle + 1].address)

{
fprintf (space_out, "%s", symlist[middle].name);

A search up symlist from middle is then made to find the name of the source file where the function is defined. File
names do not start with a _; if the Gnu compiler was used, gcc_compiled can be ignored.

int i = middle;
do
{

i--;
}
while (symlist[i].name[0] == ’_’ ||

!strcmp (symlist[i].name, "gcc_compiled."));

fprintf (space_out, " in %s ", symlist[i].name);
break;

}

If the address was not found, continue the search.

else if (lower >= upper)
{

fprintf (space_out, " an unknown address ");
return;

}
else
{

address > symlist[middle].address ? upper : lower = middle;
}

}
}

2If middle points to a file name, it cannot be true that the next address is less than address, resolving any confusion.



3.2 New and delete

With the ability to print the name of a function given its address, it is desirable to report this from thenew and delete
functions. The real action takes place in these functions, and some slight-of-hand is necessary to retrieve the return
address.

void* operator new(size_t size)
{

In Motorola 680x0 architectures [2], the stack frame is as follows:

return address

frame pointer

locals

Therefore, if we know where a local variable is exactly, we can find the return address. With the assumption that locals
grow downward on the stack, the first declared local will be just below the frame pointer which is just below the return
address. With the further assumption that each of these are the size of an integer, the following code places the
return address in the variable address.

#if sun && (mc68000 || mc68020)
int i;
int address = (*(&i+2));

#endif

In the SPARC architecture, the return address is placed in register i7. An asm statement is therefore used to place the
return address in a variable.

#if sun && sparc
register int address;

#endif
char *p;

#if sun && sparc && __GNUC__
asm ("mov %i7,%l0");

#endif

#if sun && sparc && !__GNUC__
asm ("mov %i7,%i5");

#endif

If the space_debug variable is on, print out the relevant information for this call to new.

if (space_debug)
{

If this is the first time to print out information, open the space.raw file and read in the symbol table information.



if (first_time)
{

if ((space_out = fopen ("space.raw", "w")) == NULL)
{

fprintf (stderr, "error opening space.raw\n");
exit (1);

}
first_time = 0;
read_sym ();

}
fprintf (space_out, "new(%d) called in: ", size);
print_sym (address);

}

Once the calling information is printed, memory is actually set aside.

if ((p = malloc (unsigned (size))) == 0)
{

fprintf (stderr, "out of malloc space\n");
exit (1);

}

The actual location and the sequence number are also printed to enable later matching of request/release pairs.

if (space_debug)
{

fprintf (space_out, "returning: %08x %08d\n",
p, number_of_calls);

++number_of_calls;
}

return (void*)p;
}

The delete operator is very similar. Once again, the address of the calling function is found and printed if
space_debug is turned on. A delete might be called before the first traced new, so the symbol table might need
to be read here also.



void operator delete(void* p)
{
#if sun && (mc68000 || mc68020)

int i;
int address = (*(&i+2));

#endif

#if sun && sparc
register int address;

#endif

#if sun && sparc && __GNUC__
asm ("mov %i7,%l0");

#endif

#if sun && sparc && !__GNUC__
asm ("mov %i7,%i5");

#endif

if (space_debug)
{

if (first_time)
{

if ((space_out = fopen ("space.raw", "w")) == NULL)
{

fprintf (stderr, "error opening space.raw\n");
exit (1);

}
first_time = 0;
read_sym ();

}
fprintf (space_out, "delete called in: ");
print_sym (address);

fprintf (space_out, "with: %08x %08d\n", p, number_of_calls);
++number_of_calls;

}

[3] defines releasing the memory if the pointer is non-null, so the followingif statement is needed.

if (p) free ((char *)p);
}

3.3 Wheat and chaff

After program execution is complete, there is a file space_raw that contains the raw new and delete information.
An example new line from this file is:

new(40944) called in: _build_a_declarator in symbolic.o returning: 002af688 00000008

The name of the function may be mangled, but it is certainly possible to apply some de-mangling to achieve a more
human-readable format. An example delete line is:

delete called in: __$_Set_iterator in Set.o with: 0029b730 00000055



The UNIX program sort is invoked to pair the requests up with their associated releases. Sorting on the eighth field
and beyond uses both the address and the calling sequence information for the sort.

cat space.raw | sort +7 | ./throwout

After the sorting, the results are piped into a program throwout. This is an awk script that removes matching
(i.e. on adjacent lines) new and delete pairs. There are several notables.

1. Throwout does not check to see if the new and delete are called within the same file so as to allow for the
splitting of class functionality across multiple files.

2. Two files are produced by throwout: space.recovered and space.bugs. The former is the pairs of
matching request/release pairs and may be used to double check the results. The later is the non-matching pairs
and should be used to find and remove memory allocation errors.

3. The overall scheme involves recognizing a delete line and seeing if the previous line is a new. If it is, and
the previous new’s address is equivalent, then that space is considered recovered.

So, the code for throwout. First, create two empty output files.

#! /bin/awk -f

BEGIN {
print "" > "space.recovered";
print "" > "space.bugs";

}

When a delete line is recognized, the program determines if the previous line is non-null and the address matches.
If so, this space is recovered. When previous_line is null the previous line was a delete line. This convention
was decided upon because it does not matter what follows a delete line; either it matched a new, or it is a bug (either
not matching the previous new’s address, or having two deletes in a row.)

/^delete/ {
if (previous_line != "" && previous_address == $8)
{

print previous_line >> "space.recovered";
print $0 >> "space.recovered";

}
else
{

if (previous_line)
{

print previous_line >> "space.bugs";
}
print $0 >> "space.bugs";

}
previous_line = "";
previous_address = $8;

}

When a new line is recognized and the previous line is non-null (it was also a new line), the previous line is placed
into the bugs file. This line and address are then saved for comparison.



/^new/ {
if (previous_line)
{

print previous_line >> "space.bugs";
}
previous_line = $0;
previous_address = $8;

}

There is obviously great reliance upon UNIX commands with this method. This reliance was chosen to speed up
the implementation. Certainly other methods of filtering the data exist; bundling the sorting and matching functions
into the program certainly is one of these.

4 Porting

In porting these functions to different machine/compiler combinations, the greatest difficulty has been retrieving the
return address information. Most machines/operating systems enforce some calling conventions while leaving others
to the discretion of the language translator. For example, a particular machine might enforce where the return address
is placed, but does not specify where locals variables may be stored. This allows compilers the flexibility of choosing
from the many types of storage that may hold changing values for a given function.

In the new and delete functions above, there are numerous #ifs to control where the return address is placed.
The machine/compiler combinations covered are:

1. Sun-3’s (680x0 based) with any compiler,

2. Sun SPARC’s with the AT&T 2.0 compiler, and

3. Sun SPARC’s with the GNU 1.39 compiler.

A difference between the GNU and the AT&T compiler is where the local register variable i is placed on a SPARC
machine. In the AT&T compiler, it is placed in register i5, whereas the GNU compiler places it in l0. Another
difference is the AT&T compiler does not allow variables to be declared after an asm statement (probably a reasonable
stipulation) while the GNU compiler does.

The optimization level being used for compilation may also affect the placement of locals. No effort to compensate
for optimization level was made in this implementation.

On machines where function return values reside in memory a trace can easily be made for as many levels as
desired. The following is an example for retrieving the next calling level for a 680x0-based machine.

#if sun && (mc68000 || mc68020)
fprintf (space_out, "from: ");
print_sym (*(int *)((*(&i+1))+4));

#endif

On machines with register windowing (such as the SPARC [4]), only one return address is guaranteed to be present in
the current window. Any others may have been spilled to memory because of a window overflow. For simplicity it
was chosen to print only one level; one can certainly regenerate more levels, either by forcing a window spill, or by
recognizing the spill condition and examining the spill memory.

5 Strengths and Weaknesses

There are several benefits to using this method. First and foremost, it produces information that facilitates the
removal of memory request/release errors in C++ programs. This has proven useful in many different programming
circumstances. Secondly, it was easy to program and is easy to use. Reliance on other utilities made it easier to both
implement and comprehend. Also, the only change in the executable is the addition of the Space.o module; no
change to source code is required, a major benefit. Thirdly, no special compilation methods are required. For example,



the -g is unneeded; however an unstripped executable is required. Finally, the ability to selectively trace different
parts of code has shown to be very handy. This can keep the size of the output manageable and allows for an iterative
approach to memory tracing.

There are certainly shortcomings with this method.

� There is a need to port the new and delete functions to every new machine/compiler combination. This must
be done by someone fairly familiar with the workings of the pair.

� There is an associated run-time speed penalty. The method has some overhead during initializationof the symbol
table information, and during new and delete calls, although the major penalty is accrued during the output
to the space.raw file. If debugging is not turned on, there is very little overhead (note that the symbol table
is created and read only if debugging actually takes place.)

� If the executable is dynamically linked to a library, the names of the functions supplied by that library are
not available in the executable. This difficulty can be solved several ways, the easiest probably being simply
statically linking the entire executable for memory debugging purposes.

� Inline functions can create some confusion about where a new or delete is called from. It will report that the
function was called from a C++ source file, when in fact the actual function reference may be in an header file.

There are several competing approaches worth noting. Garbage collection is one [5], but always has some run-time
penalty. This paper’s method has a run-time penalty, but only when debugging the memory usage of a program. Once
all memory defects have been removed, the process is turned off and there is no run-time penalty. A commercial
program, Purify [6], does what this paper’s method does, and a whole lot more. Another commercial program,
Centerline’s ObjectCenter C++ [7], is an interpretive C++ environment that can catch many types of memory errors,
but may not be able to catch the types of memory leaks this paper’s method does.
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