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Objectives

Objectives:

Use continuous probability distributions to find probabilities

For continuous random variables, compute and interpret:
The expected value
The expected value of a function of the random variable
The variance and standard deviation
The variance and standard deviation of a linear function of
the random variable

Recognize uniform random variables.

Use the uniform distribution to find probabilities

Nels Grevstad



Continuous Probability Distributions
Expected Values

The Uniform Distribution

Continuous Random Variables (4.1)

The probability distribution of a continuous random
variable is represented by a probability density function
(or pdf), denoted f(x) and having the property that for any
two numbers a and b, with a ≤ b,

P (a ≤ X ≤ b) =

∫ b

a
f(x) dx.

Note that a = −∞ and b =∞ are allowed, and that

P (−∞ ≤ X ≤ b) = P (X ≤ b)

and
P (a ≤ X ≤ ∞) = P (X ≥ a).
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Right Skewed PDF

0 a 20 b 40 50 60

P(a ≤ X ≤ b) = ⌠
⌡a

b
f(x)dx
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We can think of a pdf as mathematical model representing
a population.
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In order for a pdf to be legitimate, it must satisfy the
following conditions:

1. f(x) ≥ 0 for all x.

2.
∫∞
−∞ f(x) dx = 1.
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Example
Suppose that the gain in a certain investment, in thousands of
dollars, is a continuous random variable X that has pdf of the
form

f(x) =

{
k(3x2 + 2x) for 0 ≤ x ≤ 1

0 otherwise

for some constant k.

To determine the value of k, recall that the pdf has to integrate
to 1, i.e. ∫ ∞

−∞
f(x) dx = 1.
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Thus ∫∞
−∞ f(x) dx = 1

⇒
∫ 1

0 k(3x2 + 2x) dx = 1

⇒ k(x3 + x2)
∣∣∣1
0

= 1

⇒ k = 1
2

so the pdf is

f(x) =

{
1
2(3x2 + 2x) for 0 ≤ x ≤ 1

0 otherwise
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The probability P (0.4 ≤ X ≤ 0.8) that the gain is between
$400 and $800 dollars is the shaded area:
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P (0.4 ≤ X ≤ 0.8) =
∫ 0.8

0.4 f(x) dx

=
∫ 0.8

0.4
1
2(3x2 + 2x) dx

= 1
2(x3 + x2)

∣∣∣0.8
0.4

= 0.464.
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The probability P (X ≤ 0.6) that the gain is less than $600
dollars is the shaded area:
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P (X ≤ 0.6) =
∫ 0.6
−∞ f(x) dx

=
∫ 0.6

0
1
2(3x2 + 2x) dx

= 1
2(x3 + x2)

∣∣∣0.6
0

= 0.288.
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The probability P (X > 0.6) that the gain is greater than $600
dollars is the shaded area:
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P (X > 0.6) =
∫∞

0.6 f(x) dx

=
∫ 1

0.6
1
2(3x2 + 2x) dx

= 1
2(x3 + x2)

∣∣∣1
0.6

= 0.712.

Note that
P (X > 0.6) = 1− P (X ≤ 0.6).
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Be aware that
f(x) 6= P (X = x).

In fact, if X is a continuous random variable, then for any
value c,

P (X = c) = 0

because ∫ c

c
f(x) dx = 0.

It follows that
P (X < c) = P (X ≤ c)

and
P (X > c) = P (X ≥ c).
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What information is given by the pdf f(x)?

f(x) = The density of the probability of X at x.

This means that for a small increment ∆x,

f(x) ≈ P (x ≤ X ≤ x+ ∆x)

∆x
,

or equivalently

P (x ≤ X ≤ x+ ∆x) ≈ f(x) ∆x.
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Right Skewed PDF
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x + ∆x

f(x)

P(x ≤ X ≤ x + ∆x) ≈ f(x)∆x
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More formally, the pdf f(x) is

f(x) = lim
∆x→0

P (x ≤ X ≤ x+ ∆x)

∆x

and so f(x) is measures the probability per unit of X at
the particular value x.
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Expected Values (4.2)

The expected value of a continuous random variable X,
also called the mean of its distribution, is denoted E(X)

or µX and defined as:

Expected Value:

E(X) = µX =

∫ ∞
−∞

x f(x) dx

Compare with the discrete case, where

E(X) =
∑

x p(x) .
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E(X) is a continuously-weighted average of the
possible values x of X.

The expected value (or mean) has the same
interpretations that it did in the discrete case:

It’s the long-run average value of X.

It’s the center (”balancing point”) of the probability
distribution.

When we use probability distributions to represent
populations, the expected value is the population mean.
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Example (Cont’d)
Suppose again that the gain in a certain investment, X, in
thousands of dollars, has pdf

f(x) =

{
1
2(3x2 + 2x) for 0 ≤ x ≤ 1

0 otherwise

The expected value of X is

E(X) =

∫ ∞
−∞

x f(x) dx

=

∫ 1

0
x

1

2
(3x2 + 2x) dx

=
1

2

(
3

4
x4 +

2

3
x3

) ∣∣∣1
0
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= 0.708.

This is the center (”balancing point”) of the distribution.
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Recall that if X is a random variable, then any function
h(X) is also a random variable.

Proposition

If X is a continuous random variable with pdf f(x), then the
expected value of any function h(X), denoted E (h(X)) or
µh(X), is computed by

E (h(X)) = µh(X) =

∫ ∞
−∞

h(x) f(x) dx.

Compare with the discrete case, where

E (h(X)) =
∑

h(x)p(x).
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The next proposition can be derived from the previous one
by setting h(X) = aX + b.

Proposition
If X is any random variable, then for any constants a and b,

E (aX + b) = aE(X) + b

(or, using alternative notation, µaX + b = aµX + b).

Two special cases (for which b = 0 and a = 1):

1. E(aX) = aE(X).
2. E(X + b) = E(X) + b.
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The variance and standard deviation of a continuous
random variable X, denoted V (X) or σ2

X
and SD(X) or

σX , are defined as follows.

Variance and Standard Deviation:

V (X) = σ2
X = E

(
(X − µ)2

)
=

∫ ∞
−∞

(x− µ)2 f(x) dx,

where µ = E(X), and

SD(X) = σX =
√
V (X).
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The variance is a continuously-weighted average of the
squared deviations of X away from µ.

The standard deviation is interpreted as a typical
deviation of X away from µ.

Both are measures of the variation in X, that is, of the
spread of the probability distribution of X.

They’re the population variance and population
standard deviation when the probability distribution
represents a population.
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Example (Cont’d)
Suppose again that X is the gain in a certain investment, in
thousands of dollars, with pdf

f(x) =

{
1
2(3x2 + 2x) for 0 ≤ x ≤ 1

0 otherwise

Recall that the mean of this distribution is

µ = 0.708.

Nels Grevstad



Continuous Probability Distributions
Expected Values

The Uniform Distribution

The variance is

V (X) =
∫∞
−∞(x− µ)2 f(x) dx

=
∫ 1

0 (x− 0.708)2 1
2(3x2 + 2x) dx

=
∫ 1

0 1.5x4 − 1.124x3 − 0.664x2 + 0.501x dx

= 1.5
5 x

5 − 1.124
4 x4 − 0.664

3 x3 + 0.501
2 x2

∣∣∣1
0

= 0.048,
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so the standard deviation is

SD(X) =
√

0.048 = 0.219.
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0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

x

f(x
)

−0.2 0 0.2 0.4 1 1.2µ = 0.708

σ = 0.219σ = 0.219
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By expanding the square in the definition

V (X) =

∫
(x− µ)2 f(x) dx

of a variance, we can derive the following.

Proposition

V (X) = E(X2)− µ2

where µ = E(X).
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The variance of a function h(X) is

V (h(X)) = E
(
(h(X)− µh(X))

2
)

Setting h(X) = aX + b, we can derive the following.

Proposition

V (aX + b) = σ2
aX + b = a2 σ2

X

and so
SD(aX + b) = σaX + b = |a|σX .
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Two special cases of the previous proposition (for which
b = 0 and a = 1):

1. V (aX) = σ2
aX = a2 σ2

X

and

SD(aX) = σaX = |a|σX .

2. V (X + b) = σ2
X + b = σ2

X

and

SD(X + b) = σX + b = σX .
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The Uniform Distribution (4.1)

A uniform random variable is one that’s equally likely to
fall anywhere in an interval from A to B.

The uniform distribution on the interval from A to B has
pdf:

Uniform(A,B):

f(x) =

{
1

B−A for A ≤ x ≤ B
0 otherwise
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The notation
X ∼ uniform(A, B)

means X follows a uniform(A, B) distribution.
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The graph of one uniform pdf is shown on the next slide.

Uniform(A, B) Pdf

x

   
   

   
   

   
   

   
   

 f(
x)

A B

0

1

B − A
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The interval endpoints A and B are called parameters of
the uniform distribution.

Each choice of A and B leads to a different uniform
distribution.
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Uniform Pdfs with Different A and B
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For a uniform random variable X,

P (a ≤ X ≤ b) =
b− a
B −A

.

Uniform(A, B) Pdf

x

   
   

   
   

   
   

   
   

 f(
x)

A a b B

0

1

B − A

P(a < X < b) =
b − a

B − A
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Example
When a board game spinner is spun, the pointer is equally
likely to point in any direction (radians) over the range 0 to 2π.
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If we let

X = the direction of the pointer in radians

then
X ∼ uniform(0, 2π).

Thus,

P

(
π

4
≤ X ≤ 3π

4

)
=

3π/4− π/4
2π − 0

=
1

4
.
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Uniform(0, 2π) Pdf
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Uniform Mean and Variance: If X ∼ uniform(A, B),
then

E(X) =
A+B

2

V (X) =
(B −A)2

12

Proofs:

E(X) =

∫ ∞
−∞

x f(x) dx =

∫ B

A
x

1

B −A
dx = · · · =

A+B

2
.

V (X) =

∫ ∞
−∞

(x− µ)2 f(x) dx

=

∫ ∞
−∞

(
x− A+B

2

)2 1

B −A
dx · · · =

(B −A)2

12
.
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Example
Let

X = The wait time for a bus at a certain stop (in minutes).

and suppose
X ∼ uniform(0, 15).

Then the expected value of the wait time is

E(X) =
0 + 15

2
= 7.5

minutes.
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The variance and standard deviation are

V (X) =
(15− 0)2

12
= 18.75

and

SD(X) =
√

18.75 = 4.33.
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Uniform(0, 15) Pdf
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