iscrete Probability Distributions

Notes

Notes

Notes

Probability and Statistics

Nels Grevstad

Metropolitan State University of Denver ngrevsta@msudenver.edu

February 10, 2019

	Nels Grevstad		
	Random Variables Discrete Probability Distributions Expected Values		
Topics			
1 Randon	n Variables		
2 Discrete Probability Distributions			

3 Expected Values

	Random Variables Discrete Probability Distributions Expected Values	
Objectives		

Nels Grevstad

Objectives:

- Distinguish discrete from continuous random variables
- Use discrete probability distributions to find probabilities
- For discrete random variables, compute and interpret:
 - The expected value
 - The expected value of a function of the random variable
 - The variance and standard deviation
 - The variance and standard deviation of a linear function of the random variable

Nels Grevstad

Discrete Probability Distributions

Random Variables (3.1)

Notes

• Numerical values that are determined by **chance** are modeled as **random variables**.

Nels Grevstad

• Random variables are denoted by capital letters *X*, *Y*, *Z*, etc.

Example If we toss a coin, the sample space is $S = \{H, T\}.$ Let $X = \begin{cases} 1 & \text{if the outcome is } H \\ 0 & \text{if the outcome is } T \end{cases}$ Then X is a random variable.

Example

Randomly select a person from a population. Then the **sample space** consists of the individuals in the population:

$S = \{ { { S } \} \}$	Stephanie Lawsor	n 48,
J	leffrey Miller	28,
A	Angela DuPont	27,
	:	÷
ŀ	arl Stevenson	34 }
X = Th	e selected perso	n's age

Then X is a random variable.

Random Variables

Example

Now let

Consider rolling two dice, one red one and the other green. The **sample space** consists of the 36 outcomes:

		Number on Green Die						
		1	2	3	4	5	6	
	1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	Π
	2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)	
Number on	3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)	
Red Die	4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)	
	5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)	
	6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)	
								_

Let

X = The sum of the two numbers on the dice.

Nels Grevstad

Then X is a **random variable**.

Notes

Notes

Notes

Discrete Probability Distributions Expected Values

- A **random variable** arises when a numerical value is associated with each outcome in the sample space S.
- Formally, a *random variable* is a real-valued function whose domain is *S*.

Random Variables Discrete Probability Distributions Expected Values

Notes

Notes

 A random variable is *discrete* if its set of possible values is finite or countably infinite.

It's *continuous* if its set of possible values is a continuous interval.

- The *probability distribution* of a random variable specifies:
 - 1. The set of possible values for the variable.
 - 2. The probabilities of those values.

Nels Grevstad

Discrete Probability Distributions

Discrete Probability Distributions (3.2)

Example

The table below shows the vehicle occupancy rates in Miami-Dade County, Florida.

Number of OccupantsPercentage of Vehicles182 %212 %34 %42 %

Nels Grevstad

Discrete Probability Distributions Expected Values

Consider a randomly selected vehicle, and let

X = The number of occupants in the vehicle

X is a **discrete** random variable whose **probability distribution** is below.

Nels Grevstad

x	1	2	3	4
p(x)	0.82	0.12	0.04	0.02

Notes

In general, the probability distribution of a discrete random variable is represented by a *probability mass function* (or *pmf*), denoted *p(x)* and defined as

Particular value
$$x$$

 $p(x) = P(X = x)$
Random variable X

Random Variable

Nels Grevstad

Discrete Probability Distribution

p(1) = P(X = 1) = 0.82.

Nels Grevstad

Handom Variables Discrete Probability Distributions Expected Values

 In order for a **pmf** to be legitimate, it must satisfy the following conditions:

Nels Grevstad

1. $p(x) \ge 0$ for all x.

2.
$$\sum p(x) = 1$$
.

where the summation is over all possible values \boldsymbol{x} of $\boldsymbol{X}.$

Notes

Notes

Notes

Discrete Probability Distrit Expected

Expected Values (3.3)

• The *expected value* of a **discrete** random variable *X*, also called the *mean* of its distribution, is denoted *E*(*X*) or μ_x and defined as:

Expected Value: $E(X) = \mu_x = \sum x p(x)$ where the summation is over all possible values x of X.

• E(X) is a weighted average of the possible values x of X.

Notes

Notes

- The expected value (or mean) has a few interpretations:
 - It's the long-run average value of X.
 - It's the **center** ("balancing point") of the probability distribution.
- Later, we'll use probability distributions to represent **populations**. The expected value will be the **population mean**.

Random Variables

Expected Values

Example

When a roulette wheel is spun, the ball is equally likely to land in any of 38 slots, 18 of which are red, 18 black, and 2 green.

lels Grevstad

Random Variables Discrete Probability Distributions Expected Values

A bet of \$1.00 on red pays a dollar if the ball lands in a red slot. Otherwise you lose your dollar. Let

X = Your winnings after a \$1.00 bet on red

The probability distribution of X is:

The expected value of X is

1

$$E(X) = -1.00\left(\frac{20}{38}\right) + 1.00\left(\frac{18}{38}\right) = -0.053.$$

Notes

Random Variable screte Probability Distribution Expected Value

Example							
Recall that the probability distribution of the number of							
occupants X in a	randomly se	elected	vehicle	e is:			
а	c 1	2	3	4			
p(x)) 0.82	0.12	0.04	0.02			
The expected value is							
E(X) = 1(0.82) + 2(0.12) + 3(0.04) + 4(0.02) = 1.26.							

Handom Variables Discrete Probability Distributions

• To see why μ is the **population mean**, suppose there are N=100,000 vehicles in the population. Then using

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

gives

 $\begin{array}{lll} \mu & = & \displaystyle \frac{1}{100,000}(1+1+\dots+1 & (\text{82,000 ones}) \\ & & +2+2+\dots+2 & (12,000 \text{ twos}) \\ & & +3+3+\dots+3 & (\text{4,000 threes}) \\ & & +4+4+\dots+4) & (2,000 \text{ fours}) \\ & & = & \displaystyle \frac{1(82,000)+2(12,000)+3(4,000)+4(2,000)}{100,000} \\ & = & 1(0.82)+2(0.12)+3(0.04)+4(0.02) = \textbf{1.26}. \end{array}$

Random Variable screte Probability Distribution

Vels Grevstad

• If X is a random variable, then any function h(X) is also a random variable.

Proposition

If X is a discrete random variable with pmf p(x), then the expected value of any function h(X), denoted E(h(X)) or $\mu_{h(X)}$, is computed by

$$E(h(X)) = \mu_{h(X)} = \sum h(x)p(x),$$

where the summation is over all possible values x of X.

Nels Grevstad

Notes

Notes

Notes

ete Probability Distributions Expected Values

Example						
Suppose a random variable \boldsymbol{X} has pmf given by						
	:	x -2	-1	0	1	
	p(x)) 0.4	0.3	0.2	0.1	
and suppose we want the expected value of X^2 .						
Letting $h(X) = X^2$, we have						
	h(x)	$(-2)^2$	$(-1)^2$	0^2	1^2	
	p(x)	0.4	0.3	0.2	0.1	

Handom Variable rete Probability Distributior

and			l
$E(X^2)$	=	E(h(X))	l
	=	$(-2)^2(0.4) + (-1)^2(0.3) + 0^2(0.2) + 1^2(0.1)$	l
	=	2.0.	l
			l

Random Variables

• The next proposition can be derived from the previous one by setting h(X) = aX + b.

Proposition

If X is any random variable, then for any constants a and b,

 $E\left(aX+b\right) = aE(X)+b$

(or, using alternative notation, $\mu_{aX + b} = a\mu_X + b$).

Two special cases (for which b = 0 and a = 1):
1. E(aX) = aE(X).

Nels Grevstad

2. E(X+b) = E(X) + b.

Random Variables

• The *variance* and *standard deviation* of a discrete random variable X, denoted V(X) or σ_X^2 and SD(X) or σ_X , are defined as follows.

Variance and Standard Deviation:

Nels Grevstad

$$\begin{array}{rcl} V(X) & = & \sigma_{X}^{2} & = & E\left((X-\mu)^{2}\right) \\ & & = & \sum (x-\mu)^{2} \, p(x), \end{array}$$

where $\mu = E(X)$ and the summation is over all possible values x of X, and

$$SD(X) = \sigma_X = \sqrt{V(X)}.$$

Notes

Notes

Notes

iscrete Probability Distributions

- The variance is a weighted average of the squared deviations of X away from μ .
- The standard deviation is interpreted as a typical deviation of *X* away from *μ*.
- Both are measures of the **variation** in *X*, that is, of the **spread** of the probability distribution of *X*.
- They're the **population variance** and **population standard deviation** when the probability distribution represents a population.

Random Variables Discrete Probability Distributions

Example

Consider a randomly selected rented housing unit in the U.S., and let

X = The number of rooms in the unit

The U.S. Census Bureau gives the **probability distribution** of X:

The mean of this distribution is

 $\mu = 4.26.$

Nels Grevstad

crete Probability Distribution

The variance of the distribution is

 $\sigma^2 = (1 - 4.26)^2(0.01) + (2 - 4.26)^2(0.03) + (3 - 4.26)^2(0.25) - \dots + (8 - 4.26)^2(0.02)$ = 1.67

so the standard deviation is

 $\sigma = \sqrt{1.67} = 1.29.$

Random Variables crete Probability Distributions

Notes

A typical rented housing unit has **4.26** rooms, on average, plus or minus about **1.29** rooms.

Also, μ and σ are the **population mean** and **population** standard deviation in the population of rented housing units.

Nels Grevstad

Notes

Random Variable Discrete Probability Distribution

• By expanding the square in the definition

s Grevstad

$$V(X) = \sum (x - \mu)^2 p(x)$$

of a variance, we can derive the following.

$$V(X) = E(X^2) - \mu^2$$
 Here $\mu = E(X)$.

Random Variables Discrete Probability Distributions Expected Values

• The variance of a function h(X) is

$$V(h(X)) = E((h(X) - \mu_{h(X)})^2)$$

Setting h(X) = aX + b, we can derive the following.

Proposition

Pr

wł

 $V(aX+b) \ = \ \sigma^2_{aX+b} \ = \ a^2 \, \sigma^2_X$ and so $SD(aX+b) \ = \ \sigma_{aX+b} \ = \ |a| \, \sigma_X.$

Random Variable Discrete Probability Distribution

• Two special cases of the previous proposition (for which b = 0 and a = 1):

1.
$$V(aX) = \sigma_{aX}^2 = a^2 \sigma_X^2$$

and

$$SD(aX) = \sigma_{aX} = |a| \sigma_X.$$

2.
$$V(X+b) = \sigma_{X+b}^2 = \sigma_X^2$$

and

 $SD(X+b) = \sigma_{X+b} = \sigma_X.$

Nels Grevstad

Notes

Notes

Notes