Notes

Probability and Statistics

Nels Grevstad

Metropolitan State University of Denver ngrevsta@msudenver.edu

May 6, 2019

- Test for the Difference Between Two Normal Means $\mu_1-\mu_2$ when σ_1 and σ_2 are Known
- 2 Large Sample Test for the Difference Between Two General Population Means $\mu_1 - \mu_2$
- Test for the Difference Between Two Normal Means $\mu_1-\mu_2$ When σ_1 and σ_2 are Unknown

Objectives

Objectives: Carry out:

- Two-sample z test for the difference between two normal means $\mu_1 - \mu_2$ when σ_1 and σ_2 are known.
- Two-sample z test for the difference between two general population means $\mu_1 - \mu_2$ when m and n are large.
- Two-sample t test for the difference between two normal means $\mu_1 - \mu_2$ when σ_1 and σ_2 are unknown.

Nels Grevstad

en Two Nor The Difference Between two Normal Means $\mu_1 - \mu_2$ with the Sample Test for the Difference Between Two General Popula for the Difference Between Two Normal Means $\mu_1 - \mu_2$ Wh

Test for the Difference Between Two Normal Means $\mu_1-\mu_2$ when σ_1 and σ_2 are Known (9.1)

 μ_2

- Suppose
 - 1. X_1, X_2, \ldots, X_m are a random sample from a $N(\mu_1, \sigma_1)$ population.
 - 2. Y_1, Y_2, \ldots, Y_n are a random sample from a N(μ_2, σ_2) population.
 - 3. The population means μ_1 and μ_2 are unknown but the standard deviations σ_1 and σ_2 are known.
 - 4. The X and Y samples are **independent** of each other.
- We'll see how to test whether μ_1 and μ_2 are different from each other.

Nels Grevstad

Notes

Notes

- When σ₁ and σ₂ are known, the appropriate test is called the *two-sample z test*
- The difference $\bar{X} \bar{Y}$ between the two sample means is an **estimator** of the (unknown) difference between the population means $\mu_1 - \mu_2$.
- $\bar{X} \bar{Y}$ is a difference between two **normal** random variables, so it too follows a **normal distribution**.

Nels Grevstad

Test for the Difference Between Two Normal Means $\mu_1 - \mu_2$ who Large Sample Test for the Difference Between Two General Popula Test for the Difference Between Two Normal Means $\mu_1 - \mu_2$ Wit

Normality of $\bar{X} - \bar{Y}$: If X_1, X_2, \ldots, X_m is a random sample from a N(μ_1, σ_1) distribution, and Y_1, Y_2, \ldots, Y_n is a random sample from a N(μ_2, σ_2) distribution, and the two samples are **independent** of each other, then

$$\bar{X} - \bar{Y} \sim \mathsf{N}\left(\mu_1 - \mu_2, \sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}\right).$$

It follows that

$$-\frac{\bar{X}-\bar{Y}-(\mu_1-\mu_2)}{\sqrt{\sigma_1^2/m}} \sim \mathsf{N}(0,1).$$

ast for the Difference Between Two Normal Means $\mu_1 - \mu_2$ what arge Sample Test for the Difference Between Two General Popula ast for the Difference Between Two Normal Means $\mu_1 - \mu_2$ with

Proof: From Slides 14,

$$ar{X} \sim \mathsf{N}\left(\mu_1, rac{\sigma_1}{\sqrt{m}}
ight)$$
 and $ar{Y} \sim \mathsf{N}\left(\mu_2, rac{\sigma_2}{\sqrt{n}}
ight)$

Furthermore, $\bar{X} - \bar{Y}$ is a linear combination of \bar{X} and \bar{Y} (which are independent because the two samples are), so (also from Slides 14)

$$\bar{X} - \bar{Y} \sim \mathsf{N}\left(\mu_1 - \mu_2, \sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}\right)$$

Test for the Difference Between Two Normal Means $\mu_1 - \mu_2$ who Large Sample Test for the Difference Between Two General Popula Test for the Difference Between Two Normal Means $\mu_1 - \mu_2$ Who

> We're seeking to "disprove" the claim that μ₁ is equal to μ₂, so the **null hypothesis** is that they *are* equal.

$$H_0: \mu_1 - \mu_2 = 0$$

(H_0 could also be written as $H_0: \mu_1 = \mu_2$.)

Nels Grevstad

Notes

Notes

• The alternative hypothesis will depend on what we're trying to "prove":

Alternative Hypothesis:	The alternative hypothesis will
be one of	
1. $H_a: \mu_1 - \mu_2 > 0$	(one-sided, upper-tailed)
2. $H_a: \mu_1 - \mu_2 < 0$	(one-sided, lower-tailed)

3. $H_a: \mu_1 - \mu_2 \neq 0$ (two-sided, two-tailed)

depending on what we're trying to verify using the data.

Nels Grevstad

Test for the Difference Between Two Normal Means $\mu_1 - \mu_2$ who Large Sample Test for the Difference Between Two General Popula Test for the Difference Between Two Normal Means $\mu_2 - \mu_2$. Who

• The test statistic for the *two-sample* z *test for* $\mu_1 - \mu_2$ is

Two-Sample Z Test Statistic:

$$Z = \frac{\bar{X} - \bar{Y} - 0}{\sqrt{\sigma_1^2 / m + \sigma_2^2 / m}}$$

When H_0 is true, $Z \sim N(0, 1)$.

• Z measures how many standard errors $\bar{X} - \bar{Y}$ is away from **zero**.

iest for the Difference Between Two Normal Means $\mu_1 - \mu_2$ where $\mu_1 = \mu_2$ where $\mu_1 = \mu_2$ where $\mu_2 = \mu_2$ where $\mu_2 = \mu_2$ we have $\mu_2 = \mu_2$ where $\mu_2 = \mu_2$ we have $\mu_2 = \mu_2$ where $\mu_2 = \mu_2$

- $\bar{X}-\bar{Y}$ is an estimator of the unknown difference between population means $\mu_1-\mu_2$, so ...
 - 1. Z will be approximately **zero** if $\mu_1 \mu_2 = 0$.
 - 2. It will be **positive** if $\mu_1 \mu_2 > 0$.
 - 3. It will be **negative** if $\mu_1 \mu_2 < 0$.

Test for the Difference Between Two Normal Means $\mu_1 - \mu_2$ who Large Sample Test for the Difference Between Two General Popula Test for the Difference Between Two Normal Means $\mu_1 - \mu_2$ Wh

- 1. Large positive values of Z provide evidence against H_0 in favor of $H_a: \mu_1 - \mu_2 > 0.$
- 2. Large negative values of Z provide evidence against H_0 in favor of

 $H_a: \mu_1 - \mu_2 < 0.$

3. Large positive and large negative values of Z provide evidence against H_0 in favor of $H_a: \mu_1 - \mu_2 \neq 0.$

Notes

Large Sample Test for the Difference Between Two General Popula Test for the Difference Between Two Normal Means $\mu_1 - \mu_2$ Wh

Recall that

$$\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)(\boldsymbol{\mu_1} - \boldsymbol{\mu_2})}{\sqrt{\sigma_1^2 / m + \sigma_2^2 / n}} \sim \mathsf{N}(0, 1)$$

• It follows that if H_0 is true (so $\mu_1 - \mu_2 = 0$),

Nels Grevstad

$$\frac{\bar{X} - \bar{Y} - 0\mathbf{0}}{\sqrt{\sigma_1^2/m + \sigma_2^2/n}} ~\sim~ \mathsf{N}(0, 1).$$

Test for the Difference Between Two Normal Means $\mu_1 - \mu_2$ where μ_2 and μ_2 and μ_2 and μ_2 and μ_2 where μ_2 and μ_3 are μ_3 where μ_3 and μ_3

Sampling Distribution of the Test Statistic Under H_0 : If Z is the two-sample Z test statistic, then when

$$H_0: \mu_1 - \mu_2 = 0$$

is true,

$$Z \sim \mathsf{N}(0,1).$$

• The *p-value* is the probability that just by chance (under H_0) we'd get a test statistic value as far from zero, in the direction predicted by H_a , as the observed value.

st or the Difference Between Two Normal Means $\mu_1 - \mu_2$ wh rge Sample Test for the Difference Between Two General Popula st for the Difference Between Two Normal Means $\mu_1 - \mu_2$ With 1. **P-value** = Area to the **right** of the observed *z* if the alternative hypothesis is $H_a : \mu_1 - \mu_2 > 0$.

Nels Grevstad

Neis Grevstad Test for the Difference Between Two Normal Means $\mu_1 - \mu_2$ wh Large Sample Test for the Difference Between Two General Popula Test for the Difference Between Two Normal Means $\mu_1 - \mu_2$ Wh

Notes

Notes

Notes

Nels Grevstad

Test for the Difference Between Two Normal Means $\mu_1 - \mu_2$ who Large Sample Test for the Difference Between Two General Popula Test for the Difference Between Two Normal Means $\mu_1 - \mu_0$ Wh

Two-Sample Z Test for $\mu_1-\mu_2$ when σ_1 and σ_2 are Known			
Assumptions: The data x_1, x_2, \ldots, x_m are a random sample from a N(μ_1, σ_1) distribution and y_1, y_2, \ldots, y_n are a random sample from a N(μ_2, σ_2) distribution, where σ_1 and σ_2 are known. Also, the two samples are independent.			
Null hypothesis : $H_0: \mu_1 - \mu_2 = 0.$			
Test statistic value: $z=rac{x-ar y-0}{\sqrt{\sigma_{\perp}^2/m+\sigma_{2}^2/n}}.$			
Decision rule: Reject H_0 if p-value $< \alpha$.			
Alternative	P-value = area under		
hypothesis	N(0,1) distribution:		
$H_a: \mu_1 - \mu_2 > 0$	to the right of z		
$H_a: \mu_1 - \mu_2 < 0$	to the left of z		
$H_a: \mu_1 - \mu_2 \neq 0$	to the left of $- z $ and right of $ z $		

Large Sample Test for the Difference Between Two General Popula

Large Sample Test for the Difference Between Two General Population Means $\mu_1 - \mu_2$ (9.1)

Nels Grevstad

- When the sample sizes *m* and *n* are both large, two things are true:
 - 1. Regardless of the shape of the populations, by the Central Limit Theorem,

$$Z = \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2/m + \sigma_2^2/n}} \sim \mathsf{N}(0, 1)$$
 (approximately).

2. The sample standard deviations S_1 and S_2 will remain fairly constant from one sample to the next, and approximately equal to σ_1 and σ_2 .

Test for the Difference Between Two Normal Means $\mu_1 - \mu_2$ wh Large Sample Test for the Difference Between Two General Popula Test for the Difference Between Two Normal Means $\mu_2 - \mu_2$ Wi

• As a consequence, when n is large,

Nels Grevstad

$$Z = \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{S_1^2/m + S_2^2/n}} \sim \mathsf{N}(0, 1) \qquad \text{(approximately)}.$$

even if the samples are from **non-normal** populations.

(Note that σ_1 and σ_2 were replaced by S_1 and S_2 above.)

• It follows that if
$$H_0$$
 is true (so $\mu_1 - \mu_2 = 0$).

$$\frac{\bar{X}-\bar{Y}-0}{\sqrt{S_1^2/m+S_2^2/n}} \sim \mathsf{N}(0,\,1) \qquad \text{(approximately)}.$$

• Thus we can use this as our **test statistic** in a *two-sample z test for* $\mu_1 - \mu_2$.

Notes

Notes

Notes

Large Sample Test for the Difference Between Two General Popu

Notes

$$Z = \frac{\bar{X} - \bar{Y} - 0}{\sqrt{S_1^2/m + S_2^2/n}}$$

When H_0 is true, $Z \sim N(0, 1)$.

ple Test for the Difference Betw

Sampling Distribution of the Test Statistic Under H₀: If Z is the two-sample Z test statistic (from the previous slide), then when

 $H_0: \ \mu_1 - \mu_2 = 0$

is true,

 $Z \sim \mathsf{N}(0,1).$

- The *p-value* is the appropriate tail area under the N(0, 1)curve.
- In practice, m and n are **large enough** if m > 40 and n > 40.

Nels Grevstad

ple Test for the Differen

Two-Sample Z Test for $\mu_1 - \mu_2$ when m and nand \boldsymbol{n} are Large

Assumptions: The data x_1, x_2, \ldots, x_m are a random sample from *any* distribution whose mean and standard deviation are μ_1 and σ_1 and $y_1, y_2, \ldots,$ y_n are a random sample from any distribution whose mean and standard deviation are μ_2 and $\sigma_2.$ Also, the two samples are independent of each other.

Null hypothesis: $H_0: \mu_1 - \mu_2 = 0.$

Test statistic value: $z = \frac{\bar{x} - \bar{y} - 0}{\sqrt{s_1^2/m + s_2^2/n}}$

Decision rule: Reject H_0 if p-value $< \alpha$.

Alternative P-value = area under hypothesis N(0,1) distribution: $H_a:\mu_1-\mu_2>0$ to the right of z $H_a: \mu_1 - \mu_2 < 0$ to the left of z

Nels Grevstad

Large Sample Test for the Difference Between Two General Popula Test for the Difference Between Two Normal Means $\mu_1 - \mu_2$ Wh

Test for the Difference Between Two Normal Means $\mu_1 - \mu_2$ When σ_1 and σ_2 are Unknown (9.2)

• It can be shown that if X_1, X_2, \ldots, X_n and Y_1, Y_2, \ldots, Y_n are independent random samples from two normal populations, the random variable

$$\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{S_1^2/m + S_2^2/n}} \sim t(\nu),$$

a t distribution with ν degrees of freedom, where

$$\nu = \frac{\left(\frac{s_1^2}{m} + \frac{s_2^2}{n}\right)^2}{\frac{(s_1^2/m)^2}{m-1} + \frac{(s_2^2/n)^2}{n-1}}$$

which should be truncated down to the nearest integer.

Nels Grevstad

Notes

Notes

• It follows that if H_0 is true (so $\mu_1 - \mu_2 = 0$),

$$\frac{\bar{X} - \bar{Y} - 0}{\sqrt{S_1^2/m + S_2^2/n}} \sim t(\nu),$$

• Thus we can use this as our test statistic in a *two-sample* t test for $\mu_1 - \mu_2$.

Nels Grevstad

Test for the Difference Between Two Normal Means $\mu_1 - \mu_2$ wh Large Sample Test for the Difference Between Two General Popula Test for the Difference Between Two Normal Means $\mu_1 - \mu_2$ Wh

Notes

Notes

Notes

• The test statistic for the *two-sample* t *test for* $\mu_1 - \mu_2$ is

Two-Sample t Test Statistic:

$$T = \frac{\bar{X} - \bar{Y} - 0}{\sqrt{S_1^2/m + S_2^2/n}}$$

When H_0 is true, $T \sim t(\nu)$.

arge Sample Test for the Difference Between Two Normal Means $\mu_1 = \mu_2$ w arge Sample Test for the Difference Between Two General Populest for the Difference Between Two Normal Means $\mu_1 = \mu_2$ V

> **Sampling Distribution of the Test Statistic Under** H_0 : If T is the two-sample t test statistic, then when

Nels Grevstad

$$H_0: \ \mu_1 - \mu_2 = 0$$

is true,

 $T \sim \mathbf{t}(\nu).$

• The p-value is the appropriate tail area under the $t(\nu)$ curve.

Nels Grevstad

Test for the Difference Between Two Normal Means $\mu_1 - \mu_2$ wh Large Sample Test for the Difference Between Two General Popula Test for the Difference Between Two Normal Means $\mu_1 - \mu_2$ Wh

Two-Sample t Test for $\mu_1 - \mu_2$

Assumptions: The data x_1, x_2, \ldots, x_m are a random sample from a N(μ_1, σ_1) distribution and y_1, y_2, \ldots, y_n are a random sample from a N(μ_2, σ_2) distribution. Also, the two samples are independent of each other.

Null hypothesis: $H_0: \mu_1 - \mu_2 = 0.$

Test statistic value: $t = \frac{\bar{x} - \bar{y} - 0}{\sqrt{s_1^2/m + s_2^2/n}}$

Decision rule: Reject H_0 if p-value $< \alpha$.

Alternative	P-value = area under $t(\nu)$
nypotnesis	distribution":
$H_a: \mu_1 - \mu_2 > 0$	to the right of t
$H_a: \mu_1 - \mu_2 < 0$	to the left of t
$H_a: \mu_1 - \mu_2 \neq 0$	to the left of $- t $ and right of $ t $

* $t(\nu)$ is the t distribution with d.f. ν given a few slides back. Nels Grevstad

Example

An engineer in a garment factory must compare two different work sequences for measuring the strength of polyester fibers to decide if one sequence is, on average, faster than the other.

Twelve workers are randomly assigned to two groups of **six** workers **each**.

The first group measures the strength of the fabric using **Work** Sequence 1 and the second measures it using **Work** Sequence 2.

Fest for the Difference Between Two Normal Means $\mu_1-\mu_2$ wh .arge Sample Test for the Difference Between Two General Popula Fest for the Difference Between Two Normal Means $\mu_1-\mu_2$ Wh

Notes

The following data are the **completion times** (in **seconds**) for each group:

Work Sequence 1	Work Sequence 2
220	247
235	223
214	215
197	219
206	207
214	236

Neis Grevslau

Large Sample Test for the Difference Between Two General Popul

The

summary statistics for the two groups are:			
	Work Sequence 1	Work Sequence 2	
	m=6	n = 6	
	$ar{x}=214.3$	$ar{y}=224.5$	
	$s_1 = 12.9$	$s_2 = 14.6$	

We'll carry out a **two-sample** *t* **test** to decide **which work sequence**, **if any**, **is faster**.

Test for the Difference Between Two Normal Means $\mu_1 - \mu_2$ who Large Sample Test for the Difference Between Two General Popula Test for the Difference Between Two Normal Means $\mu_2 - \mu_2$ Who

The hypotheses are

$$H_0: \ \mu_1 - \mu_2 = 0$$

 $H_a: \ \mu_1 - \mu_2 \neq 0$

where μ_1 and μ_2 are the true (unknown) population mean completion times.

Nels Grevstad

Notes

st for the Difference Between Two Normal Means $\mu_1-\mu_2$ V

The observed test statistic is

$$= \frac{\bar{x} - \bar{y} - 0}{\sqrt{s_1^2/m + s_2^2/n}}$$
$$= \frac{214.3 - 224.5 - 0}{\sqrt{12.9^2/6 + 14.6^2/6}}$$
$$= -1.28.$$

Thus the observed difference between sample mean completion times, $\bar{x} - \bar{y} = -10.2$, is about 1.28 standard errors below zero.

The **p-value** is the **probability** that we'd get a *t* value this far away from zero (in either direction) by chance **if** there was **no difference** in the **population means** μ_1 and μ_2 .

Nels Grevstad

est for the Difference Between Two Normal Means $\mu_1-\mu_2$ which arge Sample Test for the Difference Between Two General Popula st for the Difference Between Two Normal Means $\mu_1-\mu_2$ Which the Difference Between Two Normal Means μ_1

Under H_0 , the test statistic would follow a t(
u) distribution with degrees of freedom

$$\nu = \frac{\left(\frac{s_1^2}{m} + \frac{s_2^2}{n}\right)^2}{\frac{(s_1^2/m)^2}{m-1} + \frac{(s_2^2/n)^2}{n-1}} = \frac{\left(\frac{12.9^2}{6} + \frac{14.6^2}{6}\right)^2}{\frac{(12.9^2/6)^2}{6-1} + \frac{(14.6^2/6)^2}{6-1}} = 9.8,$$

which we round down to 9.

From the two tail areas of the t(9) distribution, to the left of -1.28 and right of 1.28,

$$p-value = 2(0.116) = 0.232$$

Large Sample Test for the Difference Between Two General Popula Test for the Difference Between Two Normal Means $\mu_1 - \mu_2$ Wh

Thus we'd get a result like the one we got **23.2%** of the time **even if** the **population mean** completion times μ_1 and μ_2 were equal.

Using a level of significance lpha=0.05, the decision rule is

Reject H_0 if p-value < 0.05. Fail to reject H_0 if p-value ≥ 0.05 .

Because $0.232 \ge 0.05$, we fail to reject H_0 .

There's **no statistically significant evidence** for any difference in the mean completion times for the two work sequences.

Nels Grevstad

The observed difference can be explained by chance variation (sampling error).

Notes

Notes

Notes