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Objectives

Objectives:

@ Obtain the cumulative distribution function from a
probability density function.

@ Use a cumulative distribution function to find probabilities.

@ Obtain the probability density function from a cumulative
distribution function.
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Cumulative Distribution Functions

Cumulative Distribution Functions: Continuous (.2

@ The cumulative distribution function (or cdf) of a
random variable X, denoted F'(x), is defined for all = as

F(z) = P(X <ux).
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@ The cumulative distribution function (or cdf) of a
random variable X, denoted F'(x), is defined for all = as

F(z) = P(X <ux).
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Cumulative Distribution Functions

Cumulative Distribution Functions: Continuous (.2

@ The cumulative distribution function (or cdf) of a
random variable X, denoted F'(x), is defined for all = as

F(z) = P(X <ux).

We'll focus on the case in which X is continuous.

(But we'll also briefly look at the discrete case on the last
few slides).
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Cumulative Distribution Functions

Cumulative Distribution Functions: Continuous (.2

@ The cumulative distribution function (or cdf) of a
random variable X, denoted F'(x), is defined for all = as

F(z) = P(X <ux).

We'll focus on the case in which X is continuous.

(But we'll also briefly look at the discrete case on the last
few slides).

@ If X is continuous with pdf f(z), then

F(z) = /_ ") dy.
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mulative Distribution Functi

Pdf of X Cdf of X

F(30) ~
F(30) =P(X <30) i
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Cumulative Distribution Functions

Suppose (again) that X is the gain in a certain investment, in
thousands of dollars, and has pdf

flz) =

(322 +2z) foro<az<1
0 otherwise
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Cumulative Distribution Functions

Suppose (again) that X is the gain in a certain investment, in
thousands of dollars, and has pdf

flz) =

(322 +2z) foro<az<1
0 otherwise

Nels Grevstad
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Cumulative Distribution Functions

For < 0, the cdf is
F(z) =0

because there’s no area under the pdf to the left of 0.
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Cumulative Distribution Functions

For z < 0, the cdf is

because there’s no area under the pdf to the left of 0.

Forxz > 1,

because all of the area under the pdf is accumulated to the left
1.
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Cumulative Distribution Functions

For0 < x < 1, the cdfis
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Cumulative Distribution Functions

For0 < x < 1, the cdfis

Fx) = [ fly)dy
= [y 3(By2+2y)dy
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Cumulative Distribution Functions

For0 < x < 1, the cdfis
F(z) = [ f(y)dy
= [y 3By +2y)dy

T
= 30+,
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Cumulative Distribution Functions

For0 < x < 1, the cdfis
F(z) = [ f(y)dy
= [y 3By +2y)dy
= 3P+

= %(1‘3 + z2).
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Cumulative Distribution Functions

For0 < x < 1, the cdfis
F(z) = [ f(y)dy
= [y 3By +2y)dy

T
= 30+,

= %(1‘3 + z2).
Thus the cdf of X is
0 forz < 0
F(z) = (@3 +a2?) foro<z<1
1 forz > 1
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Cumulative Distribution Functions

The probability P(X < 0.6) that the investment gain will be
less than $600 is

P(X

IN

0.6) = F(0.6)
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Cumulative Distribution Functions

The probability P(X < 0.6) that the investment gain will be
less than $600 is

P(X

IN

0.6) = F(0.6)
= $(0.6 +0.62)
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Cumulative Distribution Functions

The probability P(X < 0.6) that the investment gain will be
less than $600 is

P(X

IN

0.6) = F(0.6)
= $(0.6 +0.62)

= 0.288.
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Cumulative Distribution Functions

Suppose X, the thickness of a certain metal sheet, follows a
uniform distribution over the range A to B.

The pdf is below.
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Cumulative Distribution Functions

Uniform(A, B) Pdf




Cumulative Distribution Functions

Forxz < A, the cdfis
F(z) =0

because there’s no area under the pdf to the left of A.
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Cumulative Distribution Functions

For z < A, the cdfis

because there’s no area under the pdf to the left of A.

For x > B,

because all of the area under the pdf is accumulated to the left
B.
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Cumulative Distribution Functions

For A < x < B, the cdf is
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For A < x < B, the cdf is
F(x) = [T f(y)dy

= [i=ady
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Cumulative Distribution Functions

For A < x < B, the cdf is

F(x) = [* f(y)dy
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Cumulative Distribution Functions

For A < x < B, the cdf is

F(x) = [* f(y)dy
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For A < x < B, the cdf is

F(x) = [* f(y)dy

Thus the cdf of a uniform random variable is

0 forz < A
F(z) = Ei‘z forA<xz<B
1 forz > B
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Cumulative Distribution Functi
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Cumulative Distribution Functions

Suppose X is a random variable with edf F'(x). Then for any
numbers a and b, with a < b,

1. P(X >a) = 1—F(a)

2. Pla< X <b) = F(b) - F(a)
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mulative Distribution Functions

Right Skewed PDF Right Skewed PDF Right Skewed PDF
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Cumulative Distribution Functions

Example

Suppose (again) that X is the gain in a certain investment, in
thousands of dollars.

We found that the cdf of X is

0 forz <0
F(x) = (@3 +a2?) foro<z<1
1 forz > 1
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Cumulative Distribution Functions

Example

Suppose (again) that X is the gain in a certain investment, in
thousands of dollars.

We found that the cdf of X is

0 forz <0
F(x) = (@3 +a2?) foro<z<1
1 forz > 1
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Cumulative Distribution Functions

The probability P(X > 0.6) that it will be more than $600 is

P(X > 06) = 1— F(0.6)
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Cumulative Distribution Functions

The probability P(X > 0.6) that it will be more than $600 is
P(X > 06) = 1— F(0.6)

= 1 - 3(0.6°+0.6%)
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Cumulative Distribution Functions

The probability P(X > 0.6) that it will be more than $600 is
P(X > 06) = 1— F(0.6)
= 1 - 1(0.6>+0.6%)

= 1 —0.288
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Cumulative Distribution Functions

The probability P(X > 0.6) that it will be more than $600 is
P(X > 06) = 1— F(0.6)
= 1 - 3(0.6°+0.6%)
= 1 — 0.288

= 0.712.
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Cumulative Distribution Functions

The probability P(0.4 < X < 0.8) that the investment gain will
be between $400 and $800 is

P04 < X <08) = F(0.8) — F(0.4)
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Cumulative Distribution Functions

The probability P(0.4 < X < 0.8) that the investment gain will
be between $400 and $800 is

P04 < X <08) = F(0.8) — F(0.4)
= 3(0.8%+0.8%) — 1(0.4% +0.4%)
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Cumulative Distribution Functions

The probability P(0.4 < X < 0.8) that the investment gain will
be between $400 and $800 is

P04 < X <08) = F(0.8) — F(0.4)
= 3(0.8%+0.8%) — 1(0.4% +0.4%)

= 0.464.
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Cumulative Distribution Functions

@ We obtain the pdf f(x) by taking the derivative of the cdf

Proposition

Suppose X is a continuous random variable with edf F'(x) and
pdf f(z). Then at every value z for which the derivative F’(z)
exists,
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Cumulative Distribution Functions

@ We obtain the pdf f(x) by taking the derivative of the cdf

Proposition

Suppose X is a continuous random variable with edf F'(x) and
pdf f(z). Then at every value z for which the derivative F’(z)
exists,

This is a consequence of the Fundamental Theorem of
Calculus, which says

d / Cfw) dy = (o).

dz Jo
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Cumulative Distribution Functions

Recall that the cdf of a uniform random variable over the range

Ato Bis
0 forz < A
F(x) = g:ﬁ forA<z<B
1 forz > B
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Cumulative Distribution Functions

Uniform(A, B) Cdf
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Cumulative Distribution Functions

The pdf is obtained from the cdf by taking its derivative:

4 (0) forz < A
fz) = Fl(z) = %(;:ﬁ) forA<z<B
4 (1) forz > B
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Cumulative Distribution Functions

The pdf is obtained from the cdf by taking its derivative:

4 (0) forz < A
fz) = Fl(z) = %(;:ﬁ) forA<z<B
4 (1) forz > B
_ ) gz ford<z<B
0 otherwise
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Cumulative Distribution Functions

Cumulative Distribution Functions: Discrete 32

@ Recall that the cumulative distribution function (or cdf)
of a random variable X, denoted F'(x), is defined for all =

as
F(z) = P(X <ux).

e If X is discrete with pmf p(x), then

F(z) = > p(y).

y<z
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Cumulative Distribution Functions

Cumulative Distribution Functions: Discrete 32

@ Recall that the cumulative distribution function (or cdf)
of a random variable X, denoted F'(x), is defined for all =
as

F(z) = P(X <ux).

e If X is discrete with pmf p(x), then

F(z) = > p(y).

y<z

@ In the discrete case, F'(z) is a step function, with a step
of size p(z) at each of the possible values = of the random
variable X.
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Cumulative Distribution Functions

Suppose the pmf of a discrete random variable X is

x| 1 15 2 4
p(z) |01 02 04 03
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Cumulative Distribution Functions
Example
Suppose the pmf of a discrete random variable X is

x| 1 15 2 4
p(z) |01 02 04 03

Then the cdf F(x) is a step function, with a step of size p(z)
at each of the values z = 1, 1.5, 2, and 4.
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Cumulative Distribution Functions
Example
Suppose the pmf of a discrete random variable X is

x| 1 15 2 4
p(z) |01 02 04 03

Then the cdf F(x) is a step function, with a step of size p(z)
at each of the values x = 1, 1.5, 2, and 4. We can write this as

0 for x <1
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Cumulative Distribution Functions
Example
Suppose the pmf of a discrete random variable X is

x| 1 15 2 4
p(z) |01 02 04 03

Then the cdf F(x) is a step function, with a step of size p(z)
at each of the values x = 1, 1.5, 2, and 4. We can write this as

0 for z <1
0.1 for 1<z<1.b
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Cumulative Distribution Functions
Example
Suppose the pmf of a discrete random variable X is

x| 1 15 2 4
p(z) |01 02 04 03

Then the cdf F(x) is a step function, with a step of size p(z)
at each of the values x = 1, 1.5, 2, and 4. We can write this as

0 for z <1
0.1 for 1<z<1.b
F(x)=< 0.3 for 1.5 <z <2
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Cumulative Distribution Functions

Suppose the pmf of a discrete random variable X is

x| 1 15 2 4
p(z) |01 02 04 03

Then the cdf F(x) is a step function, with a step of size p(z)
at each of the values x = 1, 1.5, 2, and 4. We can write this as

0 for z <1
0.1 for 1<z<1.b
F(x)=< 0.3 for 1.5 <z <2

0.7 for 2<z <4
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Cumulative Distribution Functions

Suppose the pmf of a discrete random variable X is

x| 1 15 2 4
p(z) |01 02 04 03

Then the cdf F(x) is a step function, with a step of size p(z)
at each of the values x = 1, 1.5, 2, and 4. We can write this as

0 for z <1

0.1 for 1<z<1.b
F(z)=< 03 for 1.5<z<?2

0.7 for 2<z <4

1 for x >4
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Cumulative Distribution Functions

Suppose the pmf of a discrete random variable X is

x| 1 15 2 4
p(z) |01 02 04 03

Then the cdf F(x) is a step function, with a step of size p(z)
at each of the values x = 1, 1.5, 2, and 4. We can write this as

0 for z <1

0.1 for 1<z<1.b
F(z)=< 03 for 1.5<z<?2

0.7 for 2<z <4

1 for x >4

A graph of F'(x) is shown on the next slide.
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Cumulative Distribution Functions

Cumulative Distribution Function of F(x)
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