## **Probability and Statistics**

## Nels Grevstad

Metropolitan State University of Denver

ngrevsta@msudenver.edu

February 19, 2019

イロト イポト イヨト イヨト

= 990

Nels Grevstad







Nels Grevstad

・ロト ・回 ト ・ ヨト ・ ヨトー

■ のへの

## Objectives

Objectives:

- Recognize Bernoulli, binomial, and geometric random variables.
- Compute probabilities involving Bernoulli, binomial, and geometric random variables.
- Compute and interpret the expected value, variance, and standard deviation of Bernoulli, binomial, and geometric random variables.

ヘロト 人間 ト ヘヨト ヘヨト

## Bernoulli Random Variables (3.1)

• Any random variable *X* whose only possible values are 0 and 1 is called a *Bernoulli random variable*.

#### Example

You take a pass/fail exam. You either pass or fail. Let

$$X = \begin{cases} 1 & \text{if you pass} \\ 0 & \text{if you fail} \end{cases}$$

Then *X* is a **Bernoulli random variable**. If you pass with 70% chance, then the **pmf** of *X* is

$$\begin{array}{rcl} p(1) &=& P(\text{you pass}) &=& \textbf{0.7} \\ p(0) &=& P(\text{you fail}) &=& \textbf{0.3} \end{array}$$

• In the last example, the **probability** of a **success** (passing the exam) was p(1) = 0.7, but other values are possible.

イロト イポト イヨト イヨト

- In the last example, the **probability** of a **success** (passing the exam) was p(1) = 0.7, but other values are possible.
- In general, the so-called success probability is denoted by p and is called a parameter of the distribution.

## Bernoulli(p) Pmf:

$$p(1) = p$$
  
$$p(0) = 1 - p$$

which can be written as

$$p(x) = p^{x}(1-p)^{1-x}$$
 for  $x = 0, 1$ .

## Bernoulli(p) Pmf: p(1) = p p(0) = 1-pwhich can be written as $p(x) = p^x(1-p)^{1-x}$ for x = 0, 1.

#### The notation

## $X \sim \text{Bernoulli}(p)$

▲ロト ▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● ○ ○ ○

means X follows a Bernoulli(p) distribution.

# Bernoulli(p) Pmf: p(1) = p p(0) = 1 - pwhich can be written as $p(x) = p^{x}(1-p)^{1-x} \quad \text{for } x = 0, 1.$

#### The notation

## $X \sim \text{Bernoulli}(p)$

★ E ► ★ E ► E

means X follows a Bernoulli(p) distribution.

• Each choice of *p* leads to a different Bernoulli distribution.

#### Bernoulli and Binomial Distributions

Geometric Distribution



**Bernoulli Mean and Variance**: If  $X \sim \text{Bernoulli}(p)$ , then

$$E(X) = p$$
  

$$V(X) = p(1-p)$$

Nels Grevstad

**Bernoulli Mean and Variance**: If  $X \sim \text{Bernoulli}(p)$ , then

$$E(X) = p$$
  

$$V(X) = p(1-p)$$

#### Proofs:

$$E(X) = \sum x p(x) = 0 (1-p) + 1 (p) = p.$$

**Bernoulli Mean and Variance**: If  $X \sim \text{Bernoulli}(p)$ , then

$$E(X) = p$$
  

$$V(X) = p(1-p)$$

#### Proofs:

$$E(X) = \sum x p(x) = 0 (1-p) + 1 (p) = p.$$

$$V(X) = \sum (x - \mu)^2 p(x)$$
  
=  $(0 - p)^2 (1 - p) + (1 - p)^2 (p)$   
=  $p(1 - p).$ 

## • Some intuition behind E(X) = p:

▲□▶▲□▶▲目▶▲目▶ 目 のへで

• Some intuition behind E(X) = p:

• E(X) is the **long-run average** of X.

- Some intuition behind E(X) = p:
  - E(X) is the **long-run average** of X.
  - *X* takes values 0 and 1, and the **average** of 0's and 1's is the **proportion** of 1's, for example

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- Some intuition behind E(X) = p:
  - E(X) is the **long-run average** of X.
  - *X* takes values 0 and 1, and the **average** of 0's and 1's is the **proportion** of 1's, for example

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

0 1 1 0 1 1 0 1 1 1 0 1 1 gives  $\bar{X} = 7/10 = 0.7$ .

- Some intuition behind E(X) = p:
  - E(X) is the **long-run average** of X.
  - *X* takes values 0 and 1, and the **average** of 0's and 1's is the **proportion** of 1's, for example

0 1 1 0 1 1 0 1 1 gives  $\bar{X} = 7/10 = 0.7$ .

• So E(X) is the long-run proportion of 1's, which is the probability of 1, that is, *p*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

## Example (Cont'd)

You take a pass/fail exam, and X = 1 if you pass and X = 0 if you fail. Then if you pass with probability p = 0.7,

$$E(X) = 0.7$$

and

$$V(X) = 0.7(1 - 0.7) = 0.21$$

so

$$SD(X) = \sqrt{0.21} = 0.46.$$

ヘロト 人間 とくほとく ほとう

= 990



## Binomial Random Variables (3.4)

- A *binomial experiment* is when:
  - 1. There are *n* trials.
  - 2. Each trial results in one of **two outcomes**, *success* (*S*) or *failure* (*F*).
  - 3. The outcomes of the trials are independent.
  - 4. The **probability of a success**, denoted *p*, is **constant** from trial to trial.

イロト イ押ト イヨト イヨトー

э.

## Binomial Random Variables (3.4)

- A binomial experiment is when:
  - 1. There are *n* trials.
  - 2. Each trial results in one of **two outcomes**, *success* (*S*) or *failure* (*F*).
  - 3. The outcomes of the trials are independent.
  - 4. The **probability of a success**, denoted *p*, is **constant** from trial to trial.
- In a binomial experiment, the random variable
  - X = The number of S's among the n trials

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

is called a *binomial random variable*.

According to the *Colorado Springs Gazette*, **90%** of all cars tested for emissions in El Paso, Larimer and Weld counties pass the test. Suppose **four** cars are tested. Let

X = The number that pass among the four cars tested

イロト イ押ト イヨト イヨトー

Then X is a **binomial random variable** with 4 trials and success probability 0.9.

• The binomial distribution has **two parameters**, the **number of trials**, denoted *n*, and **success probability** on a given trial, denoted *p*.

**Binomial**(n, p) **Pmf**:

$$p(x) = {\binom{n}{x}} p^x (1-p)^{n-x}$$
 for  $x = 0, 1, 2, ..., n$ .

イロト イポト イヨト イヨト

## Example (Cont'd)

Suppose again that **four** cars are tested for emissions, and that each car passes with probability **0.9**. Let

X = The number that pass among the four cars tested

Then

 $X \sim \text{binomial}(4, 0.9),$ 

so the probability that two of the four cars will pass the test is

## Example (Cont'd)

Suppose again that **four** cars are tested for emissions, and that each car passes with probability **0.9**. Let

X = The number that pass among the four cars tested

Then

 $X \sim \text{binomial}(4, 0.9),$ 

so the probability that two of the four cars will pass the test is

$$p(2) = \binom{4}{2} (0.9)^2 (1 - 0.9)^{4-2}$$
  
=  $\frac{4!}{2!(4-2)!} (0.9)^2 (0.1)^2$   
= **0.049**.

 For intuition behind the binomial pmf, recall that probability that two of the four cars will pass the test is

$$p(2) = \frac{4!}{2!(4-2)!} = 0.9^2(1-0.9)^{4-2}$$

イロト イポト イヨト イヨト

= 990

 For intuition behind the binomial pmf, recall that probability that two of the four cars will pass the test is



イロン イボン イヨン イヨン

|                                                            | Sequence | С | ər |   |   |
|------------------------------------------------------------|----------|---|----|---|---|
|                                                            | Number   | 1 | 2  | 3 | 4 |
| $\frac{4!}{2!(4-2)!} \left\langle Sequences \right\rangle$ | ( 1      | s | s  | F | F |
|                                                            | 2        | s | F  | s | F |
|                                                            | З        | s | F  | F | s |
|                                                            | s 4      | F | s  | s | F |
|                                                            | 5        | F | s  | F | s |
|                                                            | 6        | F | F  | s | s |

|                            | Sequence | С | ar N | umb | ər | Probability of |
|----------------------------|----------|---|------|-----|----|----------------|
|                            | Number   | 1 | 2    | 3   | 4  | the Sequence   |
| 4!<br>2!(4-2)!<br>Sequence | ( 1      | s | s    | F   | F  |                |
|                            | 2        | s | F    | s   | F  |                |
|                            | ) 3      | s | F    | F   | S  |                |
|                            | es 4     | F | s    | s   | F  |                |
|                            | 5        | F | s    | F   | S  |                |
|                            | 6        | F | F    | s   | s  |                |

|                            | Sequence | С | ar N | umb | er | Probability of   |
|----------------------------|----------|---|------|-----|----|------------------|
|                            | Number   | 1 | 2    | з   | 4  | the Sequence     |
| 4!<br>2!(4-2)!<br>Sequence | ( 1      | s | s    | F   | F  | $(0.9)^2(0.1)^2$ |
|                            | 2        | s | F    | s   | F  |                  |
|                            | ) 3      | s | F    | F   | S  |                  |
|                            | 4        | F | s    | s   | F  |                  |
|                            | 5        | F | s    | F   | S  |                  |
|                            | 6        | F | F    | s   | s  |                  |

|                             | Sequence | С | ar N | umb | er | Probability of   |
|-----------------------------|----------|---|------|-----|----|------------------|
|                             | Number   | 1 | 2    | 3   | 4  | the Sequence     |
| 4!<br>2!(4-2)!<br>Sequences | ( 1      | S | s    | F   | F  | $(0.9)^2(0.1)^2$ |
|                             | 2        | s | F    | s   | F  | $(0.9)^2(0.1)^2$ |
|                             | ) 3      | s | F    | F   | s  |                  |
|                             | es 4     | F | s    | s   | F  |                  |
|                             | 5        | F | s    | F   | s  |                  |
|                             | 6        | F | F    | s   | s  |                  |

|                               | Sequence | С | ar N | umb | er | Probability of   |
|-------------------------------|----------|---|------|-----|----|------------------|
|                               | Number   | 1 | 2    | з   | 4  | the Sequence     |
| 4!<br>2!(4−2)! 〈<br>Sequences | ( 1      | s | s    | F   | F  | $(0.9)^2(0.1)^2$ |
|                               | 2        | s | F    | s   | F  | $(0.9)^2(0.1)^2$ |
|                               | ) 3      | s | F    | F   | s  | $(0.9)^2(0.1)^2$ |
|                               | 4        | F | s    | s   | F  | $(0.9)^2(0.1)^2$ |
|                               | 5        | F | s    | F   | s  | $(0.9)^2(0.1)^2$ |
|                               | 6        | F | F    | s   | s  | $(0.9)^2(0.1)^2$ |

|                             | Sequen | ce   | С | ar Ni | umbe | ∋r | Probability of   |
|-----------------------------|--------|------|---|-------|------|----|------------------|
|                             | Numbe  | ər   | 1 | 2     | з    | 4  | the Sequence     |
| 4!<br>2!(4-2)!<br>Sequences | ( 1    | P(   | s | s     | F    | F) | $(0.9)^2(0.1)^2$ |
|                             | 2      | + P( | s | F     | s    | F) | $(0.9)^2(0.1)^2$ |
|                             | ) 3    | + P( | s | F     | F    | S) | $(0.9)^2(0.1)^2$ |
|                             | 4      | + P( | F | s     | s    | F) | $(0.9)^2(0.1)^2$ |
|                             | 5      | + P( | F | s     | F    | S) | $(0.9)^2(0.1)^2$ |
|                             | 6      | + P( | F | F     | s    | S) | $(0.9)^2(0.1)^2$ |

|                             | Sec<br>Nu | Sequence<br>Number |     | Car Number<br>1 2 3 4 |   |       | er<br>4                               | Probability of the Sequence |
|-----------------------------|-----------|--------------------|-----|-----------------------|---|-------|---------------------------------------|-----------------------------|
| 4!<br>2!(4-2)!<br>Sequences | (         | 1                  | P   | s                     | s | F     | F)                                    | $(0.9)^2(0.1)^2$            |
|                             |           | 2                  | + P | (s                    | F | s     | F)                                    | $(0.9)^2(0.1)^2$            |
|                             |           | 3                  | + P | (s                    | F | F     | S)                                    | $(0.9)^2(0.1)^2$            |
|                             | s         | 4                  | + P | (F                    | s | s     | F)                                    | $(0.9)^2(0.1)^2$            |
|                             |           | 5                  | + P | (F                    | s | F     | S)                                    | $(0.9)^2(0.1)^2$            |
|                             |           | 6                  | + P | (F                    | F | s     | S)                                    | $(0.9)^2(0.1)^2$            |
| S                           |           |                    |     |                       |   | Sum = | $\frac{4!}{2!(4-2)!}(0.9)^2(1-0.9)^2$ |                             |

• Each choice of *n* and *p* leads to a different binomial distribution.

#### Bernoulli and Binomial Distributions





x

▲□▶▲□▶▲目▶▲目▶ 目 のへで

#### Bernoulli and Binomial Distributions

Geometric Distribution



**Binomial Mean and Variance**: If  $X \sim \text{binomial}(n, p)$ , then

$$E(X) = n p$$
  

$$V(X) = n p (1-p)$$

**Binomial Mean and Variance**: If  $X \sim \text{binomial}(n, p)$ , then

$$E(X) = n p$$
  

$$V(X) = n p (1 - p)$$

#### Proofs:

$$E(X) = \sum x \, p(x) = \sum x \, \binom{n}{x} p^x (1-p)^{n-x} = \cdots = n \, p.$$

**Binomial Mean and Variance**: If  $X \sim \text{binomial}(n, p)$ , then

$$E(X) = n p$$
  

$$V(X) = n p (1 - p)$$

#### Proofs:

$$E(X) = \sum x \, p(x) = \sum x \, \binom{n}{x} p^x (1-p)^{n-x} = \cdots = n \, p.$$

$$V(X) = \sum (x - \mu)^2 p(x)$$
  
=  $\sum (x - np)^2 {n \choose x} p^x (1 - p)^{n - x} = \dots = np(1 - p).$ 

## • Some intuition behind E(X) = n p:

▲□▶▲□▶▲目▶▲目▶ 目 のへで

- Some intuition behind E(X) = n p:
  - We'd expect the **proportion** of successes among the *n* trials to be *p*, on average.

▲□▶▲圖▶▲≣▶▲≣▶ = ● のQ@

- Some intuition behind E(X) = n p:
  - We'd expect the **proportion** of successes among the *n* trials to be *p*, on average.
  - So we'd expect the **number** of success among the *n* trials, *X*, to be *np*, on average.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

## Example (Cont'd)

If **four** cars are tested for emissions, and each car passes with probability **0.9**, then if

X = The number that pass among the four cars tested

Then

$$E(X) = np = 4(0.9) = 3.6$$

## Example (Cont'd)

If **four** cars are tested for emissions, and each car passes with probability **0.9**, then if

X = The number that pass among the four cars tested

Then

$$E(X) = n p = 4(0.9) = 3.6$$

and

$$V(X) = n p(1-p) = 4(0.9)(1-0.9) = 0.36$$

so

$$SD(X) = \sqrt{0.36} = 0.6.$$



Nels Grevstad

Note that a Bernoulli(p) random variable is a special case of a binomial(n, p) random variable for which n = 1.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

## Geometric Random Variables (3.2, 3.5)

- A geometric experiment is when:
  - 1. There's a **sequence** of **trials**.
  - 2. Each trial results in a success (S) or failure (F).
  - 3. The trials are **independent**.
  - 4. The **probability** of a **success**, denoted *p*, is **constant** from trial to trial.

イロト イ押ト イヨト イヨトー

5. Trials are performed until the **first success** (S) has been observed.

## Geometric Random Variables (3.2, 3.5)

- A *geometric experiment* is when:
  - 1. There's a **sequence** of **trials**.
  - 2. Each trial results in a success (S) or failure (F).
  - 3. The trials are **independent**.
  - 4. The **probability** of a **success**, denoted *p*, is **constant** from trial to trial.
  - 5. Trials are performed until the **first success** (S) has been observed.
- The random variable
  - X = The number trials up to and including the first success

is called a geometric random variable.

Nels Grevstad

Suppose we roll a die repeatedly until a 6 occurs. Let

X = The number rolls up to and including the first 6

Then X is a **geometric random variable**. We can derive the **pmf** of X:

Suppose we roll a die repeatedly until a 6 occurs. Let

X = The number rolls up to and including the first 6

Then X is a **geometric random variable**. We can derive the **pmf** of X:

$$p(1) = P(S) = \frac{1}{6}$$

Suppose we roll a die repeatedly until a 6 occurs. Let

X = The number rolls up to and including the first 6

Then X is a **geometric random variable**. We can derive the **pmf** of X:

$$p(1) = P(S) = \frac{1}{6}$$
  

$$p(2) = P(F)P(S) = \left(\frac{5}{6}\right)\left(\frac{1}{6}\right)$$

Nels Grevstad

Suppose we roll a die repeatedly until a 6 occurs. Let

X = The number rolls up to and including the first 6

Then X is a **geometric random variable**. We can derive the **pmf** of X:

$$p(1) = P(S) = \frac{1}{6}$$

$$p(2) = P(F)P(S) = \left(\frac{5}{6}\right)\left(\frac{1}{6}\right)$$

$$p(3) = P(F)P(F)P(S) = \left(\frac{5}{6}\right)^2\left(\frac{1}{6}\right)$$

Suppose we roll a die repeatedly until a 6 occurs. Let

X = The number rolls up to and including the first 6

Then X is a **geometric random variable**. We can derive the **pmf** of X:

$$p(1) = P(S) = \frac{1}{6}$$

$$p(2) = P(F)P(S) = \left(\frac{5}{6}\right)\left(\frac{1}{6}\right)$$

$$p(3) = P(F)P(F)P(S) = \left(\frac{5}{6}\right)^{2}\left(\frac{1}{6}\right)$$

ヘロン ヘポン ヘヨン ヘヨン

:

$$p(x) = \underbrace{P(F)P(F)\cdots P(F)}_{x-1 \quad \text{F's}} P(S) = \left(\frac{5}{6}\right)^{x-1} \left(\frac{1}{6}\right)$$

Nels Grevstad

• The geometric distribution has **one parameter**, the **success probability** on a given trial, denoted *p*.

Geometric(p) Pmf:

$$p(x) = (1-p)^{x-1}p$$
 for  $x = 1, 2, 3, ...$ 

イロト イポト イヨト イヨト

• The geometric distribution has **one parameter**, the **success probability** on a given trial, denoted *p*.

```
Geometric(p) Pmf:
```

$$p(x) = (1-p)^{x-1}p$$
 for  $x = 1, 2, 3, ...$ 

 Note that some textbooks (including ours) define a geometric random variable to be

Y = The number trials up to **but not** including the first success

イロト イポト イヨト イヨト

i.e. Y = X - 1.

## • Each choice of *p* leads to a different geometric distribution.

・ロト・日本・ ・ ヨト・ ヨト・

E 900



æ

**Geometric Mean and Variance**: If  $X \sim \text{geometric}(p)$ , then

$$E(X) = \frac{1}{p}$$
$$V(X) = \frac{1-p}{p^2}$$

Nels Grevstad

**Geometric Mean and Variance**: If  $X \sim \text{geometric}(p)$ , then

$$E(X) = \frac{1}{p}$$
$$V(X) = \frac{1-p}{p^2}$$

#### Proofs:

$$E(X) = \sum x p(x) = \sum x (1-p)^{x-1} p = \cdots = \frac{1}{p}.$$

**Geometric Mean and Variance**: If  $X \sim \text{geometric}(p)$ , then

$$E(X) = \frac{1}{p}$$
$$V(X) = \frac{1-p}{p^2}$$

### Proofs:

$$E(X) = \sum x p(x) = \sum x (1-p)^{x-1} p = \dots = \frac{1}{p}$$

$$V(X) = \sum (x - \mu)^2 p(x)$$
  
=  $\sum \left(x - \frac{1}{p}\right)^2 (1 - p)^{x - 1} p = \dots = \frac{1 - p}{p^2}.$ 

## • Some intuition behind E(X) = 1/p:

▲□▶▲□▶▲目▶▲目▶ 目 のへで

- Some intuition behind E(X) = 1/p:
  - *p* is the long-run **proportion** of **successes** in repeated trials.

- Some intuition behind E(X) = 1/p:
  - *p* is the long-run **proportion** of **successes** in repeated trials.
  - In other words, *p* is the long-run number of **successes per trial**.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- Some intuition behind E(X) = 1/p:
  - *p* is the long-run **proportion** of **successes** in repeated trials.
  - In other words, *p* is the long-run number of **successes per trial**.
  - So its reciprocal, 1/p, is the long-run number of trials per success, i.e. the long-run average of X.

- Some intuition behind E(X) = 1/p:
  - *p* is the long-run **proportion** of **successes** in repeated trials.
  - In other words, *p* is the long-run number of **successes per trial**.
  - So its reciprocal, 1/p, is the long-run number of trials per success, i.e. the long-run average of X.

## Example (Cont'd)

Suppose again that we roll a die repeatedly until a 6 occurs, and we let

X = The number rolls up to and including the first 6

Then

$$E(X) = \frac{1}{1/6} = 6$$

х Ш. P

## Example (Cont'd)

Suppose again that we roll a die repeatedly until a 6 occurs, and we let

X = The number rolls up to and including the first 6

Then

$$E(X) = \frac{1}{1/6} = 6$$

and

$$V(X) = \frac{1 - 1/6}{(1/6)^2} = 30$$

so

$$SD(X) = \sqrt{30} = 5.5.$$

х Ш. P

