

Notes

Notes

Notes

Probability and Statistics

Nels Grevstad

Metropolitan State University of Denver ngrevsta@msudenver.edu

January 22, 2019

3 Frequency Distributions and Histograms

Introduction Variables and Data Frequency Distributions and Histograms

Nels Grevstad

Objectives

Objectives:

- Identify sources of variation in data
- Recognize the four types of variables
- Construct a frequency distribution (table) and histogram

Nels Grevstad
Introduction
Variables and Data
Frequency Distributions and Histograms
Introduction (1.1)

Notes

- *Statistics* is the science of collecting, organizing, analyzing, and drawing conclusions from data.
 - Understanding variability in data
 - Distinguishing signal from noise
 - Assessing the evidence data provides
 - Using data to answer scientific questions

Nels Grevstad

• Variation in data arises from many sources.

Variables and Da Frequency Distributions and Histogram

Notes

Example

In a study to assess the effect of exercise on cholesterol levels, one group is assigned to an exercise regimen and other isn't. Is cholesterol reduced in exercise group?

Some sources of variability:

- People have naturally different cholesterol levels
- Respond differently to same amount of exercise (e.g. genetics)
- May vary in adherence to exercise regimen
- Diet may have an effect

Nels Grevstad

Variables and Dat

Notes

Example

Surface water specimens taken upstream and downstream of landfill are analyzed for certain toxins. Can these be used to show toxins are leaching from landfill?

Some sources of variability:

- Natural variation; where specimens were taken
- Specimens gathered under different conditions
- Lab error or variability in analyzing specimens

Nela Grevatad

Variables and Da

• Statistics fits into a broader scientific process:

- Scientific question.
- Design experiment / study.
- Perform experiment / collect data.
- Summarize and analyze data.
- Draw statistical conclusions
- Draw scientific conclusions.

Notes

Notes

- Drawing statistical conclusions may involve making statistical inferences (conclusions about a population based on a sample).
- A *population* is a large group of individuals about which we're interested.
- A *sample* is a subset of the population, usually selected randomly.

Nels Grevstad

Notes

Notes

- Statistical inference and probability are inverse inference methods.
 - Statistical inference is **inductive** (from the specific to the general).
 - Probability is **deductive** (from the general to the specific). Need to learn the language of probability in order to

communicate statistical conclusions.

Nole Grovetad

Introduction Variables and Data Frequency Distributions and Histograms		
?	Statistics: Given the information in your hand, what is in the pail?	
?	Probability: Given the information in the pail, what is in your hand?	

Introduction Variables and Data

Nels Grevstad

Variables and Data (1.2)

- **Data** are observed values of **variables** (characteristics that vary from one individual to the next).
- Variables can be *categorical* (or *qualitative*) (taking values in a set of categories) or *numerical* (or *quantitative*) (taking numerical values).

Nels Grevstad

Introduction Variables and Data

Notes

- Categorical variables can be:
 - Ordinal (the categories have an inherent ordering, e.g. low, medium, high)
 - Nominal (the categories have no inherent ordering, e.g. red, green, and blue).
- Numerical variables can be:
 - **Discrete** (the set of possible values is finite or countably infinite, i.e. they're isolated numbers with gaps between them, e.g. integers)
 - **Continuous** (the set of possible values is a continuum, or interval).

Nels Grevstad

Variables and Data

requency Distributions an	d Histograms (10)
Introduction Variables and Data Frequency Distributions and Histograms	

• Frequency Distribution for Discrete Data: One way to summarize data.

Displays the number (*frequency*) and/or proportion (*relative frequency*) of times each value of a variable x occurs.

Introduction Variables and Date

Vels Grevstad

Frequency Distributions and Histogram

Size of litters for $n = 36$ sows. Litter size (number of niglets) is					ets) is			
an integer (dis	screte).	The d	data:				. e. p.g.	
	10	12	10	7	14	11		
	14	11	10	13	10	10		
	8	11	7	13	12	13		
	10	8	5	11	11	12		
	11	11	9	8	12	10		
	9	11	10	12	10	9		

Introductic Variables and Dat Frequency Distributions and Histogram

Here's the **frequency distribution** (table):

Nels Grevstad

		Number of Sows	Relative		
l	Litter Size (x)	(Frequency)	Frequency		
	5	1	0.028		
	6	0	0.000		
	7	2	0.056		
	8	3	0.083		
	9	3	0.083		
	10	9	0.250		
	11	8	0.222		
	12	5	0.139		
	13	3	0.083		
_	14	2	0.056		

Notes

Notes

Notes

- Histogram for Discrete Data: A graph of the frequency distribution.
 - Mark the possible values *x* on the horizontal axis.
 - Above each value, draw a rectangle whose height is the frequency (or relative frequency) of that value.

Variables and Dat Frequency Distributions and Histogram

- Frequency Distribution for Continuous Data: A way to summarize the data.
 - Divide the measurement axis of *x* into a suitable number of *class intervals*.
 - Displays the number (*frequency*) and/or proportion (*relative frequency*) of data observations that fall into each interval.
 - Use right-open, left-closed class intervals (i.e. $a \le x < b$) so that a data observation falling on a boundary goes in interval to the *right* of the boundary.

Nels Grevstad

Variables and Data

Example

Here are surgery times (in hours) for emergency surgeries of									
n = 50 animals at a local animal hospital (ordered from shortest									
to long	to longest).								
0.33	0.33	0.33	0.33	0.50	0.50	0.50	0.67	0.75	
0.75	0.75	0.83	0.92	0.92	1.00	1.00	1.00	1.00	
1.08	1.08	1.17	1.25	1.27	1.33	1.42	1.42	1.50	
1.50	1.50	1.50	1.58	1.67	1.67	1.67	1.67	1.67	
1.70	1.75	1.75	1.83	1.83	2.00	2.00	2.00	2.33	
2 4 2	2 50	2 67	3.08	4 50					

Nels Grevstad

Notes

Notes

Variables and D Frequency Distributions and Histogra

Here's the frequency distribution (table):

	Number of Surgeries	Relative	
Class Interval	(Frequency)	Frequency	
0.0 - < 0.5	4	0.08	
0.5 - < 1.0	10	0.20	
1.0 - < 1.5	12	0.24	
1.5 - < 2.0	15	0.30	
2.0 - < 2.5	5	0.10	
2.5 - < 3.0	2	0.04	
3.0 - < 3.5	1	0.02	
3.5 - < 4.0	0	0.00	
4.0 - < 4.5	0	0.00	
4.5 - < 5.0	1	0.02	

Introducti Variables and Da Frequency Distributions and Histogram

Notes

Notes

• Histogram for Continuous Data: A graph of the

Nels Grevstad

frequency distribution.

- Mark the class interval endpoints on the horizontal *x* axis.
- Above each class interval, draw a rectangle whose height is the frequency (or relative frequency) of that interval.

Nels Grevstad

Variables and Data Frequency Distributions and Histograms

The figure below illustrates some common histogram shapes.

Notes

Variables and Data Frequency Distributions and Histogram

- Terminology used to describe histogram shapes:
 - Symmetric left and right halves are mirror images, most commonly bell-shaped
 - Right skewed (or positively skewed) long "tail" on the right
 - Left skewed (or negatively skewed) long "tail" on the left
 - Bimodal two distinct "mounds"
 - Multimodal multiple "mounds"
- Histograms can also reveal *outliers* (values far away from the rest of the data).

Nels Grevstad

Variables and Da Frequency Distributions and Histogram

Example

Here's (part of) a data set on the numbers deaths by lightning strikes in the U.S. for each of the years 1959 - 2005, as compiled from reports by the National Weather Service.

Year	Deaths	
1959	75	
1960	48	
1961	61	
1962	48	
1963	150	
1964	49	
÷	:	
2005	38	

Nels Grevstad

Variables and Da requency Distributions and Histogram

Introduc:

Regarding the **outlier**, the National Weather Service report states:

Nels Grevstad

On December 8, 1963 the crash of a jetliner killing 81 people near Elkin, Maryland, was attributed to lightning by the Civil Aeronautics Board investigators.

Notes

Notes

Variables and Data Frequency Distributions and Histogram

- Choosing the number of class intervals involves some judgment, but there are some rules and guidelines:
 - Each data value must go in exactly one class (i.e. no overlapping classes and no gaps between neighboring classes)
 - Classes should (usually) be all the same width
 - Use sensible and convenient boundaries, e.g. 20-30 not 19.83-28.87.
 - Usually 5-15 intervals works well. For larger data sets, more than 15 might be better.
 - Using too few can hide important details in the data.
 - Using too many intervals can show too much detail.

Introduction Variables and Data Frequency Distributions and Histograms

Nels Grevstad

Notes

Notes

Example

Here's (part of) a data set containing the weights in carats of n = 50,000 cut diamonds from reputable dealers around the world. A carat is 0.2 of a gram.

0.36	1.20	0.72	0.54	0.33	0.71	1.01	1.20	2.22
0.90	0.55	0.77	1.21	1.22	2.01	0.31	0.32	0.73
0.32	1.47	2.00	0.33	1.01	1.50	0.72	0.33	0.27
				:				
0.44	0.50	0.31	0.34	0.90	0.70	1.52	1.10	0.76

Variables and Da Frequency Distributions and Histogra

Notes