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The Exponential Distribution

Objectives

Objectives:

Recognize exponential random variables.

Use the exponential distribution to find probabilities.

Find percentiles of the exponential distribution.

State the relationship between a Poisson process and
exponential random variables.

Use the memoryless property to find exponential
probabilities.
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The Exponential Distribution

Exponential Random Variables (4.4)

Exponential random variables are used to model
waiting times for events that occur at random time points.

Examples:
The waiting time for a meteor (”shooting star”) to appear in
the night sky.

The waiting time for the next automobile to arrive at an
intersection.

The waiting time for the next customer to arrive at a store’s
checkout counter.

We’ll see that the memoryless property makes exponent-
ial random variables suitable for modeling waiting times.
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The Exponential Distribution

The exponential distribution with parameter λ has pdf

Exponential(λ) Pdf:

f(x) =

{
λe−λx for x ≥ 0

0 otherwise.

where λ > 0.

We write
X ∼ exponential(λ)

when X follows an exponential distribution.
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The Exponential Distribution

Exponential Pdfs with Different Values of λ
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The Exponential Distribution

The mean and variance of an exponential random variable
are:

Exponential Mean and Variance: If X ∼ exponential(λ)
then

E(X) =
1

λ

V (X) =
1

λ2
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The Exponential Distribution

Proofs: To show that E(X) = 1/λ, recall that integration by
parts says: ∫

u dv dx = uv −
∫
v du dx.

Letting
u = x and dv = λe−λx

gives
du = 1 and v = −e−λx

where v was obtained from dv using the substitution rule. So

E(X) =

∫ ∞
−∞

x f(x) dx

=

∫ ∞
0

xλe−λx dx

= x
(
−e−λx

) ∣∣∣∞
0
−
∫ ∞
0
−e−λx dx
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The Exponential Distribution

= 0− 0 −
(
1

λ
e−λx dx

) ∣∣∣∞
0

= 0− 0 −
(
0− 1

λ

)
=

1

λ
.

To show that V (X) = 1/λ2, recall that

V (X) = E(X2) − µ2,

where µ = E(X) = 1/λ. To find E(X2), let

u = x2 and dv = λe−λx

so that
du = 2x and v = −e−λx .
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The Exponential Distribution

Now, using integration by parts,

E(X2) =

∫ ∞
−∞

x2 f(x) dx

=

∫ ∞
0

x2 λe−λx dx

= x2
(
−e−λx

) ∣∣∣∞
0
−
∫ ∞
0
−2x e−λx dx

= 0− 0 +

∫ ∞
0

2x e−λx dx .

Now use integration by parts again on the integral above, to get

E(X2) =
2

λ2
,

from which it follows that

V (X) =
2

λ2
− 1

λ2
=

1

λ2
.
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The Exponential Distribution

If
X ∼ exponential(λ)

and X is a random waiting time for an event, then

E(X) = 1/λ is the mean amount of time per event.

λ = 1/E(X) is the rate (number of events per unit of time) .
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The Exponential Distribution

The cdf of an exponential random variable is:

Exponential(λ) Cdf:

F (x) =

{
0 for x < 0

1− e−λx for x ≥ 0

Proof: F (x) = 0 for x < 0. For x ≥ 0,

F (x) =

∫ x

−∞
f(y) dy

=

∫ x

0
λe−λy dy

...

= 1− e−λx.
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The Exponential Distribution

Exponential(1) Pdf f(x)
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The Exponential Distribution

Example
Suppose you’re on a street corner trying to hail a taxi cab. Let

X = The amount of time (in minutes) that you have to wait.

Suppose
X ∼ exponential(0.1)

Thus λ = 0.1 (meaning the rate of cab arrivals is 0.1 per
minute), and so

E(X) =
1

0.1
= 10 minutes

and

SD(X) =
√
V (X) =

√
1

0.12
= 10 minutes
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The Exponential Distribution

To find the probability that you’ll have to wait longer than ten
minutes,

either integrate the pdf:

P (X > 10) =

∫ ∞
10

λe−λx dx

or just use the cdf:

P (X > 10) = 1 − F (10)

= 1 − (1− e−0.1(10))
= e−1

= 0.3679.
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The Exponential Distribution

To find the probability that you’ll have to wait between five
and seven minutes, either integrate the pdf:

P (5 < X ≤ 7) =

∫ 7

5
λe−λx dx

or just use the cdf:

P (5 < X ≤ 7) = F (7) − F (5)

= (1− e−0.1(7)) − (1− e−0.1(5))
= e−0.5 − e−0.7

= 0.1099.
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The Exponential Distribution

To find the 50th percentile of the distribution of X (i.e. the
median wait time),

solve

F (η) = 0.5

i.e.
1− e−0.1η = 0.5

for η. This gives

η = − log(0.5)

0.1
= 6.93 minutes.
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The Exponential Distribution

Relationship to the Poisson Process (4.4)

Exponential random variables are related to the Poisson
process.

Suppose the number of events occurring in any time
interval of length t is a Poisson random variable with
mean µ = αt (where α, the rate, is the expected number
of events in one unit of time), and that the numbers of
events in non-overlapping time intervals are independent
of each other.

Then the elapsed time between any two successive
events is an exponential(λ) random variable with λ = α.
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The Exponential Distribution

Time
0 1

Poisson Process
(Exponential Inter−Events)

Waiting Times)
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The Exponential Distribution

Memoryless Property (4.4)

A (nonnegative) random variable X is said to have the
memoryless property if, for any s > 0 and t > 0,

P (X > s+ t |X > t) = P (X > s).

If X is a waiting time in minutes, say, this says that the
probability that you’ll need to wait an additional s
minutes, given that you’ve already waited t minutes,
doesn’t depend on how long you’ve already waited (t).
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The Exponential Distribution

Only two kinds of random variables have the memoryless
property.

Memoryless Property:
1 If X ∼ geometric(p), then X has the memoryless

property.
2 If X ∼ exponential(λ), then X has thememoryless

property.

Proof (for the exponential case): If

X ∼ exponential(λ),

then (for x ≥ 0)
F (x) = 1− e−λx.
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The Exponential Distribution

Thus

P (X > s+ t |X > t) =
P ({X > s+ t} ∩ {X > t})

P (X > t)

=
P (X > s+ t)

P (X > t)

=
1− F (s+ t)

1− F (t)

=
1− (1− e−λ(s+t))
1− (1− e−λt)

=
e−λ(s+t)

e−λt

= e−λs

= 1− F (s)
= P (X > s).
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The Exponential Distribution

The memoryless property explains why exponential random
variables they are used to model waiting times.

Example
Suppose again that you’re trying to hail a taxi cab, and

X = The amount of time (in minutes) that you have to wait.

Suppose again that

X ∼ exponential(0.1)

Then the (conditional) probability that you’ll have to wait an
additional ten minutes, given that you’ve already waited
fifteen minutes, is
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The Exponential Distribution

P (X > 10 + 15 |X > 15) = P (X > 10)

= 0.3679

(from a previous example).
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