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Objectives

Objectives:

Explain the meaning of the terms hypothesis, test statistic,
level of significance, rejection region, p-value, and decision
rule.

Carry out a one-sample t test for a population mean.

Distinguish between Type I and Type I errors.

Know the relationship between the level of significance and
the Type I error probability.
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Introduction to Hypothesis Testing

A hypothesis is a claim about the value(s) of one or more
population parameters, (e.g. µ).

A hypothesis test is a statistical method for deciding
between two hypotheses:

The null hypothesis (H0) is the hypothesis we seek to
discredit, but to which we give the benefit of the doubt.

The alternative hypothesis (Ha) is the hypothesis we
seek to substantiate.
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The conclusion in any hypothesis test will be to either

Reject H0 or Fail to Reject H0.

The decision is based on whether a test statistic provides
compelling evidence against H0, ...

... as determined by comparing its value to the sampling
distribution it would follow if H0 was true.

A decision rule specifies when the evidence against H0 is
so compelling that H0 should be rejected.

Nels Grevstad



Introduction to Hypothesis Testings
One-Sample t Test for µ

Type I and II Errors and Their Probabilities

The conclusion in any hypothesis test will be to either

Reject H0 or Fail to Reject H0.

The decision is based on whether a test statistic provides
compelling evidence against H0, ...

... as determined by comparing its value to the sampling
distribution it would follow if H0 was true.

A decision rule specifies when the evidence against H0 is
so compelling that H0 should be rejected.

Nels Grevstad



Introduction to Hypothesis Testings
One-Sample t Test for µ

Type I and II Errors and Their Probabilities

The conclusion in any hypothesis test will be to either

Reject H0 or Fail to Reject H0.

The decision is based on whether a test statistic provides
compelling evidence against H0, ...

... as determined by comparing its value to the sampling
distribution it would follow if H0 was true.

A decision rule specifies when the evidence against H0 is
so compelling that H0 should be rejected.

Nels Grevstad



Introduction to Hypothesis Testings
One-Sample t Test for µ

Type I and II Errors and Their Probabilities

The conclusion in any hypothesis test will be to either

Reject H0 or Fail to Reject H0.

The decision is based on whether a test statistic provides
compelling evidence against H0, ...

... as determined by comparing its value to the sampling
distribution it would follow if H0 was true.

A decision rule specifies when the evidence against H0 is
so compelling that H0 should be rejected.

Nels Grevstad



Introduction to Hypothesis Testings
One-Sample t Test for µ

Type I and II Errors and Their Probabilities

There are two approaches to developing a decision rule:

1. The rejection region approach.

2. The p-value approach.

In either case, we first choose a level of significance α,
which indicates how strong the evidence against H0 needs
to be before we’re willing to reject H0.

A smaller α requires stronger evidence.

The most commonly used values for α are 0.01, 0.05, and
0.10.
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A rejection region is the set all test statistic values for
which H0 should be rejected.

It’s chosen in such a way that when H0 is true, the test
statistic will fall into that region just by chance with
probability α.
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Decision Rule (RR approach):

Reject H0 if the test statistic falls in the rejection region.
Fail to reject H0 otherwise.
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The p-value is a probability that answers the question:

”If H0 was true, what’s the chance we’d get a test
statistic value that’s as contradictory to H0 (and con-
sistent with Ha) as the one we got?”
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Decision Rule (P-value approach):

Reject H0 if p-value < α.
Fail to reject H0 if p-value ≥ α.
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We say that a result is statistically significant when we
reject H0.

A statistically significant result is one that isn’t likely just
due to chance variation.
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Steps in Performing a Hypothesis Test:

1. Identify and define the parameter(s) of interest.

2. State the null and alternative hypotheses.

3. Choose a level of significance α.

4. Check any assumptions required for the test.

5. Calculate the test statistic value.

6. Compute the p-value or determine the rejection re-
gion.

7. State the conclusion (using the decision rule).
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One-Sample t Test for µ (8.3)

Suppose X1, X2, . . . , Xn are a random sample from a
population whose (unknown) mean is µ.

We’ll see how to use the sample to decide if µ is different
from some hypothesized value µ0.
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Because we’re seeking to ”disprove” the claim that µ is
equal to µ0, the null hypothesis is that it is equal to µ0 .

Null Hypothesis:

H0 : µ = µ0
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The alternative hypothesis will depend on what we’re
trying to ”prove”:

Alternative Hypothesis: The alternative hypothesis will
be one of

1. Ha : µ > µ0 (one-sided, upper-tailed)

2. Ha : µ < µ0 (one-sided, lower-tailed)

3. Ha : µ 6= µ0 (two-sided, two-tailed)

depending on what we’re trying to verify using the data.
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One-Sample t Test Statistic:

T =
X̄ − µ0

S/
√
n

T measures how many standard errors X̄ is away from µ0.

X̄ is an estimator of the unknown population mean µ, so ...

1. T will be approximately zero (most likely) if µ = µ0.
2. It will be positive (most likely) if µ > µ0.
3. It will be negative (most likely) if µ < µ0.
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1. Large positive values of T provide evidence
against H0 in favor of
Ha : µ > µ0.

2. Large negative values of T provide evidence
against H0 in favor of
Ha : µ < µ0.

3. Large positive and large negative values of T pro-
vide evidence
against H0 in favor of
Ha : µ 6= µ0.
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If either:

1. The sample is from a N(µ, σ) population, or

2. The sample size n is large,

then
X̄ − µ
S/
√
n
∼ t(n− 1).

It follows that if H0 is true (so µ = µ0),

X̄ − µ0

S/
√
n
∼ t(n− 1).
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Sampling Distribution of the Test Statistic Under H0:
If T is the one-sample t test statistic, then when

H0 : µ = µ0

is true,
T ∼ t(n− 1).
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The t(n− 1) curve gives us:

The rejection region as the extreme 100α% of t values
(in the direction(s) specified by Ha).

The p-value as the tail area(s) beyond the observed t
value (in the direction(s) specified by Ha).
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Rejection Region: The rejection region is the set of t
values in the tail of the t(n− 1) curve:

1. To the right of tα, n− 1 if the alternative hypothesis is
Ha : µ > µ0:

Rejection Region for Upper−Tailed t Test

Values of t

Reject H0Fail to Reject H0

α

t Distribution
with n − 1 df

Nels Grevstad



Introduction to Hypothesis Testings
One-Sample t Test for µ

Type I and II Errors and Their Probabilities

2. To the left of−tα, n− 1 if the alternative hypothesis is
Ha : µ < µ0:

Rejection Region for Lower−Tailed t Test

Values of t

−4 − tα, n−1 0 2 4

Reject H0 Fail to Reject H0

α

t Distribution
with n − 1 df
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3. To the left of −tα/2, n− 1 and right of tα/2, n− 1 if the
alternative hypothesis is Ha : µ 6= µ0:

Rejection Region for Two−Tailed t Test

Values of t

−4 − tα 2, n−1 0 tα 2, n−1 4

Reject 
H0

Reject 
H0

Fail to Reject H0

α
2

α
2

t Distribution
with n − 1 df
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P-Value: The p-value is the tail area under the t(n− 1)

curve:

1. To the right of the observed t if the alternative hy-
pothesis is Ha : µ > µ0:

P−Value for Upper−Tailed t Test

Values of t

−4 −2 0 Observed t 4

P−value

t Distribution
with n − 1 df
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2. To the left of the observed t if the alternative hypoth-
esis is Ha : µ < µ0:

P−Value for Lower−Tailed t Test

Values of t

−4 Observed t 0 2 4

P−value

t Distribution
with n − 1 df
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3. To the left of −| t | and right of | t | if the alternative
hypothesis is Ha : µ 6= µ0:

P−Value for Two−Tailed t Test

Values of t

−4 − | Observed t | 0 | Observed t | 4

P−value

t Distribution
with n − 1 df
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The rejection region and p-value approaches always
reach the same conclusion.

(The p-value will be less than α if and only if t is in the
rejection region).
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Example
A quality control engineer monitors a machine that puts cereal
into boxes.

According to the label, each box is supposed to contain 16 oz
of cereal.

The machine will need to be adjusted if the boxes are system-
atically being under-filled or over-filled.

From past experience, the engineer knows that the weight
(ounces) of the cereal in a box follows a normal distribution.
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To decide if the boxes are being under-filled or overfilled, the
engineer will test the hypotheses

H0 : µ = 16

Ha : µ 6= 16

where µ is the true (unknown) population mean weight.

A random sample of ten boxes gives

x̄ = 16.6 and s = 0.9.
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The observed test statistic is

t = x̄−µ0
s/
√
n

= 16.6−16
0.9/
√

10

= 2.11.

Thus the sample mean weight, x̄ = 16.6, is about 2.11
standard errors above 16 ounces.
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For the rejection region, using a level of significance
α = 0.05, the t critical value is

t0.025, 9 = 2.262,

and so the decision rule is

Reject H0 if t < −2.262 or t > 2.262.
Fail to reject H0 otherwise.
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Rejection Region for Two−Sided t Test

Values of t

− t0.025,9 = −2.26 0 t0.025,9 = 2.26

Reject 
H0

Reject 
H0

Fail to Reject H0

α

2
= 0.025

α

2
= 0.025

t Distribution with n−1=9 df
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Because the test statistic, t = 2.11, is not in the rejection
region, we fail to reject H0.

Thus the t value we got is not among the most extreme 5% of
values we’d get if the population mean µ was 16 ounces.
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There’s no statistically significant evidence that the
population mean cereal box weight µ is different from 16
ounces.

The result that the engineer got (by taking a random sample)
can be explained by chance variation (sampling error).
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The p-value is the probability that by chance we’d get a t
value as far away from zero (in either direction) as t = 2.11 if
the population mean µ was 16 oz.
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P−Value for Two−Sided t Test

Values of t

−4 − t = − 2.11 0 t = 2.11 4

P−value = 2(0.033) = 0.066

t Distribution with n−1=9 df
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From the two tail areas of the sampling distribution that the
test statistic would follow under H0 (the t(9) distribution), to the
right of 2.11 and left of -2.11,

p-value = 2(0.033) = 0.066.

Thus we’d get a result like the one we got 6.6% of the time
even if the population mean µ was 16 ounces.

Nels Grevstad
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Using α = 0.05, the decision rule is

Reject H0 if p-value < 0.05.
Fail to reject H0 if p-value ≥ 0.05.

Because 0.066 ≥ 0.05, we fail to reject H0.
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The next exercise illustrates the fact that using a smaller α
means we require stronger evidence against H0 before
we’re willing to reject H0.

Exercise
In the last example, if the engineer had used a level of
significance α = 0.10 instead, would his conclusion be any
different?

What if he used α = 0.01?
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Data Snooping: Don’t Do It

Choosing a direction for a one-sided Ha is intended to
be a prediction of what the data will indicate.

Data snooping refers to waiting until after you’ve looked
at the data to decide on a direction for Ha, and then
choosing the direction for Ha that best fits what you
already see in the data.

Data snooping is ”cheating” because it results in an
artificially small p-value, which can lead to mistakenly
declaring a spurious result to be real.
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A one-sided Ha should only be used if you have a specific
direction in mind prior to looking at the data.

Otherwise, use a two-sided Ha.

The next example shows that data snooping can lead to a
p-value that’s half as large as it should be.
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Exercise
Suppose the engineer who monitors cereal box weights was to
”cheat” by data snooping, and deciding, after and noticing that
the sample mean, x̄ = 16.6, is above the target value 16 oz, to
do a one-sided, upper-tailed test of

H0 : µ = 16

Ha : µ > 16

a) What would the (artificially small) p-value be?

b) Using α = 0.05, as before, would the conclusion be
different?
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Type I and II Errors and Their Probabilities

Type I and II Errors

A Type I error occurs when H0 is mistakenly rejected
(even though H0 is true).

A Type II error occurs when H0 is mistakenly not
rejected (even though Ha true).

These are analogous to false positives and false
negatives in medical tests.
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True State of Nature

H0 Ha

Type I Correct
Your Reject H0 Error Decision

Decision
Fail to Correct Type II

Reject H0 Decision Error
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Type I Error Probabilities and the Level of Significance

It turns out that the chance of making a Type I error
(when H0 is true) is α, the level of significance.

To see why, consider the rejection region approach.

The rejection region is the most extreme 100α% of the
sampling distribution that the test statistic would follow if
H0 was true.

A Type I error occurs when the test statistic falls into the
rejection region even though H0 is true.
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Takeaway:

In order to reject H0 when α = 0.05, we require that the
evidence against H0 be so strong that it would occur by
chance only 5% of the time if H0 was true.

In order to reject H0 when α = 0.01, we require even
stronger evidence. We require evidence that would occur
by chance only 1% of the time.
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The choice of what value to use for α will depend on the
consequences of making a Type I error: if they’re serious,
choose α to be very small.
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Exercise
Let µ denote the true mean radioactivity level (pCi/L) in a
certain lake.

The value 5 pCi/L is considered the dividing line between safe
and unsafe water.

To decide whether the water is safe, 50 water specimens are
sampled from the lake, and the radioactivity level measured in
each specimen.
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a) Describe what the Type I and Type II errors would be (in the
context of this problem) for each of the following sets of
hypotheses.

H0 : µ = 5 H0 : µ = 5

Ha : µ > 5 Ha : µ < 5

b) If we were to test the second set of hypotheses, which level
of significance would you recommend, α = 0.10,
α = 0.05, or α = 0.01?
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