Large Sample Test for a General Population Mean µ

Notes

Probability and Statistics

Nels Grevstad

Metropolitan State University of Denver ngrevsta@msudenver.edu

May 1, 2019

Large Sample Test for a General Population Mean μ Test for a Normal Mean μ of When σ is Unknown

Topics

Notes

1 Large Sample Test for a General Population Mean μ

Nels Grevstad

2 Test for a Normal Mean μ of When σ is Unknown

Nels Grevstad

arge Sample Test for a General Population Mean μ Test for a Normal Mean μ of When σ is Unknown

Objectives

Objectives:

- Carry out a hypothesis test for a general population mean μ when the sample size is large.
- Carry out a hypothesis test for a normal mean μ when the standard deviation σ is unknown.

Large Sample Test for a General Population Mean μ Test for a Normal Mean μ of When σ is Unknown

Large Sample Test for a General Population Mean μ

Nels Grevstad

- When the **sample size** *n* **is large**, two things are true:
 - 1. Regardless of the shape of the population, by the Central Limit Theorem,

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim \mathsf{N}(0, 1)$$
 (approximately)

2. The sample standard deviation S will remain fairly constant from one sample to the next, and approximately equal to σ .

Nels Grevstad

Notes

Large Sample Test for a General Population Mean μ Test for a Normal Mean μ of When σ is Unknown

• As a consequence, when n is large,

 ${{\bar X}-\mu\over S/\sqrt{n}} \sim {\rm N}(0,\,1)$ (approximately)

even if the sample is from $\ensuremath{\textit{non-normal}}$ population.

(Note that σ was replaced by S above.)

• It follows that if H_0 is true (so $\mu = \mu_0$),

 ${{\bar X}-\mu_0\over S/\sqrt{n}} \sim {\sf N}(0,\,1)$ (approximately)

 Thus we can use this as our test statistic in a one-sample z test for μ.

Nels Grevstad

Large Sample Test for a General Population Mean μ Test for a Normal Mean μ of When σ is Unknown

Notes

Notes

One-Sample Z Test Statistic:

$$Z = \frac{\bar{X} - \mu_0}{S/\sqrt{n}}$$

Nels Grevstad

When
$$H_0$$
 is true, $Z \sim N(0, 1)$.

arge Sample Test for a General Population Mean μ Test for a Normal Mean μ of When σ is Unknown

Sampling Distribution of the Test Statistic Under H_0 : If Z is the one-sample Z test statistic (from the previous slide), then when $H_0: \mu = \mu_0$

is true,

 $Z \, \sim \, \mathsf{N}(0,1).$

- The *p-value* is the appropriate tail area under the N(0, 1) curve. (See Slides 17.)
- In practice, n is large enough if n > 40.

Nels Grevstad

arge Sample Test for a General Population Mean μ Test for a Normal Mean μ of When σ is Unknown

One-Sample Z Test for μ when n is Large

Assumptions: The data x_1, x_2, \ldots, x_n are a random sample from any distribution whose mean is μ and n is large. Null hypothesis: $H_0: \mu = \mu_0$.

Test statistic value: $z = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$.

Decision rule: Reject H_0 if p-value $< \alpha$.

Alternative	P-value = area under
hypothesis	N(0,1) distribution:
$H_a: \mu > \mu_0$	to the right of z
$H_a: \mu < \mu_0$	to the left of z
$H_a: \mu \neq \mu_0$	to the left of $- z $ and right of $ z $

Notes

Large Sample Test for a General Population Mean μ Test for a Normal Mean μ of When σ is Unknown

Test for a Normal Mean μ of When σ is Unknown (8.3)

• Recall (Slides 15) that if X_1, X_2, \ldots, X_n are a random sample from a **normal** population, the random variable

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

a t distribution with n-1 degrees of freedom.

• It follows that if H_0 is true (so $\mu = \mu_0$),

$$\frac{\bar{X} - \mu_0}{S/\sqrt{n}} \sim t(n-1)$$

 Thus we can use this as our test statistic in a one-sample t test for μ.

Nels Grevstad

arge Sample Test for a General Population Mean μ Test for a Normal Mean μ of When σ is Unknown

Notes

Notes

• The test statistic for the one-sample t test for μ is

One-Sample t Test Statistic:

$$T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}}$$

When H_0 is true, $T \sim t(n-1)$.

rge Sample Test for a General Population Mean μ Test for a Normal Mean μ of When σ is Unknow

Sampling Distribution of the Test Statistic Under H_0 : If T is the one-sample t test statistic, then when

 $H_0: \ \mu \ = \ \mu_0$

Nels Grevstad

Nels Grevstad

is true,

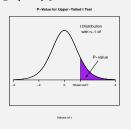
 $T \sim \mathfrak{t}(n-1).$

• The *p-value* is the appropriate tail area under the t(n-1) curve. (See the next few slides.)

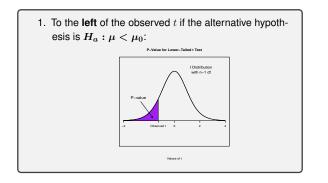
arge Sample Test for a General Population Mean μ Test for a Normal Mean μ of When σ is Unknown

P-Value: For the **one-sample** t **test**, the **p-value** is the tail area under the t(n-1) curve:

1. To the **right** of the observed t if the alternative hypothesis is $H_a: \mu > \mu_0$:

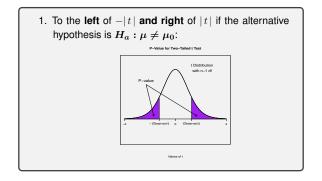


Notes



Nels Grevstad

Large Sample Test for a General Population Mean μ Test for a Normal Mean μ of When σ is Unknown



Nels Grevstad

arge Sample Test for a General Population Mean μ Test for a Normal Mean μ of When σ is Unknown

One-Sample t Test for μ

Assumptions: The data x_1, x_2, \ldots, x_n are a random sample from a *normal* distribution.

Null hypothesis: $H_0: \mu = \mu_0$.

Test statistic value: $t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$.

Decision rule: Reject H_0 if p-value $< \alpha$.

	P-value = area under
Alternative	the t distribution
hypothesis	with $n-1$ d.f.:
$H_a : \mu > \mu_0$	to the right of t
$H_a: \mu < \mu_0$	to the left of t
$H_a: \mu \neq \mu_0$	to the left of $- t $ and right of $ t $

Nels Grevstad

arge Sample Test for a General Population Mean μ Test for a Normal Mean μ of When σ is Unknown

Example

A quality control engineer monitors a machine that puts cereal into boxes.

According to the label, each box is supposed to contain ${\bf 16}$ oz of cereal.

The machine will need to be adjusted if the boxes are systematically being **under-filled** or **over-filled**.

From past experience, the engineer knows that the weight (ounces) of the cereal in a box follows a **normal** distribution.

Nels Grevstad

Notes

Notes

Notes

arge Sample Test for a General Population Mean μ Test for a Normal Mean μ of When σ is Unknown

To decide if the boxes are being **under-filled or overfilled**, the engineer will test the **hypotheses**

$$H_0: \mu = 10$$
$$H_a: \mu \neq 10$$

where μ is the true (unknown) population mean weight.

A random sample of ten boxes gives

 $\bar{x} = 16.6$ and s = 0.9.

Nels Grevstad

arge Sample Test for a General Population Mean μ Test for a Normal Mean μ of When σ is Unknown

Thus the observed test statistic is

 $t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} = \frac{16.6 - 16}{0.9/\sqrt{10}} = 2.11.$

Thus the sample mean weight, $\bar{x} = 16.6$, is about 2.11 standard errors above 16 ounces.

The **p-value** is the **probability** that we'd get a t value this far away from zero (in either direction) by chance **if** the **population** mean μ was **16**.

rge Sample Test for a General Population Mean μ Test for a Normal Mean μ of When σ is Unknown

From the **two tail** areas of the **sampling distribution** that the test statistic would follow under H_0 (the t(9) distribution), to the **right** of **2.11** and **left** of **-2.11**,

p-value = 2(0.033) = 0.066.

arge Sample Test for a General Population Mean μ Test for a Normal Mean μ of When σ is Unknown

Thus we'd get a result like the one we got **6.6%** of the time even if the population mean μ was **16** ounces.

Nels Grevstad

Using a level of significance $\alpha=0.05,$ the decision rule is

Reject H_0 if p-value < 0.05. Fail to reject H_0 if p-value ≥ 0.05 .

Because $0.066 \ge 0.05$, we fail to reject H_0 .

There's **no statistically significant evidence** that the population mean cereal box weight μ is different from 16 ounces.

The result that the engineer got (by taking a random sample) can be explained by chance variation (sampling error).

Nels Grevstad

Notes

Notes

Notes