

|            | unting Techniques<br>ditional Probability<br>Independence |  |
|------------|-----------------------------------------------------------|--|
| Objectives |                                                           |  |

#### Objectives:

- Count permutations and combinations
- Compute and interpret conditional probabilities
- Recognize independence and use it to compute probabilities
- Know and be able to use various probability rules

Nels Grevstad

Counting Techniques Conditional Probability Independence

Counting Techniques (2.3)

Notes

Notes

Notes

Notes

• When the outcomes of a random experiment are equally likely,

$$P(A) = \frac{N(A)}{N}$$

where where N(A) is the number of outcomes in A and N total number of outcomes in S.

• So techniques for counting outcomes are sometimes useful for computing probabilities.

Nels Grevstad

The Product Rule: Suppose that k actions are performed in sequence and that the first action has  $n_1$  possible results, the second has  $n_2$  possible results, etc. Then

Number of Possible Sequences of Results  $= n_1 n_2 n_3 \cdots n_k$ 

Counting Techniques Conditional Probability

Nels Grevstad

### Example

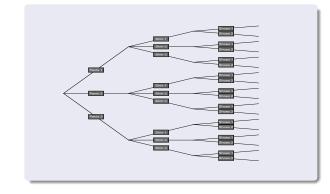
A man has 3 pairs of pants, 3 shirts, and 2 pairs of shoes. He can get dressed in

$$n_1n_2n_3 = (3)(3)(2) = 18$$

ways.

Counting Techniques Conditional Probability Independence

Nels Grevstad



Nels Grevstad

Counting Techniques conditional Probability

• A *permutation* of *n* objects taken *k* at a time is a particular **ordered** group of *k* of those *n* objects.

| E                   | ixamp                                                                                                                   | le  |     |     |     |     |     |     |     |     |   |
|---------------------|-------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|---|
| Т                   | Ten runners start a race:                                                                                               |     |     |     |     |     |     |     |     |     |   |
|                     | Don                                                                                                                     | Ben | Ron | Lee | Bob | Joe | Tim | Lou | Ray | Gil |   |
|                     | Each assignment of 1st, 2nd, and 3rd place medals is a <b>permutation</b> of the 10 runners taken 3 at a time. Here are |     |     |     |     |     |     |     |     |     |   |
| three permutations: |                                                                                                                         |     |     |     |     |     |     |     |     |     |   |
|                     | 1st                                                                                                                     | 2nd | 3rd | 1st | 2nd | 3rc | ł   | 1st | 2nd | 3rd |   |
|                     | Ron                                                                                                                     | Rav | Joe | Lou | Tim | Ber | 1   | Bay | Joe | Bon | - |

Notes

#### Notes

Permutations: The number of different permutations of 
$$n$$
  
objects taken  $k$  at a time is:  
Number of Permutations  $= n(n-1)(n-2)\cdots(n-k+1)$   
 $= \frac{n!}{(n-k)!}$   
where  $n!$ , or  $n$  factorial, is defined as  
 $n! = n(n-1)(n-2)\cdots 1$   
and  
 $0! = 1$ .

Counting Techniques Conditional Probability

Nels Grevstad

Counting

### Example (Cont'd)

Ten runners start a race:

Don Ben Ron Lee Bob Joe Tim Lou Ray Gil Medals for 1st, 2nd, and 3rd place can be awarded in

$$\frac{n!}{(n-k)!} = \frac{10!}{(10-3)!} = (10)(9)(8) = 720$$

ways.

Counting Techniques onditional Probability

Nels Grevstad

The number of permutations of n objects taken n at a time is just the number of orderings of the n objects and is given by

$$\frac{n!}{(n-n)!} = n!$$

(Recall that 0! is defined to be 1.)

## Example

Five people can stand in line in

$$n! = 5! = (5)(4)(3)(2)(1) = 120$$

ways.

Counting Techniques Conditional Probability

Is Grevstad

 A combination of n objects taken k at a time is a particular unordered group of k of those n objects.

| E | xampl                                                                                           | е    |     |     |       |      |     |     |      |     |
|---|-------------------------------------------------------------------------------------------------|------|-----|-----|-------|------|-----|-----|------|-----|
| Т | Ten runners are trying out for a 3-person cross-country team:                                   |      |     |     |       |      |     |     |      |     |
|   | Don                                                                                             | Ben  | Ron | Lee | Bob   | Joe  | Tim | Lou | Ray  | Gil |
|   | Each choice of 3 of the 10 runners is a <b>combination</b> . Here are <b>two combinations</b> : |      |     |     |       |      |     |     |      |     |
|   |                                                                                                 | Team |     |     | Tea   | m    |     |     | Team |     |
|   | Ron                                                                                             | Ray  | Joe | Lou | u Tim | ו Be | n   | Ray | Joe  | Ron |

Nels Grevstad

#### Notes

#### Notes

Notes

Counting Techniques  
Conditional Probability  
Independence  
Combinations: The number of different combinations of  
*n* objects taken *k* at a time is:  
Number of Combinations = 
$$\frac{n(n-1)(n-2)\cdots(n-k+1)}{k!}$$
  
=  $\frac{n!}{k!(n-k)!}$ 

- Some intuition:
  - The number of *permutations*,  $n(n-1)\cdots(n-k+1)$ , counts each group k! times.
  - So we need to divide it by *k*! to get the number of *combinations*.

Nels Grevstad

Counting Techniques Conditional Probability Independence

• The number of combinations is sometimes denoted

$$\left(\begin{array}{c}n\\k\end{array}\right) \ = \ \frac{n!}{k!(n-k)!}$$

and read as "n choose k".

# Nels Grevstad

nditional Probability

### Example (Cont'd)

 $\begin{pmatrix} n \\ k \end{pmatrix}$ , i.e.

The number of different 3-member teams that can be chosen from the 10 runners is

$$\left(\begin{array}{c} 10\\3\end{array}\right) \ = \ \frac{10!}{3!(10-3)!} \ = \ \frac{(10)(9)(8)}{(3)(2)(1)} \ = \ 120.$$

If the 3 team members are selected *randomly*, then the **probability** that Ron, Ray, and Joe are selected is

$$P(\text{Ron, Ray, Joe}) = \frac{1}{\begin{pmatrix} 10 \\ 3 \end{pmatrix}}$$
$$= \frac{1}{120}.$$

Counting Techniques Conditional Probability

Is Grevstad

Some Properties of Combinations:  
1. 
$$\binom{n}{n} = 1$$
 and  $\binom{n}{0} = 1$ .  
2.  $\binom{n}{1} = n$  and  $\binom{n}{n-1} = n$ .  
3.  $\binom{n}{k} = \binom{n}{n-k}$ .

Nels Grevstad

Notes

Notes



#### Conditional Probability Independence

### Conditional Probability (2.4)

- Sometimes the occurrence of an event *B* affects how likely it is that another event *A* will occur.
- The *conditional probability* of *A*, *given* the occurrence of *B*, is denoted *P*(*A*|*B*) and defined as:

Conditional Probability:  

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Nels Grevstad Counting Techniques Conditional Probability

#### Example

# At a large university, each of 38,847 students was cross-classified according to **gender** and **student level**:

|        | Undergraduate | Professional | Graduate | Total  |
|--------|---------------|--------------|----------|--------|
| Male   | 18,208        | 249          | 4,436    | 22,893 |
| Female | 4,436         | 651          | 2,660    | 15,954 |
|        |               |              |          | 38,847 |

Consider randomly selecting one of the 38,847 students. Let

A = The student is a graduate B = The student is female

Then

$$P(B) = ?$$
 and  $P(A \cap B) = ?$ 

Nels Grevstad

Conditional Probability

#### Example

At a large university, each of 38,847 students was

| cr | cross-classified according to gender and student level: |        |     |       |        |  |  |  |
|----|---------------------------------------------------------|--------|-----|-------|--------|--|--|--|
|    | Undergraduate Professional Graduate                     |        |     |       | Total  |  |  |  |
|    | Male                                                    | 18,208 | 249 | 4,436 | 22,893 |  |  |  |
|    | Female                                                  | 4,436  | 651 | 2,660 | 15,954 |  |  |  |
|    |                                                         |        |     |       | 38.847 |  |  |  |

Consider randomly selecting one of the 38,847 students. Let

A = The student is a graduate B = The student is female

Then

P(B) = ? and  $P(A \cap B) = ?$ 

Nels Grevstad

Counting Techniques Conditional Probability Independence

#### Example

| Example      |                                                    |                     |            |        |  |  |  |  |  |
|--------------|----------------------------------------------------|---------------------|------------|--------|--|--|--|--|--|
| At a large u | At a large university, each of 38,847 students was |                     |            |        |  |  |  |  |  |
| cross-class  | ified according to                                 | o <b>gender</b> and | student le | vel:   |  |  |  |  |  |
|              | Undergraduate                                      | Professional        | Graduate   | Total  |  |  |  |  |  |
| Male         | 18,208                                             | 249                 | 4,436      | 22,893 |  |  |  |  |  |
| Female       | 4,436                                              | 651                 | 2,660      | 15,954 |  |  |  |  |  |
|              |                                                    |                     |            | 38,847 |  |  |  |  |  |
|              | ndomly selecting                                   | -                   |            |        |  |  |  |  |  |
|              |                                                    |                     |            |        |  |  |  |  |  |
| Then         |                                                    |                     |            |        |  |  |  |  |  |
| P(B)         | $=\frac{15,954}{38,847}$                           | and $P(A \cap$      | B) = ?     |        |  |  |  |  |  |

Nels Grevstad

Notes

Notes

Conditional Probability Independence

#### Example

## At a large university, each of 38,847 students was cross-classified according to **gender** and **student level**:

| 0.           | side side according to genuer and etadoint level. |               |              |          |        |  |  |  |  |
|--------------|---------------------------------------------------|---------------|--------------|----------|--------|--|--|--|--|
|              |                                                   | Undergraduate | Professional | Graduate | Total  |  |  |  |  |
|              | Male                                              | 18,208        | 249          | 4,436    | 22,893 |  |  |  |  |
| Female 4,436 |                                                   | 651           | 2,660        | 15,954   |        |  |  |  |  |
|              |                                                   |               |              |          | 38,847 |  |  |  |  |

Consider randomly selecting one of the 38,847 students. Let

A = The student is a graduate B = The student is female

Then

$$P(B) = \frac{15,954}{38,847}$$
 and  $P(A \cap B) = ?$ 

Nels Grevstad

Conditional Probability Independence

#### Example

| At a large university, each of 38,847 students was          |               |              |          |        |  |  |  |  |
|-------------------------------------------------------------|---------------|--------------|----------|--------|--|--|--|--|
| cross-classified according to gender and student level:     |               |              |          |        |  |  |  |  |
|                                                             | Undergraduate | Professional | Graduate | Total  |  |  |  |  |
| Male                                                        | 18,208        | 249          | 4,436    | 22,893 |  |  |  |  |
| Female                                                      | 4,436         | 651          | 2,660    | 15,954 |  |  |  |  |
|                                                             |               |              |          | 38,847 |  |  |  |  |
| Consider randomly selecting one of the 38,847 students. Let |               |              |          |        |  |  |  |  |
| A = The student is a graduate $B =$ The student is female   |               |              |          |        |  |  |  |  |

Then

$$P(B) = \frac{15,954}{38,847}$$
 and  $P(A \cap B) = ?$ 

Nels Grevstad

Conditional Probability

#### Example

At a large university, each of 38,847 students was cross-classified according to **gender** and **student level**:

| cr       | cross-classified according to gender and student level: |               |              |          |        |  |  |  |  |
|----------|---------------------------------------------------------|---------------|--------------|----------|--------|--|--|--|--|
|          |                                                         | Undergraduate | Professional | Graduate | Total  |  |  |  |  |
|          | Male                                                    | 18,208        | 249          | 4,436    | 22,893 |  |  |  |  |
| Female 4 |                                                         | 4,436         | 651          | 2,660    | 15,954 |  |  |  |  |
|          |                                                         |               |              |          | 38,847 |  |  |  |  |

Consider randomly selecting one of the 38,847 students. Let

A = The student is a graduate B = The student is female

Then

$$P(B) \ = \ \frac{15,954}{38,847} \qquad \text{and} \qquad P(A \cap B) \ = \ \frac{2,660}{38,847}$$

Nels Grevstad

Conditional Probability Independence

and so the **conditional probability** that the student is a graduate student, *given* that she's female, is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
  
=  $\frac{2,660/38,847}{15,954/38,847} = \frac{2,660}{15,954} = 0.167.$ 

|        | Undergraduate | Professional | Graduate | Total  |
|--------|---------------|--------------|----------|--------|
| Male   | 18,208        | 249          | 4,436    | 22,893 |
| Female | 4,436         | 651          | 2,660    | 15,954 |
|        |               |              |          | 38,847 |

Nels Grevstad



Notes

## Notes

Conditional Probability Independence

#### Example

At a technical college all students take calculus and physics. **32%** get A's in calculus and **20%** get A's in both calculus **and** physics. For a randomly selected student, let

A = Got an A in physics B = Got an A in calculus

Then

$$P(B) = 0.32$$
 and  $P(A \cap B) = 0.20$ ,

so the **conditional probability** that they got an A in physics, given that they got an A in calculus, is

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{0.20}{0.32} = 0.625.$$

Nels Grevstad

#### Counting Techniques Conditional Probability

Here's some intuition behind the conditional probability formula

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

- The occurrence of  ${\cal B}$  reduces the set of possible outcomes to just the ones in  ${\cal B}.$
- So P(A|B) is a probability on a new, reduced sample space, B.
- On this new sample space, the outcome is in A only if it's in  $A \cap B.$
- Dividing by P(B) ensures that P(B|B) for this new sample space equals 1.

Conditional Probability

Nels Grevstad

• The definition of conditional probability yields the following rule.

Multiplication Rule for  $P(A \cap B)$ : For any two events *A* and *B*,  $P(A \cap B) = P(B)P(A|B).$ 

> Nels Grevstad Counting Techniques Conditional Probability

#### Example

According to a study of male high school athletes,

5% go on to play at the college level.

1.7% of those who play at the college level go on to play professionally.

For a randomly selected high school athlete, let

- A =Plays professionally
- B =Plays in college

Nels Grevstad

#### Notes

Notes

Notes

Conditional Probability

Then

$$P(B) = 0.05$$
 and  $P(A|B) = 0.017$ 

so the probability that an athlete will play in college  $\ensuremath{\text{and}}$  turn pro is

$$P(A \cap B) = P(B)P(A|B) = (0.05)(0.017) = 0.00085.$$

Counting Techniques Conditional Probability

Nels Grevstad

#### Notes

• The multiplication rule can be extended to more than two events.

**Multiplication Rule (for Three Events):** If A, B, and C are three events, then

$$P(A \cap B \cap C) = P(C)P(B|C)P(A|B \cap C)$$

• The extension to more than three events is similar.

Nels Grevstad

Conditional Probability

#### Example (Cont'd)

Recall that among male high school athletes,

5% go on to play at the college level.

1.7% of those who play at the college level go on to play professionally.

It's also known that

40% of those who play in college and then play professionally have a career that lasts more than 3 years.

Nels Grevstad

Counting Techniques Conditional Probability

#### Let

A = The athlete has a career that lasts more than 3 years

- B = The athlete plays professionally
- C = The athlete plays in college

Then

 $P(C) = 0.05, P(B|C) = 0.017, \text{ and } P(A|B \cap C) = 0.40$ 

so the probability that an athlete will play in college **and** turn pro **and** last more than 3 years is

$$P(A \cap B \cap C) = P(C)P(B|C)P(A|B \cap C)$$
  
= (0.05)(0.017)(0.40) = 0.00034.

Nels Grevstad

Notes

#### Notes

• Two events A and B are said to be *independent* if

$$P(A|B) = P(A).$$

Otherwise, they're said to be *dependent*.

- Intuitively, events are independent if the occurrence of one has **no effect** on whether the other one occurs.
- It can be shown that the definition above implies

Vels Grevstad

$$P(B|A) = P(B)$$

too.

#### Counting Techniques Conditional Probability Independence

• The definition of independence is equivalent to the following rule.

**Multiplication Rule for**  $P(A \cap B)$ : Two events *A* and *B* are *independent* if and only if

 $P(A \cap B) = P(A)P(B).$ 

- In fact, the above rule is sometimes used as the *definition* of independence.
- In practice, we usually know (or assume) events are independent, then use the rule to compute  $P(A \cap B)$ .

Counting Techniques Conditional Probability

Example

Here are some examples:

Two coin tosses.

$$P(\text{Two heads}) = P(\text{1st is head}) \times P(\text{2nd is head})$$
$$= \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) = \frac{1}{4}.$$

• Two rolls of a die.

$$\begin{array}{ll} P(\mbox{Two one's}) &=& P(\mbox{1st is one}) \times P(\mbox{2nd is one}) \\ &=& \left(\frac{1}{6}\right) \left(\frac{1}{6}\right) \ =& \frac{1}{36}. \end{array}$$

## Counting Techniques

Conditional Probability Independence

• We can extend the definition of *independence* to more than two events.

Events  $A_1, A_2, \ldots, A_n$  are said to be *mutually independent* if for every k ( $k = 2, 3, \ldots, n$ ) and every subset of indices  $i_1, i_2, \ldots, i_k$ ,

$$P(A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k}) = P(A_{i_1})P(A_{i_2}) \cdots P(A_{i_k}).$$

• Thus for three events *A*, *B*, and *C*, the definition requires that *all four* of the following be met:

$$P(A \cap B \cap C) = P(A)P(B)P(C)$$

$$P(A \cap B) = P(A)P(B)$$

$$P(A \cap C) = P(A)P(C)$$

$$P(B \cap C) = P(B)P(C)$$

outcomes don't influence each other

Notes

# Notes

Notes

nditional Probability

Notes

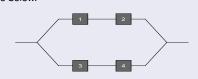
Notes

- Intuitively, mutually independent events are ones whose outcomes don't influence each other.
- In practice, we usually know (or assume) events are mutually independent, then use the rule to compute

$$P(A_1 \cap A_2 \cap \dots \cap A_n) = P(A_1)P(A_2)\cdots P(A_n)$$

Counting Techniques Conditional Probability Independence Example Consider the system of electrical components connected as in the picture below.

els Grevstad



Components 1 and 2 are connected in series, so that subsystem works only if both 1 and 2 work. Similarly for components 3 and 4 and that subsystem. The entire system works only if at least one of the subsystems works.

> Counting Techniques Conditional Probability

Nels Grevstad

Let

 $A_i$  = The *i*th component works.

Assume the  $A_i$ 's are **mutually independent** and suppose  $P(A_i) = 0.9$  for every *i*. Then

$$\begin{split} P(\text{System works}) &= P((A_1 \cap A_2) \cup (A_3 \cap A_4)) \\ &= P(A_1 \cap A_2) + P(A_3 \cap A_4) \\ &- P((A_1 \cap A_2) \cap (A_3 \cap A_4)) \\ &= (0.9)(0.9) + (0.9)(0.9) \\ &- (0.9)(0.9)(0.9)(0.9) \\ &= 0.964. \end{split}$$

Nels Grevstad