
Post-Compaction Register Assignment in a Retargetable Compiler

Philip Sweany
Department of Computer Science

Steven Beaty
Department of Mechanical Engineering

Colorado State University
Fort Collins, Colorado, 80523

Abstract

We discuss graph-coloring register assignment in a retar-
getable compiler for Long-Instruction-Word architectures.
Of specific concern is when, during the compilation pro-
cess, should register assignment be performed. We con-
clude that, for best results, register assignment should fol-
low compaction. We discuss methods of circumventing
the implementation problems inherent in such late register
assignment.

1 Introduction

Higher-level languages permitting abstraction from low-
level timing and concurrency details are a major step to-
ward alleviating the problem of mapping complex applica-
tions onto complex architectures. However, this approach
is useful only if compilers for these languages can pro-
duce high-quality code and can be reliably targeted to new
machines with modest effort. The ROCKET compiler, a
retargetable C compiler for Long-Instruction-Word (LIW)
and pipelined architectures, strives to meet these criteria.

A high-level language compiler must include mappings
from programmer-defined operations and resources to ac-
tual operations and resources existing on the target archi-
tecture. This process includes supplying multiplexers with
data from a bus, invoking the proper ALU operation, and,
register assignment, mapping user-defined and compiler-
generated variables to register resources.

While Sethi has shown optimal register assignment com-
putationallyintractable [Set75], good heuristics exist which
produce near-optimal results in reasonable time. One pop-
ular method, developed by Chaitan, [Cha82, CAC+81] ini-
tially assumes an infinite number of available “symbolic”
registers, allocates each scalar value to a distinct symbolic
register, and later maps the symbolic registers to the fi-
nite target architecture register set using a graph coloring
heuristic. We have included graph-coloring register as-
signment in the ROCKET implementation because of its
proven effectiveness in other compilers and because its ba-

sis in well-founded mathematical principles allows easy
retargetability from one architecture to another.

Having decided to use graph-coloring register assign-
ment, we must determine when, during compilation, reg-
ister assignment should be performed. This becomes an
issue in the ROCKET compiler because, unlike most com-
pilers using graph-coloring register assignment, ROCKET
also includes instruction scheduling (compaction) to take
advantage of increased parallelism available in LIW archi-
tectures. At least two other compilers [All88, MDSW88]
include both compaction and graph-coloring register as-
signment, but both assign registers before compaction. We
believe delaying register assignment until after compaction
leads to more efficient code generation.

The remainder of this paper overviews the ROCKET
compiler, describes the graph-coloring register assignment
technique, provides motivation for delaying register assign-
ment until after compaction and discusses implementation
issues involved in post-compaction register assignment.

2 The ROCKET Compiler

ROCKET is an offshoot of the Horizon compiler
[MDSW88], also developed at Colorado State University.
Like Horizon, ROCKET focuses on machine resource us-
age as the primary issue in both retargetability and produc-
tion of highly-optimized assembly code. ROCKET targets
to a wide variety of architectures which are assumed to have
a single control store and to operate synchronously (such
machines correspond to what others have called “clocked
micro-architectures” [Das84, DDMS86]). Beyond that,
they may have arbitrarily wide control words; polyphase or
monophase execution; pipelined fetch/execute; pipelined
functional execution; permanent or transient storage ele-
ments with arbitrary (discrete) setup and hold times; ma-
chine operations with side-effects; and branches with arbi-
trary (discrete) branch delays.



2.1 Code Generation Phases

To translate C into highly-optimized code for LIW archi-
tectures, ROCKET first produces an abstract representation
of an input C program and then performs global optimiza-
tion which massages the intermediate representation to im-
prove expected program speed; code selection, which re-
places abstract representations of C statements with collec-
tions of machine operations; parallelization, which deter-
mines resource dependencies and timing; local compaction,
which assigns machine operations to (a hopefully mini-
mum number of) instructions to satisfy data-dependency
and machine-resource constraints; and register assignment,
which replaces symbolic references with specific machine
register references.

ROCKET’s global optimization includes common
subexpression elimination, copy propagation, constant
folding, constant propagation, algebraic simplification, in-
duction variable simplification, and reduction in strength.
Aho, et al. [ASU86]. describe these “traditional” compiler
optimizations. Unfortunately, although many traditional
optimizations, produce improved code efficiency on ver-
tical architectures, they do not always do so on LIW ma-
chines. We attribute this difference mainly to the need to
take advantage of the available concurrency in an LIW ar-
chitecture during compaction. Often, traditional optimiza-
tions (such as common subexpression elimination, copy
propagation, and constant folding) perturb code in a man-
ner that inhibits compaction’s ability to minimize the num-
ber of instructions required to execute a program. Rather
than disregard these traditional optimizations, ROCKET
includes modified versions which consider parameters in
the target machine description to evaluate when an opti-
mization is likely to provide improved code. Beaty et al.
discusses a similar optimization scheme in [BDM+88].

After global optimization, code selection, in conjunc-
tion with a serial-parallel coupler/decoupler, builds a data-
dependency graph (DDG) for each basic block in the ab-
stract intermediate representation of the C program. A
DDG’s nodes represent target machine operations. A di-
rected edge from node x to node y indicates that x must occur
no later than y in the final (compacted) code generated for
the DDG. In ROCKET’s DDGs each edge from x to y is
labeled with a pair of non-negative integers (min,max) in-
dicating that y can execute no sooner than min cycles after x
and no later than max cycles after x. For example, if x places
a value on a bus that y reads, an edge from x to y estab-
lishs a “data dependency” with timing (0,0) (indicating that
the read can and must follow the write in the same cycle).
In contrast, if x assigns a value to a register subsequently
read by y and the target machine does not permit reading a
register after it is written in the same cycle, the edge from
x to y would include timing (1,1). In addition to nodes

and edges DDGs contain analysis information (described
below) in an easily accessed and manipulated form. The
coupler/decoupler, originally implemented in the Horizon
compiler [MDSW88, MS86], combines and manipulates
DDGs, performing ROCKET’s parallelization phase in the
process.

Local compaction uses DDGs built by code selection.
Given a data-dependency graph, compaction schedules
nodes into the shortest sequence of instructions subject
to (1) the graph’s constraints, (2) the machine’s resource
dependencies (i.e., a machine resource can typically hold
only a single value at any instant of time), and (3) the
field-encoding conflicts that may exist should several op-
erations share a common instruction field. In general, this
optimization problem is NP-complete [Rob79]. However,
in practice, heuristics can achieve excellent results. Land-
skov et al. provides a good survey of early code com-
paction algorithms [LDSM80], while Vegdahl [Veg82] and
Allan [All86] give more sophisticated algorithms. Our
compaction resembles Allan’s.

Register assignment in the ROCKET compiler uses a
graph coloring method which we detail in Section 3.

2.2 Analysis

In all the code generation phases mentioned above, infor-
mation about the properties and use of both program vari-
ables and machine resources is paramount. Thus, ROCKET
relies heavily on extensive analysis of the program being
translated. High-level resource usage (used and defined as
well as live-in and live-out sets) is easily and efficiently ob-
tained through standard control and dataflow analysis (Aho
et al. [ASU86] or Hecht [Hec77].)

Another analysis important for generating efficient com-
pacted code is accurately determinating data dependencies
among a program’s operations. Data-dependence concepts
and standard terminology are widely discussed in the liter-
ature [BSKT79, PKL80, Veg82, PW86, Ban88]. The three
basic types of data dependence are:

� Flow Dependence — sometimes called true depen-
dence or data dependence. An operation m2 is flow
dependent on operation m1 if m1 executes before m2

and m1 writes to some memory location read by m2.

� Anti-Dependence — sometimes called false depen-
dence. An operation m2 is anti-dependent on opera-
tion m1 if m1 executes before m2 and m2 writes to
some memory location read bym1, thereby destroying
the value read by m1.

� Output Dependence An operationm2 is output depen-
dent on operation m1 if m1 executes before m2 and
m2 and m1 both write to the same location.



As discussed, compaction involves “scheduling” the
DDG for each basic block in a program’s control-flow
graph. Since a DDG’s edges (representing dependencies
between operations) inhibit parallelism, we wish to build
the graph with as few edges as possible while maintain-
ing program semantics. Our difficulty is determining ex-
actly which data dependencies are necessary to maintain
program semantics. When, after available analysis, a com-
piler cannot determine whether two references access the
same memory location, it generally must make the conser-
vative assumption that they might. Because making con-
servative data dependency assumptions has a potentially
devastating effect upon optimization opportunities, con-
siderable research effort has gone into analysis techniques
which accurately determine whether two operands can pos-
sibly access the same memory location. These methods are
generally referred to as memory reference disambiguation
[Nic84, Ell85, Ban88, BC86].

2.3 Machine Description

We patterned the ROCKET machine description files after
the Horizon machine description [MDSW88]. The ad hoc
machine description language indicates how data passes
among storage resources, and how data is transformed by
functional resources, as well as specifying resource timing
data, and field attributes of the instruction word.

A ROCKET target machine description includes:

� Machine Resources — Each machine resource has an
associated setup and hold time. ROCKET views this
timing abstractly in terms of instruction cycles.

� Target Machine Instruction Word Fields — The
compiler assumes a number of distinct encoding fields
comprise the instruction word. A field’s encoding val-
ues are symbolically represented in the specifications
of target machine operations.

� Target Machine Operations — Each machine oper-
ation has a distinct identifier as well as a collection of
instruction fields that invoke it during execution.

� Target Machine Data Paths — The code selec-
tor must extract information about how data can be
moved among storage resources, how functional op-
erations are invoked, and how instruction sequenc-
ing is invoked. This information forms the bulk of
ROCKET’S machine description.

3 Register Assignment

The graph coloring method proposed by Chaitan [CAC+81,
Cha82] performs register allocation and assignment at the

same time. Allocation decides which variables will reside
in physical (hard) registers at run time; assignment places
those variables into their respective hard registers. Register
assignment aims to place as many program variables into
hard registers as possible. This increases the program’s
execution speed and reduces the code size, both desirable
effects. Variables that are live at the same time can not
share a hard register. A representation of and solution to
this problem could greatly aid the final code’s usability.
The graph coloring view denotes variables as graph nodes
and places arcs between nodes where those variables are
live simultaneously. The solution then involves finding an
n coloring of the graph, where n represents the number
of the target machine’s available hard registers. A graph
is considered correctly colored if each node’s color differs
from each neighbor’s. As an architectural paradigm, this
implies each variable is assigned a register different from
all other variables live during the same execution cycles.

It is well known that given a graph G and a natural
number n > 2, the problem of determining whether G is
n-colorable is NP-complete [HS80] There exist graphs that
have a search space that grows exponentially based upon the
number of nodes. An exhaustive method could randomly
choose a color, from a pool of n, and assign it to a node.
This process could continue until the graph is colored or
adjacent nodes received the same color. If adjacent nodes
received the same color, the process would backtrack in
search of a different, correct, solution. This is a lengthly
process.

Fortunately, criteria can be added to this process to speed
the search for a solution. A node has a metric of urgency
with the order of assignment based on each node’s urgency.
This speeds the search in graphs that are, in some sense,
easy to color (non-pathological graphs.) Unfortunately,
solutions based on urgency criteria will still create expo-
nential search spaces in the worst case. There is no way to
easily predict the onset of exponential search, leaving this
method with certain flaws.

Another approach is possible with a simple observation
about coloring graphs. If we remove a node from the graph
that has degree less than n, no matter how its neighbors
are colored, there will be at least one color left over for
it. For example, in a graph where a four-coloring is being
attempted, if a node of degree three is removed, each of its
neighbors may be assigned any three colors leaving at least
one color for the removed node. Nodes are removed in this
manner until the graph is empty or no remaining nodes have
degree less than n. This deterministic routine consumes
non-exponential time and space. It is not guaranteed to find
n-coloring if one exists; however, it does produce excellent
results in practice. Once a symbolic register-interference
graph has been shown to be n-colorable, nodes are colored



by determining which nodes they interfere with, in inverse
order of removal. A hard register (color) not used by any
of a node’s neighbors is chosen for it. Two methods for
choosing which hard register to assign next are

� pick the lowest numbered register not used by neigh-
bors

� pick registers in a round-robinfashion. In this method,
we would keep track of the last hard register allocated
and allocate the next higher numbered register (mod
the number of colorable registers, of course) not al-
ready allocated to a neighbor in the interference graph.

The first method reduces the overall number of hard reg-
isters used, possibly reducing the number of save and re-
stores around call sites. The second increases the num-
ber of hard registers used, thereby reducing the number of
anti-dependcies required, possibly, creating a more advan-
tageous environment for compaction (see Section 5).

When a graph is notn-colorable, some program variables
must be placed in a non-register resource. This resource
is usually an off-chip read/write memory. This creates a
definite speed penalty so variables must be chosen care-
fully for these locations. Code must be generated to “spill”
the variable out after each of its definitions and to “spill
in” before each use [ASU86]. This reduces the pressure
on the internal register bank by reducing the length of any
spilled variable’s live tracks. This should reduce the in-
terference caused by variables spilled, allowing the graph
to be completely colored. Because the interference may
not be reduced enough and hard registers are usually still
temporarily needed for spilled variables, a new graph is
built and the coloring/spilling cycle repeated as necessary.
Variables are chosen to be spilled based on perceived cost.
Those within nested loops or with a high number of uses
will be spilled last.

When a program executes a call statement, values resid-
ing in hard registers may be destroyed by the called routine.
A convention may be adopted that specifies which hard reg-
isters may be overwritten by a subroutine but this practice
removes resources that could otherwise be well used. An
alternative convention saves the values needed before they
are overwritten and restores them when control is returned
to the calling routine. Using this procedure, two choices
exist: 1) the caller can save the values before transfer of
execution and restore them upon return or, 2) the callee can
save them immediately upon entrance and restore before
exit. The caller-save method saves all those hard registers
that are live before and after the call. On the other hand,
the callee-save method saves any register that will be used
during subroutine execution. The callee-save method has
the benefit that the save/restore code is present only once

whereas the caller-save has to place code around each call.
A refinement to this process saves hard registers only before
they are used within the subroutine and also restores only
those. Control flow constructs within the subroutine may
cause certain registers not to be destroyed every time it is
called. The caller-save will save fewer registers if there are
fewer registers live before and after the call in the calling
routine than exist within the subroutine. The inverse is true
for save by callee. We have chosen save by callee for its
code-space reduction and its implementation simplicity.

4 Building the Interference Graph

To perform graph-coloring register assignment, we need
to build a register-interference graph. Fortunately, the
ROCKET’s method works equally well with either the pro-
gram’s intermediate representation or final compacted form
as input. Whether to do register assignment before or after
compaction depends exclusively on other factors.

As mentioned, two symbolic registers interfere if they
are live at the same time. This implies that they must reside
in different hard registers at run time. What we need to
know then, is which symbolic registers have intersecting
lifetimes.

Before further describing how ROCKET builds the
register-interference graph, however, we digress briefly to
discuss execution points. Intuitively, an execution point
can be thought of as a distinct step in the program’s exe-
cution. Thus, the definition of an execution point differs
slightly, depending on the program representation being
considered. In C source code, each “;” might be considered
an execution point. Program analysis (before compaction),
considers each intermediate statement a distinct execution
point. After compaction, each compacted instruction is an
execution point.

Given this malleable definition, we determine which
variables have intersecting lifetimes using two dataflow
sets that the ROCKET compiler maintains for each execu-
tion point.

defined The set of symbolic registers redefined during the
execution of this point.

live The set of symbolic registers which “contain” values
needed at this or some later execution point.

We build the interference graph using the following ob-
servation:

A symbolic register, R, interferes only with those
symbolic registers which are live at the execution
point(s) where R is defined.



Stating this notion in algorithmic form, we do the fol-
lowing to build the interference graph.

foreach execution point, P, in the program:

foreach member, defR, of P->defined:
foreach member, liveR, of P->live:

add an arc between defR and liveR

All we require to build the register-interference graph is
to compute defined and live sets for each program execution
point and to maintain the ability to traverse those execu-
tion points. Since the ROCKET compiler maintains the
defined and live sets at each execution point in both the in-
termediate and compacted representations of the program,
it is equally easy to build the interference graph either be-
fore compaction (using intermediate statements), or after
compaction (using compacted instructions).

5 Timing of Register Assignment

Having decided to perform register assignment using graph
coloring, the important questionwe need to answer is when,
during compilation, should register assignment take place.

In one sense, we would like register assignment to be
done very late in the compilation process. Then we can
maintain the myth of unlimited register resources until after
optimizations (such as common subexpression elimination,
copy propagation, and dead code removal.) Delaying regis-
ter assignment provides several benefits. If an optimization
calls for creation of a new register, (or expansion of a reg-
ister variable’s lifetime), we can perform the optimization
content in the knowledge that a later register assignment
will “make everything right” with respect to the allocation
and assignment of register values needed. Similarly, if an
optimization (e.g. dead code removal) removes the need
for a register or shortens a register variable’s lifetime, we
can be sure that the lowered register interference will be no-
ticed at register assignment time. Thus, the basic rationale
for performing register assignment late: we wish to assign
values to hard registers only after any optimizations that
may change either the number of register values needed or
those values’ lifetimes. If we assign registers before one
or more of these optimizations, we base assignment and
spilling decisions on poor estimates of the register usage in
the compiler’s final product.

By delaying register assignment we encounter some dif-
ficulties, however. We cannot entirely ignore that no target

architecture has an infinite number of registers. Common
optimizations must consider the consequences of adding
to a program’s register interference. Indeed, if, to elim-
inate a common subexpression, we increase register in-
terference to the point that register assignment spills, the
cost of evaluating an expression multiple times must be
great to outweigh the added spill cost. Thus we have a
phase-coupling problem where intermediate optimizations
and register assignment depend on one another. A common
solution, discussed in Beaty et al. [BDM+88] and used in
ROCKET, performs register assignment after common op-
timizations such as common subexpression elimination but
includes a “register interference” parameter in the target
machine description. This parameter estimates the proba-
bility that creation of a new register value would lead to
register spilling.

So far we have discussed timing of graph-coloring reg-
ister assignment only with respect to traditional optimiza-
tions. How does inclusion of a compaction phase affect
the optimal placement of register assignment? While com-
paction itself will not create or destroy register values, it
will most certainly alter the lifetimes of register values
by changing the relative order of operations in intermediate
code. Therefore, to use the most accurate dataflow informa-
tion we delay register assignment until after the compiler’s
compaction phase. Interestingly, to the best of our knowl-
edge, of the compilers which include both compaction and
graph-coloring register assignment, only ROCKET post-
pones register assignment until after compaction. We as-
sume this is due to implementation difficulties encountered,
specifically

� in those cases requiring spilling, it is not clear how to
add spill code to already compacted instructions.

� code for save/restoration of registers needs to be com-
pacted. But this causes a phase-coupling problem, be-
cause, until after register assignment, we don’t know
how many registers need to be saved/restored.

We address each of these problems shortly, but first, we
provide added motivation for our contention that perform-
ing register assignment before compaction leads to poorer
compacted code. As stated, local compaction takes a DDG
as input and attempts to schedule the DDG’s operations in as
few instructions as possible, subject to the DDG’s data de-
pendencies. When we map symbolic registers to hard reg-
isters before compaction, we must add anti-dependencies
associated with reuse of hard registers. These dependen-
cies are in a sense unnecessary since they do not represent
actual dataflow of the program being compiled. Necessary
or not, however, they restrict the possible movement of op-
erations during compaction and, thus, reduce the likelihood
of obtaining the minimal number of instructions.



To see how early register assignment can lead to un-
necessary anti-dependencies, let us look at an example.
Consider a hypothetical machine H, that provides both a
floating point multiplier and a floating point adder, each a
five-stage pipeline. Both the inputs and output of each pipe
must be one of a bank of floating point registers (F0-F15).
In addition, H includes 64k of RAM and an integer proces-
sor (including registers I0-I15) to compute RAM addresses.
Figure 1 depicts our hypothetical architecture. Assembly
language for H includes the following simple operations:

� Ix = addr(A) — store the RAM address symboli-
cally represented by A into an integer register.

� Ix = Iy op Iz — arithmetic in the integer alu.

� Fx = mem(Iy) — move a RAM value into a floating
point register.

� mem(Iy) = Fx — move a floating point register
value into a RAM location.

� Fx = Fy + Fz — floating point addition.

� Fx = Fy � Fz — floating point multiplication.

In any one machine cycle of H we can concurrently
perform the following:

� either initialize an integer register to a RAM address
or perform a calculation in the integer alu.

� start data movement either from RAM to a floating
point register or from a register to a RAM location.
Such data movements are pipelined and take two cy-
cles to complete.

� start a floating point addition. This is a pipelined
computation and requires 5 cycles to complete.

� start a floating point multiplication. This is a pipelined
computation and requires 5 cycles to complete.

As an example of code in which register assignment prior
to compaction can lead to relatively poor compacted assem-
bly language, consider the following C code fragment:

float sum, product;
float A[100], B[100];

.

.

.
sum += A[i];
product *= B[i];

.

.

.

Bearing in mind H’s architecture and our desire to have
all scalars reside in registers, we might well expect to allo-
cate both sum and product to (symbolic) floating point reg-
isters, but certainly the arrays A and B must be maintained
in RAM. Since H’s floating point adder and multiplier each
require both inputs to be in registers, the intermediate code
might look like (assuming t1 and t2 to be allocated to float-
ing point registers):

.

.

.
t1 = A[i];
sum += t1;
t2 = B[i];
product *= t2;

.

.

.

Notice that the temporary “variables” t1 and t2 have
disjoint lifetimes (i.e. t1’s value is referenced for the last
time before t2’s value is set.) Thus, if we perform register
assignment on this intermediate code, no reason exists why
t1 and t2 should not be mapped to the same hard register.
If that happens, however, we get the assembly code listed
below. (For readability, nops are included to make the
timing delays obvious. The assembly language statements
are numbered only to facilitate this discussion.)

/* assume that

I0 holds the address of A
I1 holds the address of B
I2 is a temporary

and the following register
mappings have been made

i -> I3
sum -> F2
product -> F3
t1 -> F1
t2 -> F1

*/
.



6?

6?

?

?

66

? ???

-

Latch
Data

Latch
Address

Multiplier
Floating

Adder
Floating

Registers
Floating

RAM

Processor
IntegerAddress from

Instruction Word

64 K

Figure 1: Hypothetical Architecture, H

.

.
(1) I2 = I0 + I3;
(2) F1 = mem(I2);
(3) nop;
(4) F2 = F2 + F1 &

I2 = I1 + I3;
(5) F1 = mem(I2);
(6) nop;
(7) F3 = F3 * F1;
(8) nop;
(9) nop;
(10) nop;
(11) nop;

.

.

.

Counting the nop’s needed to satisfy the pipeline timing
requirements, this code requires eleven H instructions to
execute. Assigning both variables t1 and t2 hard register F1

causes an unnecessary anti-dependency between statements
(4) and (5). Because of this anti-dependency, compaction
could not move the operation of statement (5) above the
floating point addition in statement (4). If we wait until
after compaction to assign hard registers, no such anti-
dependency exists and we get the following compacted
code (before register assignment):

/* assume that
Isym119 holds the address of A
Isym117 holds the address of B
Isym13 and Isym14 are temporaries.

and the following symbolic register

mappings have been made

i -> Isym133
sum -> Fsym107
product -> Fsym93
t1 -> Fsym83



t2 -> Fsym105
*/

.

.

.

(1) Isym13 = Isym119 + Isym133;
(2) Fsym83 = mem(Isym13) &

Isym14 = Isym117 + Isym133;
(3) Fsym105 = mem(Isym14);
(4) Fsym107 = Fsym107 + Fsym83;
(5) Fsym93 = Fsym93 * Fsym105;
(6) nop;
(7) nop;
(8) nop;
(9) nop;

.

.

.

In this simple example, by delaying register assignment
until after compaction, we get code which executes in two
less instructions. It should not be hard to imagine larger
examples in which multiple unnecessary anti-dependencies
could have a much more serious effect.

Having shown why it is useful to delay register assign-
ment until after compaction, we return to the implementa-
tion issues mentioned previously, specifically the difficulty
in spilling registers in compacted instructions and the uncer-
tainties in saving and restoring registers around procedure
calls.

One of the nice consequences of performing register as-
signment based upon intermediate statements is the ease
with which we can insert spill code into the intermediate
code. We need only (1) construct new intermediate state-
ments to represent the actions of storing a register’s value
to memory and later loading a register from that memory
location and (2) insert the new statements into the list of
intermediate statements for the program being compiled.
Sadly, such insertion will not generally work with com-
pacted code. The compacted code probably will contain
machine operations packed into different instructions but
bound by restrictive timing. Arbitrarily inserting new in-
structions into the compacted code could violate the con-
straints under which the code was originally compacted.

Well, if we can’t insert spill code into already-compacted
instructions, we might somehow add spill code to the DDG
from which we built the compacted code. While possible,
this would be extremely messy. We have chosen an alter-
native. Rather than add spill code to either the compacted
instructionsor the DDG, we use the compacted instructions
to choose candidates for spilling, but add spill code to the

intermediate statements. With this approach we can easily
insert spill code, and we base spill decisions on register us-
age in compacted code. The method’s major disadvantage
is compilation speed, or rather the lack of it. Recall from
Section 3 that register assignment is actually a loop in which
we assign, spill, assign, spill, : : :until the assign phase can
allocate all the (remaining) symbolic registers to hard reg-
isters. This can, of course, be a time-consuming process.
By assigning registers after compaction but spilling in the
intermediates, we have lengthed the loop. Now, in addition
to adding spill code for each iteration of the assign/spill
loop, we must also build DDGs from the intermediate and
compact the DDGs for each iteration.

Delaying register assignment until after compaction may
also lead to implementation problems in saving and restor-
ing registers around each procedure call. What is the dif-
ficulty? We do not know how many registers we must
save/restore until after register assignment. But we also
want to compact the save/restore code. Thus, save/restore
code must precede compaction but follow register assign-
ment, playing havoc with our decision to compact before
assigning symbolic registers. Luckily, our decision to in-
clude save/restore code in the callee rather than caller sub-
program leads to an easy solution. A crucial observation
in reaching this solution is that register save/restore code
cannot itself reference symbolic registers. Therefore, reg-
ister assignment can ignore the register save/restore code.
To insert register save/restore code in a function, ROCKET
inserts two dummy basic blocks, ENTRY and EXIT, into
the function’s control-flow graph. As the names imply,
these blocks will be the first and last executed. Through
most compilation these blocks contain no code. After com-
paction and register assignment,however, ROCKET inserts
register save code into the ENTRY block and register re-
store code into the EXIT block, saving/restoring those hard
registers referenced within the function. Finally, the EN-
TRY and EXIT blocks are compacted. We can neglect
register assignment for these two blocks because they can
contain no symbolic registers.

6 Conclusions

We have argued that the relative timing of compaction and
register assignment has an impact upon the quality of code
produced. If assignment occurs before compaction, the
anti-dependence constraints can be more restrictive than
necessary, limiting compaction’s opportunities to exploit
parallelism. If assignment occurs after compaction, these
restrictions do not exist.

We have also addressed implementation difficulties
which have previously discouraged late register assign-



ment. Using the method proposed, register spilling, when
it occurs, requires a compaction/assignment loop, leading
to increased compilation times relative to those achieved
with earlier register assignment. We feel this slower com-
pilation is acceptable since post-compaction register as-
signment can increase the quality of the resultant code,
and spilling should be a rare occurrence. Finally, we have
shown how callee save around call sites simplifies the reg-
ister save and restore problem. Therefore, we conclude that
post-compaction register assignment should be used when
final code efficiency is paramount.

References

[All86] V.H. Allan. A Critical Analysis of the
Global Optimization Problem for Horizontal
Microcode. PhD thesis, Computer Science
Department, Colorado State University, Fort
Collins, Colorado, 1986.

[All88] V.H. Allan. “Data Dependency Graph Brac-
ing”. In Proceedings of the 21th Micro-
programming Workshop (MICRO-21), San
Diego, CA, December 1988.

[ASU86] A.V. Aho, R. Sethi, and J.D. Ullman. Com-
pilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA, 1986.

[Ban88] U Banerjee. Dependence Analysis for Super-
computing. Kluwer, Boston, Ma, 1988.

[BC86] Michael Burke and Ron Cytron. “Interpro-
cedural dependence analysis and paralleliza-
tion”. In Proceedings of the ACM SIGPLAN
Symposium on Compiler Construction, pages
162–175. SIGPLAN ’86, 1986.

[BDM+88] S.J. Beaty, M.R. Duda, R.A. Mueller, P.H.
Sweany, and J. Varghese. “Optimization is-
sues for a retargetable optimizing microcode
compiler”. IEEE MicroArch, 3(1), December
1988.

[BSKT79] U. Banerjee, S. Shen, D.J. Kuck, and R.A.
Towle. “Time and parallel processor bounds
for fortran-like loops”. IEEE Transactions on
Computers, C-28(9):660–670, Sep 1979.

[CAC+81] G.J. Chaitin, M.A. Auslander, A.K. Chandra,
J. Cocke, M.E. Hopkins, and P.W. Markstein.
“Register allocation via coloring”. Computer
Languages, 6, 1981.

[Cha82] G.J. Chaitin. “Register allocation and spilling
via graph coloring”. In Proceedings of the
ACM SIGPLAN 82 Symposium on Compiler
Construction, pages 201–207, June 1982.

[Das84] S. Dasgupta. “A Model of Clocked Micro-
Architectures for Firmware Engineering and
Design Automation Applications”. In Pro-
ceedings of the 17th Microprogramming
Workshop (MICRO-17), pages 298–308, New
Orleans, LA, November 1984.

[DDMS86] W. Damm, G. Doehmen, K. Merkel, and
M. Sichelschmidt. “The AADL/S� Approach
to Firmware Design Specification”. IEEE
Software, 3(4):27–37, July 1986.

[Ell85] J. R. Ellis. Bulldog: A Compiler for VLIW
Architectures. The MIT Press, 1985. PhD
thesis, Yale, 1984.

[Hec77] M.S. Hecht. Flow Analysis of Computer Pro-
grams. North-Holland, New York, NY, 1977.

[HS80] E. Horowitz and S. Sahni. Fundamentals
of Computer Algorithms. Computer Science
Press, Potomac, MA, 1980.

[LDSM80] D. Landskov, S. Davidson, B.D. Shriver,
and P.W. Mallett. “Local Microcode Com-
paction Techniques”. ACM Computing Sur-
veys, 12(3):261–294, September 1980.

[MDSW88] R.A. Mueller, M.R. Duda, P.H. Sweany, and
J.S. Walicki. “Horizon: A Retargetable Com-
piler for Horizontal Micro-Architectures”.
IEEE Transactions on Software Engineer-
ing (Special Section on Microprogramming),
14(5):575–583, May 1988.

[MS86] R.A. Mueller and P.H. Sweany. “Horizon
Code Generator Series-Parallel DDG Cou-
pler/Decoupler (Version 3.1)”. Technical Re-
port MAD-86-10, Firmware Engineering and
Micro-Architecture Design Laboratory, Col-
orado State University, Fort Collins, CO,
September 1986.

[Nic84] Alexandru Nicolau. Parallelism, Memory
Anti-aliasing, and Correctness Issues for a
Trace Scheduling Compiler. PhD thesis, De-
partment of Computer Science, Yale Univer-
sity, New Haven, Conn, December 1984.



[PKL80] D.A. Padua, D.J. Kuck, and D.H. Lawrie.
“High Speed Multiprocessors and Compi-
lation Techniques”. IEEE Transactions on
Computers, C-29(9):763–776, Sept 1980.

[PW86] D.A. Padua and M.J. Wolfe. “Advanced Com-
piler Optimizations for Supercomputers”.
Communications of the ACM, 29(12):1184–
1201, Dec 1986.

[Rob79] E.L. Robertson. “Microcode Bit Optimiza-
tion is NP-complete”. IEEE Transactions on
Computers, C-28(4):316–319, April 1979.

[Set75] R. Sethi. “Complete register allocation
problems”. SIAM Journal of Computing,
4(3):226–248, 1975.

[Veg82] S.R. Vegdahl. Local Code Generation and
Compaction in Optimizing Microcode Com-
pilers. PhD thesis, Department of Computer
Science, Carnegie-Mellon University, Pitts-
burgh, PA, 1982.


