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The Normal Distribution

Objectives

Objectives:

Recognize normal random variables.

Use the normal distribution to find probabilities.

Compute and interpret standardized values (z-scores).

State the Empirical Rule.

Find percentiles of the normal distribution.

Use the normal distribution to approximate binomial
probabilities.
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Normal Random Variables (4.3)

A random variable is said to follow a normal distribution
with parameters µ and σ if its pdf is:

Normal(µ, σ) Pdf:

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 for −∞ < x <∞

We write
X ∼ N(µ, σ)

when X follows a normal distribution.
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Normal Pdfs with Different Values of µ
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Normal Pdfs with Different Values of σ
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Normal(µ, σ) Mean and Variance: If X ∼ N(µ, σ), then

E(X) = µ

V (X) = σ2
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The N(0, 1) distribution (µ = 0 and σ = 1) is called the
standard normal distribution.

Standard Normal Distribution

Z

−3 −2 −1 0 1 2 3
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We use Z to denote a standard normal random variable.

The pdf of Z is

f(z) =
1√
2π

e−
z2

2 for −∞ < z <∞

The cdf of Z is denoted by φ(z). Thus

φ(z) = P (Z ≤ z),
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Standard Normal Distribution

−3 −2 −1 0 z 2 3

φ(z) = P(Z ≤ z)
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To find probabilities such as P (a ≤ Z ≤ b), we can’t
integrate the pdf,∫ b

a
f(z) dz =

∫ b

a

1√
2π
e−

z2

2 dz

Instead, the probabilities are obtained from values of
φ(z) = P (Z ≤ z) given in a standard normal table.
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Example
Suppose

Z ∼ N(0, 1)

From the standard normal table,

P (Z ≤ 1.25) = φ(1.25) = 0.8944

(1.2 row, 0.05 column of the table).
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Standard Normal Distribution

−3 −2 −1 0 1.25 2 3

P(Z ≤ 1.25) = φ(1.25)
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Example
Also from the standard normal table,

P (Z > 1.25) = 1− φ(1.25) = 1− 0.8944 = 0.1056.
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Standard Normal Distribution

−3 −2 −1 0 1.25 2 3

P(Z > 1.25)
= 1 − φ(1.25)
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Example
Also from the standard normal table,

P (−0.38 ≤ Z ≤ 1.25) = φ(1.25) − φ(−0.38)

= 0.8944 − 0.3520

= 0.5424.
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Standard Normal Distribution

−3 −2 −0.38 1.25 2 3

P(− 0.38 ≤ Z ≤ 1.25)
= φ(1.25) − φ(− 0.38)

Standard Normal Distribution

−3 −2 −1 0 1.25 2 3

P(Z ≤ 1.25) = φ(1.25)

Standard Normal Distribution

−3 −2 −0.38 1 2 3

P(Z ≤ − 0.38) = φ(− 0.38)
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We just saw how to find probabilities using a N(0, 1)

distribution.

To find probabilities using normal distributions with other
values of µ and σ (besides 0 and 1), we use the following
proposition.
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Proposition

If X ∼ N(µ, σ) and we define a new random variable Z by

Z =
X − µ
σ

,

then
Z ∼ N(0, 1).

Thus

1. P (X ≤ a) = P
(
X−µ
σ ≤ a−µ

σ

)
= P

(
Z ≤ a−µ

σ

)
=

φ
(a−µ

σ

)
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1. P (X > b) = P
(
Z > b−µ

σ

)
= 1 − φ

(
b−µ
σ

)
2. P (a ≤ X ≤ b) = P

(
a−µ
σ ≤ Z ≤ b−µ

σ

)
=

φ
(
b−µ
σ

)
− φ

(a−µ
σ

)
The variable

Z =
X − µ
σ

is called a standardized version of X, or z-score.

It’s measured in standard units (standard deviations away
from the mean).
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Example
Scores on the verbal Scholastic Aptitude Test (SAT) follow a
normal distribution with mean 475 and standard deviation
98.
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Normal Distribution of SAT Scores

SAT Score

181 279 377 475 573 671 769
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First we’ll find P (X ≤ 300), the probability that an SAT score
will be less than 300.
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Normal Distribution of SAT Scores

SAT Score

181 300 377 475 573 671 769

P(X ≤ 300)
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Standard Normal Distribution

Z

−3 −1.79 0 1 2 3

φ(− 1.79)
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P (X ≤ 300) = P
(
X−µ
σ ≤ 300−µ

σ

)
= P

(
Z ≤ 300−475

98

)
= P (Z ≤ −1.79)

= φ(−1.79)

= 0.0367.
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Now we’ll find P (X > 300), the probability that an SAT score
will be greater than 300.
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Normal Distribution of SAT Scores

SAT Score

181 300 377 475 573 671 769

P(X > 300)
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P (X > 300) = 1 − P (X ≤ 300)

...

= 1 − φ(−1.79)

= 1 − 0.0367

= 0.9633.
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Lastly, we’ll find P (300 ≤ X ≤ 650), the probability that an
SAT score will be between 300 and 650.
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Normal Distribution of SAT Scores

SAT Score

181 300 377 475 573 650 769

P(300 ≤ X ≤ 650)

Normal Distribution of SAT Scores

SAT Score

181 279 377 475 573 650 769

P(X ≤ 650)

Normal Distribution of SAT Scores

SAT Score

181 300 377 475 573 671 769

P(X ≤ 300)
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P (300 ≤ X ≤ 650) = P
(
300−µ
σ ≤ X−µ

σ ≤ 650−µ
σ

)
= P

(
300−475

98 ≤ Z ≤ 650−475
98

)
= P (−1.79 ≤ Z ≤ 1.79)

= φ(1.79) − φ(−1.79)

= 0.9633 − 0.0367

= 0.9266.
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A standardized value (or z-score) can be used to
indicate an individual’s standing relative to others in the
population.

Example
Suppose you score 70 on your Math test, for which the mean is
65 and standard deviation is 5.

Suppose also you score 80 on your English test, for which the
mean is 75 and standard deviation is 7.

On which test did you perform better relative to the rest of the
class?
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The standardized Math score is

Z =
70− 65

5
= 1.0,

so it’s 1.0 standard deviation above the mean.

The standardized English score is

Z =
80− 75

7
= 0.7,

so it’s 0.7 of a standard deviation above the mean.

You did better on the Math test.
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Empirical Rule (or 68-95-99.7 Rule): For any normal
distribution,

1. Approximately 68% of the distribution lies within one
σ of µ.

2. Approximately 95% of the distribution lies within two
σ’s of µ.

3. Approximately 99.7% of the distribution lies within
three σ’s of µ.
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µ − σ µ µ + σ

0.680.68

µ − 2σ µ µ + 2σ

0.95

µ − 3σ µ µ + 3σ

0.997
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The (100p)th percentile of a normal distribution is a value
below which (100p)% of the distribution lies.

For example, the 90th percentile is the value below which
90% of the distribution lies.
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Example (Cont’d)
Recall that scores on the verbal SAT follow a normal distribu-
tion with mean 475 and standard deviation 98.

The 90th percentile is the score below which 90% of all scores
lie.

It’s marked x on the horizontal axis below.
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Normal Distribution with 90th Percentile

SAT Score

377 475 x

0.90
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We’ll see how to find a percentile of a normal distribution
with mean µ and standard deviation σ.

First, though, we need to look at how to find a percentile
of the standard normal distribution.
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We use zα to denote the value that has area α to its right
under the N(0, 1) curve.

Values of z

Depiction of zα

−1 0 zα

1 − α α

N(0, 1) Distribution

Nels Grevstad

Notes

Notes

Notes

Notes



The Normal Distribution

Introduction
The Standard Normal Distribution
Normal Distribution Probabilities
Percentiles of the Normal Distribution and the zα Notation
The Normal Approximation to the Binomial

For example, z0.10 has area 0.10 to its right under the
N(0, 1) curve:

Values of z

Depiction of z0.10

−1 0 z0.10

0.90 0.10

N(0, 1) Distribution

Nels Grevstad

The Normal Distribution

Introduction
The Standard Normal Distribution
Normal Distribution Probabilities
Percentiles of the Normal Distribution and the zα Notation
The Normal Approximation to the Binomial

zα is the 100(1 − α)th percentile of the N(0, 1)

distribution.

For example, z0.10 is the 90th percentile of the N(0, 1)

distribution.

zα is called a z critical value.
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Example
To find a zα value, we search the body of the standard normal
table for 1− α, then get the corresponding z value (from the
table margin). We find that

z0.10 = 1.28

z0.05 = 1.64

z0.025 = 1.96

z0.005 = 2.58
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The 100pth percentile of a N(µ, σ) distribution, x, is
obtained by ”unstandardizing” the 100pth percentile z of
the N(0, 1) distribution:

x = µ + z σ

The above expression was obtained by solving

z =
x− µ
σ

for x.
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Example (Cont’d)
Recall that verbal SAT scores follow a normal distribution with
mean 475 and standard deviation 98.

We’ll find the 90th percentile of the distribution.

The 90th percentile of the N(0, 1) distribution is

z = 1.28,

so the 90th percentile of the distribution of SAT scores is

x = µ+ zσ

= 475 + 1.28(98)

= 600.
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Normal Distribution with 90th Percentile

SAT Score

377 475 600

0.90
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The normal distribution can be used to approximate a
binomial distribution when the number of trials n is large.

Binomial(30, 0.6) Pmf
and N(18, 2.68) Pdf
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Proposition
Suppose

X ∼ binomial(n, p),

so that µx = np and σx =
√
np(1− p). Then if n is large,

X ∼ N
(
np,

√
np(1 − p)

)
approximately.

In particular, for each possible value x of X,

P (X ≤ x) ≈

(
Area under the normal curve
to the left of x+ 0.5

)

= φ

(
x+ 0.5− np√

np(1− p)

)
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Adding 0.5 to x is referred to as a continuity correction.
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Binomial(30, 0.6) Pmf
and N(18, 2.68) Pdf
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Binomial(30, 0.6) Pmf
and N(18, 2.68) Pdf
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Binomial(30, 0.6) Pmf
and N(18, 2.68) Pdf
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Binomial(30, 0.6) Pmf
and N(18, 2.68) Pdf
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Example
A student is taking a true/false test with 100 questions.
Suppose she has a probability p = 3/4 of getting each
question right.

Let
X = The number of questions she gets right.

Then
X ∼ binomial(100, 3/4)

We’ll use the normal distribution to approximate the
probability P (X ≤ 70) that she’ll get 70 or fewer right.
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The mean and standard deviation of the distribution of X are

µx = n p = 100

(
3

4

)
= 75

and

σx =
√
n p (1− p) =

√
100

(
3

4

)(
1

4

)
= 4.3
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Because n is large, the normal approximation to the
binomial gives

P (X ≤ 70) ≈ φ

(
70+0.5−np√
np(1−p)

)
= φ

(
70.5−75

4.3

)
= φ(−1.05)

= 0.1469.

(Note that the exact binomial probability is 0.1495).
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In practice, n is large enough for the normal approxima-
tion to the binomial to be valid as long as

np ≥ 10 and n(1 − p) ≥ 10.
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