The Exponential Distribution	
	Notes
Probability and Statistics	
Nels Grevstad	
Metropolitan State University of Denver	
ngrevsta@msudenver.edu	
April 8, 2019	
Nels Grevstad	
The Exponential Distribution	
Topics	Notes
The Exponential Distribution	
Nels Grevstad	
The Exponential Distribution	
Objectives	Notes
Objectives:	
 Recognize exponential random variables. 	
 Use the exponential distribution to find probabilities. 	
 Find percentiles of the exponential distribution. 	
State the relationship between a Poisson process and	
exponential random variables.	
 Use the memoryless property to find exponential probabilities. 	
Nels Grevstad	
The Exponential Distribution	
Exponential Random Variables (4.4)	Notes
 Exponential random variables are used to model 	
waiting times for events that occur at random time points.	
Examples:	

 The waiting time for the next customer to arrive at a store's checkout counter.

• We'll see that the **memoryless property** makes exponential random variables suitable for modeling waiting times.

• The waiting time for a meteor ("shooting star") to appear in

• The waiting time for the next automobile to arrive at an

the night sky.

ullet The **exponential distribution** with **parameter** λ has **pdf**

Exponential(λ) Pdf:

$$f(x) \ = \ \left\{ \begin{array}{ll} \lambda e^{-\lambda x} & \quad \text{for } x \geq 0 \\ 0 & \quad \text{otherwise}. \end{array} \right.$$

where $\lambda > 0$.

We write

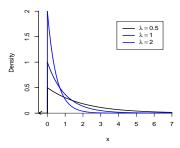
$$X \sim \operatorname{exponential}(\lambda)$$

when \boldsymbol{X} follows an exponential distribution.

Nels Grevstad

The Exponential Distribution

Exponential Pdfs with Different Values of $\boldsymbol{\lambda}$



Nels Grevstad

The Exponential Distribution

 The mean and variance of an exponential random variable are:

Exponential Mean and Variance: If $X \sim \text{exponential}(\lambda)$ then

$$E(X) = \frac{1}{\lambda}$$

$$V(X) = \frac{1}{\lambda^2}$$

Nels Grevsta

The Exponential Distribution

Proofs: To show that $E(X)=1/\lambda$, recall that integration by parts says:

$$\int u\,dv\,dx = uv - \int v\,du\,dx.$$

Letting

$$u = x$$
 and $dx = 1$

gives

$$du = 1$$
 and $v = -e^{-\lambda x}$

where \boldsymbol{v} was obtained from $d\boldsymbol{v}$ using the substitution rule. So

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$
$$= \int_{0}^{\infty} x \lambda e^{-\lambda x} dx$$
$$= x \left(-e^{-\lambda x} \right) \Big|_{0}^{\infty} - \int_{0}^{\infty} -e^{-\lambda x} dx$$

$x\left(-e^{-\lambda x}\right)\Big _{0}^{c}$	$\int_{0}^{\infty} - \int_{0}^{\infty}$	$-e^{-\lambda x} dx$	
Nels Grevstad			

Notes			
Notes			
Notes			
Notes			

$$= 0 - 0 - \left(\frac{1}{\lambda}e^{-\lambda x} dx\right)\Big|_0^\infty$$
$$= 0 - 0 - \left(0 - \frac{1}{\lambda}\right)$$
$$= \frac{1}{\lambda}.$$

To show that $V(X) = 1/\lambda^2$, recall that

$$V(X) = E(X^2) - \mu^2,$$

where $\mu = E(X) = 1/\lambda$. To find $E(X^2)$, let

$$u = x^2$$

and
$$dv = \lambda e^{-\lambda x}$$

so that

$$du = 2x$$

$$v = -e^{-\lambda x}$$

Now, using integration by parts,

$$E(X^2) = \int_{-\infty}^{\infty} x^2 f(x) dx$$

$$= \int_{0}^{\infty} x^2 \lambda e^{-\lambda x} dx$$

$$= x^2 \left(-e^{-\lambda x} \right) \Big|_{0}^{\infty} - \int_{0}^{\infty} -2x e^{-\lambda x} dx$$

$$= 0 - 0 + \int_{0}^{\infty} 2x e^{-\lambda x} dx.$$

Now use integration by parts again on the integral above, to get

$$E(X^2) \ = \ \frac{2}{\lambda^2} \,,$$

from which it follows that

$$V(X) \; = \; \frac{2}{\lambda^2} \, - \, \frac{1}{\lambda^2} \; = \; \frac{1}{\lambda^2} \, .$$

If

$$X \sim \mathsf{exponential}(\lambda)$$

and X is a random waiting time for an event, then

- $\bullet \ E(X) = 1/\lambda \ \text{is the mean amount of time per event}.$
- $\lambda = 1/E(X)$ is the **rate** (number of events per unit of time) .

• The cdf of an exponential random variable is:

Exponential(λ) Cdf:

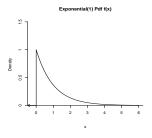
$$F(x) \ = \ \left\{ \begin{array}{ll} 0 & \text{for } x < 0 \\ 1 - e^{-\lambda x} & \text{for } x \ge 0 \end{array} \right.$$

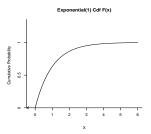
Proof: F(x) = 0 for x < 0. For $x \ge 0$,

$$F(x) = \int_{-\infty}^{x} f(y) dy$$
$$= \int_{0}^{x} \lambda e^{-\lambda y} dy$$
$$\vdots$$
$$= 1 - e^{-\lambda x}$$

Notes			
Notes			
Notes			
Notes			

The Exponential Distribution





Notes

Nels Grevsta

The Exponential Distribution

Example

Suppose you're on a street corner trying to hail a taxi cab. Let

X =The amount of time (in minutes) that you have to wait.

Suppose

$$X \sim \text{exponential}(0.1)$$

Thus $\lambda=0.1$ (meaning the ${\it rate}$ of cab arrivals is ${\it 0.1 per minute}$), and so

$$E(X) = \frac{1}{0.1} = 10$$
 minutes

and

$$SD(X) = \sqrt{V(X)} = \sqrt{\frac{1}{0.1^2}} = \mathbf{10}$$
 minutes

Nels Grevstad

The Exponential Distribution

To find the **probability** that you'll have to wait **longer than ten minutes**, either integrate the **pdf**:

$$P(X > 10) = \int_{10}^{\infty} \lambda e^{-\lambda x} dx$$

or just use the cdf:

$$\begin{split} P(X>10) &=& 1-F(10) \\ &=& 1-(1-e^{-0.1(10)}) \\ &=& e^{-1} \\ &=& \mathbf{0.3679}. \end{split}$$

Nels Grevstad

The Exponential Distribution

To find the **probability** that you'll have to wait **between five** and seven minutes, either integrate the **pdf**:

$$P(5 < X \le 7) = \int_5^7 \lambda e^{-\lambda x} dx$$

or just use the **cdf**:

$$\begin{array}{lcl} P(5 < X \le 7) & = & F(7) - F(5) \\ & = & (1 - e^{-0.1(7)}) - (1 - e^{-0.1(5)}) \\ & = & e^{-0.5} - e^{-0.7} \\ & = & \mathbf{0.1099}. \end{array}$$

Notes		
Notes		
Notes		
Notes		

To find the $50^{\it th}$ percentile of the distribution of X (i.e. the *median* wait time), solve

$$F(\eta) = 0.5$$

i.e.

$$1 - e^{-0.1\eta} = 0.5$$

for η . This gives

$$\eta = -\frac{\log(0.5)}{0.1} = \textbf{6.93}$$
 minutes.

Nels Grevstad

The Exponential Distribution

Relationship to the Poisson Process (4.4)

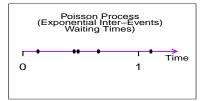
 Exponential random variables are related to the Poisson process.

Suppose the number of events occurring in any time interval of length t is a **Poisson** random variable with mean $\mu=\alpha t$ (where α , the **rate**, is the expected number of events in one unit of time), and that the numbers of events in non-overlapping time intervals are independent of each other.

Then the elapsed time between any two successive events is an $exponential(\lambda)$ random variable with $\lambda=\alpha$.

Nels Grevstad

The Exponential Distribution



Nels Grevstad

The Exponential Distribution

Memoryless Property (4.4)

• A (nonnegative) random variable X is said to have the $\emph{memoryless property}$ if, for any s>0 and t>0,

$$P(X > s + t | X > t) = P(X > s).$$

If X is a **waiting time** in minutes, say, this says that the probability that you'll need to wait **an additional** s **minutes**, given that you've **already waited** t **minutes**, doesn't depend on how long you've already waited (t).

Notes			
Notes			
Notes			
Notes			
Notes			

The Exponential Distribution

 Only two kinds of random variables have the memoryless property.

Memoryless Property:

- lacksquare If $X \sim \operatorname{geometric}(p)$, then X has the memoryless property.
- $\begin{tabular}{l} \textbf{3} & \textbf{If } X \sim \textbf{exponential}(\pmb{\lambda}), \textbf{ then } X \textbf{ has thememoryless} \\ \textbf{property.} \end{tabular}$

Proof (for the exponential case): If

$$X \sim \mathsf{exponential}(\lambda),$$

then (for $x \ge 0$)

$$F(x) = 1 - e^{-\lambda x}.$$

Nels Grevstad

Thus

$$\begin{split} P(X>s+t\,|\,X>t) &=& \frac{P(\{X>s+t\}\cap\{X>t\})}{P(X>t)} \\ &=& \frac{P(X>s+t)}{P(X>t)} \\ &=& \frac{1-F(s+t)}{1-F(t)} \\ &=& \frac{1-(1-e^{-\lambda(s+t)})}{1-(1-e^{-\lambda t})} \\ &=& \frac{e^{-\lambda(s+t)}}{e^{-\lambda t}} \\ &=& e^{-\lambda s} \\ &=& 1-F(s) \\ &=& P(X>s). \end{split}$$

Nels Grevstad

The Exponential Distribution

The memoryless property explains why exponential random variables they are used to model waiting times.

Example

Suppose again that you're trying to hail a taxi cab, and

X = The amount of time (in minutes) that you have to wait.

Suppose again that

$$X \sim \mathsf{exponential}(0.1)$$

Then the (conditional) **probability** that you'll have to wait **an additional ten minutes**, given that you've **already waited fifteen minutes**, is

Nels Grevstad

The Exponential Distribution

$$\begin{split} P(X > 10 + 15 \,|\, X > 15) &= P(X > 10) \\ &= \mathbf{0.3679} \end{split}$$

(from a previous example).

Natas			
Notes			
NI I			
Notes			
Natas			
Notes			