Probability and Statistics

Nels Grevstad

Metropolitan State University of Denver ngrevsta@msudenver.edu

April 15, 2019

- CI for a normal mean μ when σ is unknown.
- Determine the sample size *n* for attaining a CI width under each of these three scenarios.

Nels Grevstad

Cl for a Normal Mean μ When σ is Known Sample Cl for a General Population Mean μ I for a Normal Mean μ When σ is Unknown I for a Normal Mean μ Determination

Introduction to Confidence Intervals (7.1)

- The difference between the **point estimate** and the **true value** is called the *sampling error* of the estimate.

In particular, the sampling error of the sample mean is

Sampling Error
$$= \bar{X} - \mu$$
.

• A point estimate, by itself, doesn't indicate how big the sampling error might be.

Nels Grevstad

Notes

CI for a Normal Mean μ When σ is Known arge-Sample CI for a General Population Mean μ CI for a Normal Mean μ When σ is Unknown

or a Normal Mean μ When σ is K perties of Confidence Intervals

Notes

- It's preferable, therefore, to instead use an **interval** estimate, or *confidence interval* (or *CI*), consisting of a range of estimates for the (unknown) population parameter.
- The first step in computing a Cl is to choose a *level of* confidence, which measures degree of reliability of the interval.

Nels Grevstad

Cl for a Normal Mean μ When σ is Known ge-Sample Cl for a General Population Mean μ Cl for a Normal Mean μ When σ is Unknown

CI for a Normal Mean μ White Properties of Confidence Int Sample Size Determination

Notes

Example

In a study of sleep deprivation among students at a university, a sample of n=22 were students asked students how many hours they sleep per night.

The mean was $\bar{x}=5.77$ hours with a standard deviation of s=1.57 hours.

Nels Grevstad

Cl for a Normal Mean μ When σ is Known rge-Sample Cl for a General Population Mean μ Cl for a Normal Mean μ When σ is Unknown

Cl for a Normal Mean μ When Properties of Confidence Inter

Notes

Notes

A **95% confidence interval** for μ , the mean number of hours slept per night in the student population, is

(5.07, 6.47)

Any value of μ in this range is considered plausible, at the 95% confidence level.

Nels Grevstad

CI for a Normal Mean μ When σ is Known Sample CI for a General Population Mean μ I for a Normal Mean μ When σ is Unknown I for a Normal Mean μ When σ is Unknown

CI for a Normal Mean μ When σ is Known (7.1)

- Suppose
 - 1. X_1, X_2, \ldots, X_n are a random sample from a **normal** population.
 - 2. The population mean μ is unknown but the standard deviation σ is known.
- We'll first derive a CI for μ using level of confidence 95%.

Nels Grevstad

CI for a Normal Mean μ When σ is K Properties of Confidence Intervals

We know that

so

$$\bar{X} \sim \mathsf{N}\left(\mu, \ \frac{\sigma}{\sqrt{n}}\right)$$

$$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim \mathsf{N}(0, 1).$$

Cl for a Normal Mean μ When σ is Known rge-Sample Cl for a General Population Mean μ Cl for a Normal Mean μ When σ is Unknown Sample Size Datermination

Nels Grevstad

- Recall that $z_{0.025} = 1.96$, so the area under the standard normal curve between -1.96 and 1.96 is **0.95**.
- Therefore,

$$\begin{array}{rcl} 0.95 &=& P\left(-1.96 \,<\, \frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \,<\, 1.96\right) \\ &=& P\left(-1.96\frac{\sigma}{\sqrt{n}} \,<\, \bar{X}-\mu \,<\, 1.96\frac{\sigma}{\sqrt{n}}\right) \\ &=& P\left(-\bar{X}-1.96\frac{\sigma}{\sqrt{n}} \,<\, -\mu \,<\, -\bar{X}+1.96\frac{\sigma}{\sqrt{n}}\right) \\ &=& P\left(\bar{X}+1.96\frac{\sigma}{\sqrt{n}} \,>\, \mu \,>\, \bar{X}-1.96\frac{\sigma}{\sqrt{n}}\right) \\ &=& P\left(\bar{X}-1.96\frac{\sigma}{\sqrt{n}} \,<\, \mu \,<\, \bar{X}+1.96\frac{\sigma}{\sqrt{n}}\right). \end{array}$$

Cl for a Normal Mean μ When σ is Known arge-Sample Cl for a General Population Mean μ Cl for a Normal Mean μ When σ is Unknown Sample Size Determination

Nels Grevstad

• The last line above says that we can be 95% confident that μ will be in the interval

$$\bar{X} \pm 1.96 \frac{\sigma}{\sqrt{n}}.$$

95% Confidence Interval for a Normal Mean μ When σ is Known:

$$\bar{X} \pm 1.96 \frac{\delta}{\sqrt{n}}$$
.

This CI is valid when the sample is from a normal population and σ is known.

Nels Grevstad

CI for a Normal Mean μ When σ is Known Sample CI for a General Population Mean μ Di for a Normal Mean μ When σ is Unknown Di for a Normal Mean μ When σ is Unknown

• For other levels of confidence, we replace 1.96 by the appropriate critical value $z_{\alpha/2}$.

100(1 - $\alpha)\%$ Confidence Interval for a Normal Mean μ When σ is Known:

$$\bar{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}.$$

This CI is valid when the sample is from a normal population and σ is known.

• Commonly used levels are 90%, 95%, and 99%.

Nels Grevstad

Notes

Notes

Notes

Cl for a Normal Mean μ When σ is Known rge-Sample Cl for a General Population Mean μ Cl for a Normal Mean μ When σ is Unknown

Cl for a Normal Mean μ When σ is Kno Properties of Confidence Intervals Sample Size Determination

Notes

Example

The National Assessment of Educational Progress Study examined quantitative skills of young adult Americans. Men aged 21 to 25 years were given a short test of their quantitative skills. Scores on the test range from 0 to 500.

In a sample of n=20 young men who took the test, the sample mean score was

 $ar{x}~=~272$

Cl for a Normal Mean μ When σ is Known -Sample Cl for a General Population Mean μ Properties of Contidence Interva Cl for a Normal Mean μ When σ is Normal Properties of Contidence Interva

Nels Grevstad

Suppose it's reasonable to assume that the distribution of scores in the population is **normal** with **known standard deviation** $\sigma = 60$, but with a mean μ whose value is **unknown**.

A 95% confidence interval for μ is

$$\bar{X} \pm z_{0.025} \cdot \frac{\sigma}{\sqrt{n}} = 272 \pm 1.96 \cdot \frac{60}{\sqrt{20}}$$
$$= 272 \pm 26.3$$
$$= (245.7, 298.3)$$

We can be **95% confident** that the true (unknown) mean μ is in this interval somewhere.

Nels Grevstad

Cl for a Normal Mean μ When σ is Known rge-Sample Cl for a General Population Mean μ Cl for a Normal Mean μ When σ is Unknown

CI for a Normal Mean µ When Properties of Confidence Inter

If we use a **90% level of confidence** instead, the **critical value** is $z_{0.05} = 1.64$ and we end up with

(250.0, 294.0)

Note that this interval is **narrower** than the 95% interval (which was (245.7, 298.3)).

 Nels Grevstad

 Cl for a Normal Mean μ When σ is Known Sample Cl for a General Population Mean μ

CI for a Normal Mean μ When σ is an μ Properties of Confidence Intervals

Properties of Confidence Intervals (7.1)

• A confidence interval is a random interval.

Nels Grevstad

 A confidence level of 90% implies that 90% of all samples would give an interval that contains μ.

Notes

Notes

90% Z Confidence Intervals for μ

Cl for a Normal Mean μ When σ is Known ge-Sample Cl for a Ceneral Population Mean μ Cl for a Normal Mean μ When σ is Unknown Cl for a Normal Mean μ When σ is Unknown

- The width of a confidence interval indicates the precision of the estimate.
 - The width is determined by:

$$2\left(z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right).$$

- Confidence intervals have the following properties:
 - 1. Using a **larger sample size** *n* results in a **narrower** CI.
 - 2. A smaller population standard deviation σ leads to a narrower Cl.
 - 3. Using a lower level of confidence results in a narrower Cl.
 Nets Grevetad

Cl for a Normal Mean μ When σ is Known rge-Sample Cl for a General Population Mean μ Cl for a Normal Mean μ When σ is Unknown Cl for a Normal Mean μ When σ is Unknown

Sample Size Determination (7.1)

- We can make the width of the confidence interval as small as we want by using a large enough sample size *n*.
- Suppose we want the **width** to be *w*. Then we'd need *n* to be large enough that

$$2\left(z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right) \;=\; w.$$

Solving for n gives the required sample size.

Nels Grevstad

Cl for a Normal Mean μ When σ is Known ge-Sample Cl for a General Population Mean μ Cl for a Normal Mean μ When σ is Unknown

CI for a Normal Mean An μ Properties of Confider Sample Size Determin

Sample Size for a Desired CI Width: The width of the $100(1-\alpha)\%$ confidence interval for μ will be w when

$$n = \left(2 \, z_{\alpha/2} \cdot \frac{\sigma}{w}\right)^2.$$

This calculation is valid when the sample is to be from a normal population and σ is known.

Nels Grevstad

Notes

Notes

Notes

Cl for a Normal Mean μ When σ is Known arge-Sample Cl for a General Population Mean μ Cl for a Normal Mean μ When σ is Unknown

Cl for a Normal Mean μ When σ is Kn Properties of Confidence Intervals Sample Size Determination

Notes

Example (Cont'd)

Recall that scores on the National Assessment of Educational Progress Study quantitative skills test are a **normal** population with **known standard deviation** $\sigma = 60$, but with a mean μ whose value is **unknown**.

Suppose we want to carry out a study to estimate the population mean μ , and we want the **width** of a **95% confidence interval** for μ to be 10 units.

How big would n need to be?

 Nels Grevetad
 Introduction

 Cl for a Normal Mean μ When σ is Known
 Introduction

 for a Normal Mean μ When σ is Known
 Cl for a Normal Mean μ When σ is Known

 for a Anormal Mean μ When σ is University
 Cl graphic set of the set of the

Notes

Notes

$$n = \left(2 \cdot 1.96 \cdot \frac{60}{10}\right)^2 = 553.2,$$

which we round up to n = 554.

CI for a Normal Mean μ When σ is Known Large-Sample CI for a General Population Mean μ CI for a Normal Mean μ When σ is Unknown

Nels Grevstad

Large-Sample CI for a General Population Mean μ (7.2)

- When the sample size n is large, two things are true:
 - 1. Regardless of the shape of the population, by the Central Limit Theorem,

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim \mathsf{N}(0, 1)$$
 (approximately)

 The sample standard deviation S will remain fairly constant from one sample to the next, and approximately equal to σ.

Cl for a Normal Mean μ When σ is Known Large-Sample Cl for a General Population Mean μ Cl for a Normal Mean μ When σ is Unknown Cl for a Normal Mean μ When σ is Unknown

Nels Grevstad

Notes

• As a consequence, when *n* is large,

$$Z = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim \mathbf{N}(0, 1)$$
 (approximately)

even if the sample is from **non-normal** population.

(Note that σ was replaced by S above.)

• Thus we can use the previously derived CI with σ replaced by S.

Nels Grevstad

Notes

Large-Sample 100(1 $- \alpha$)% Confidence Interval for a Population Mean μ :

$$\bar{X} \pm z_{\alpha/2} \frac{S}{\sqrt{n}}$$

This CI is valid when n is large, regardless of the shape of the population distribution.

• In practice, n is large enough if n > 40.

CI for a Normal Mean μ When σ is Known Large-Sample CI for a General Population Mean μ CI for a Normal Mean μ When σ is Unition Mean μ Sample Size Determination

Nels Grevstad

Sample Size Determination (7.2)

• We can determine the (approximate) **sample size** *n* needed for the CI to have **width** *w*.

Sample Size for a Desired Cl Width: The width of the $100(1-\alpha)\%$ confidence interval for μ will be approximately w when

$$n = \left(2 z_{\alpha/2} \cdot \frac{S}{w}\right)^2.$$

In practice we plug in an educated guess for S.

This calculation is valid when the sample is to be from a general population and σ is unknown.

Nels Grevstad

CI for a Normal Mean μ When σ is Known Large-Sample CI for a General Population Mean μ CI for a Normal Mean μ When σ is Unknown Sam

CI for a Normal Mean μ When σ is Unknown (7.3)

- Suppose
 - 1. X_1, X_2, \ldots, X_n are a random sample from a **normal** population.
 - 2. The population mean and standard deviation μ and σ are both unknown.

t Distributi

- 3. *n* isn't necessarily large.
- To derive a Cl for μ, we'll need a new probability distribution.

14013	GIGVStau	

Cl for a Normal Mean μ When σ is Known Large-Sample Cl for a General Population Mean μ Cl for a Normal Mean μ When σ is Unknown

The t Distribution (7.3)

Proposition

Suppose X_1, X_2, \ldots, X_n are a random sample from a **normal** population. Then the random variable

$$T = \frac{\bar{X} - \bar{X}}{S/\sqrt{n}}$$

follows a t distribution with n - 1 degrees of freedom.

We write this as

$$\frac{\bar{X}-\mu}{S/\sqrt{n}} \sim t(n-1)$$

Notes

Notes

Cl for a Normal Mean μ When σ is Knd Large-Sample Cl for a General Population Mea Cl for a Normal Mean μ When σ is Unknd

Nels Grevstad The t Distribution Large-Sample CI for a General Population Mear CI for a Normal Mean μ When σ is Unkno

Notes

Notes

• Properties of the t Distribution:

- 1. The t distribution is centered on $\boldsymbol{0}$ and resembles the N(0,1) distribution, but has "heavier" tails.
- 2. It has one parameter, its degrees of freedom (or df).
- 3. As the df increases, the *t*-distribution gets closer and closer to an exact N(0,1) distribution.
- We use $t_{\alpha,n-1}$ to denote the t *critical value* that has area α to its **right** under the t(n-1) curve:

Nels Grevstad	
CI for a Normal Mean μ When σ is Known Large-Sample CI for a General Population Mean μ CI for a Normal Mean μ When σ is Unknown	CI for a Normal Mean µ When σ is Unknown The t Distribution The One-Sample t CI Sample Size Determination
Depict	ion of t-n 4
Depict	ion οι ι _{α,n-1}

Cl for a Normal Mean μ When σ is Knowr Large-Sample Cl for a General Population Mean μ Cl for a Normal Mean μ When σ is Unknowr

Nels Grevstad

The t Distribution

Notes

Notes

• Values of $t_{\alpha,n-1}$ are obtained from a *t* distribution table.

Nels Grevstad

CI for a Normal Mean μ When σ is Known ge-Sample CI for a General Population Mean μ CI for a Normal Mean μ When σ is Unknown

n μ The One-Sample t Cl Sample Size Determina

The One-Sample $t \operatorname{Cl}_{(7.3)}$

• When the sample is from a **normal** population and σ is **unknown**, the CI formula is derived as before, but using the t(n-1) distribution instead of the **N**(0, 1) distribution:

$$\begin{array}{rcl} 0.95 & = & P\left(-t_{0.025,n-1} < \frac{\bar{X}-\mu}{S/\sqrt{n}} < t_{0.025,n-1}\right) \\ & \vdots \\ & = & P\left(\bar{X}-t_{0.025,n-1}\frac{S}{\sqrt{n}} < \mu < \bar{X}+t_{0.025,n-1}\frac{S}{\sqrt{n}}\right) \end{array}$$

Cl for a Normal Mean μ When σ is Known Large-Sample Cl for a General Population Mean μ Cl for a Normal Mean μ When σ is Unknown Sample ± Cl Sample ± Cl Strategies (Size Determined)

Notes

100(1 $-\alpha)\%$ Confidence Interval for a Normal Mean

$$\bar{X} \,\pm\, t_{\alpha/2,n-1} \frac{S}{\sqrt{n}} \,.$$

This is called the **one-sample** t **confidence interval**.

It's valid when the sample is from a normal population and σ is unknown.

Nels Grevstad

CI for a Normal Mean μ When σ is Known Large-Sample CI for a General Population Mean μ CI for a Normal Mean μ When σ is Unknown

The t Distribution The One-Sample t CI

Example (Cont'd)

Recall that in the sleep deprivation study, a sample of n=22 were students asked students how many hours they sleep per night.

The sample mean and standard deviation were

 $\bar{x} = 5.77$ s = 1.57

We'll estimate μ , the population mean number of hours slept per night, using **95% one-sample** *t* **CI**.

Nels Grevstad

Ci for a Normal Mean μ When σ is Known Large-Sample Ci for a General Population Mean μ Ci for a Normal Mean μ When σ is Unknown Sample Size Determin

The CI is

 $\bar{X} \pm t_{0.025,21} \cdot \frac{S}{\sqrt{n}} = 5.77 \pm 2.080 \cdot \frac{1.57}{\sqrt{22}}$ $= 5.77 \pm 0.70$ $= (5.07, \ 6.47)$

where the value $t_{0.025,21} = 2.080$ was obtained from a t distribution table.

Nels Grevstad

Values of μ in this interval are considered **plausible**, and we can be **95% confident** that μ is in the interval somewhere.

Notes

Notes

Cl for a Normal Mean μ When σ is Known Large-Sample Cl for a General Population Mean μ Cl for a Normal Mean μ When σ is Unknown

Sample Size Determination (7.3)

• To determine an (approximate) **sample size** for the CI to have **width** *w*, we use

$$n = \left(2 \, z_{\alpha/2} \cdot \frac{S}{w}\right)^2$$

Sa

-Sample t CI Size Determination

as before, plugging in an educated guess for S.

(Note that we use $z_{\alpha/2},$ not $t_{\alpha/2,n-1},$ because $t_{\alpha/2,n-1}$ depends on n.)

Nels Grevstad

Notes

Notes

Notes