Statistical Methods

Nels Grevstad

Metropolitan State University of Denver ngrevsta@msudenver.edu

August 20, 2019

Nels Grevstac

Introduction to Hypothesis Testings
One-Sample t Test for μ

Topics

- Introduction to Hypothesis Testings
- ② One-Sample t Test for μ
- 3 Type I and II Errors and Their Probabilities

Nels Grevstad

Introduction to Hypothesis Testings
One-Sample t Test for μ Type I and II Froms and Their Probabilities

Objectives

Objectives:

- Explain the meaning of the terms hypothesis, test statistic, level of significance, rejection region, p-value, and decision rule
- ullet Carry out a one-sample t test for a population mean.
- Distinguish between Type I and Type I errors.
- Know the relationship between the level of significance and the Type I error probability.

Nels Grevstad

Introduction to Hypothesis Testings $\hbox{One-Sample t Test for μ}$ Type I and II Errors and Their Probabilities

Introduction to Hypothesis Testing

- A *hypothesis* is a claim about the value(s) of one or more population parameters, (e.g. μ).
- A hypothesis test is a statistical method for deciding between two hypotheses:
 - The *null hypothesis* (H₀) is the hypothesis we seek to discredit, but to which we give the benefit of the doubt.
 - The $\underline{\textit{alternative hypothesis}}$ (H_a) is the hypothesis we seek to $\underline{\textit{substantiate}}$.

Notes		
Notes		
Notes		
-	 	
Nat		
Notes		

Introduction to Hypothesis Testings One-Sample t Test for μ Type I and II Errors and Their Probabilities

• The conclusion in any hypothesis test will be to either

Reject H_0 or Fail to Reject H_0 .

- The decision is based on whether a <u>test statistic</u> provides compelling evidence against $H_0, ...$
 - \dots as determined by comparing its value to the sampling distribution it would follow $\textit{if}\ H_0$ was true.
- A *decision rule* specifies when the evidence against H_0 is so compelling that H_0 should be rejected.

Nels Grevstad

Introduction to Hypothesis Testings
One-Sample t Test for μ Type Land II Errors and Their Probabilities

- There are two approaches to developing a decision rule:
 - 1. The rejection region approach.
 - 2. The *p-value approach*.

In either case, we first choose a *level of significance* α , which indicates how strong the evidence against H_0 needs to be before we're willing to reject H_0 .

A smaller α requires stronger evidence.

The most commonly used values for α are 0.01, 0.05, and 0.10.

Nels Grevstad

Introduction to Hypothesis Testings
One-Sample t Test for μ Type Land II Errors and Their Probabilities

• A $rejection\ region$ is the set all test statistic values for which H_0 should be rejected.

It's chosen in such a way that when H_0 is true, the test statistic will fall into that region just by chance with probability α .

Nels Grevstad

Introduction to Hypothesis Testings

One-Sample t Test for μ Type Land II Errors and Their Probabilities

Decision Rule (RR approach):

Reject H_0 if the test statistic falls in the rejection region. Fail to reject H_0 otherwise.

Notes			
Notes			
Notes			
Notes			
Notes			
Notes			

Introduction to Hypothesis Testings One-Sample t Test for μ Type I and II Errors and Their Probabilities

• The *p-value* is a **probability** that answers the question:

"If H_0 was true, what's the chance we'd get a test statistic value that's as contradictory to H_0 (and consistent with H_a) as the one we got?"

Nels Grevstad

Introduction to Hypothesis Testings
One-Sample t Test for μ Type Land II Errors and Their Probabilities

Decision Rule (P-value approach):

 $\label{eq:heighborst} \begin{aligned} & \text{Reject } H_0 \text{ if p-value} < \alpha. \\ & \text{Fail to reject } H_0 \text{ if p-value} \geq \alpha. \end{aligned}$

Nels Grevstad

Introduction to Hypothesis Testings
One-Sample t Test for μ

• We say that a result is $\underline{\textit{statistically significant}}$ when we reject H_0 .

A statistically significant result is one that isn't likely just due to chance variation.

Nels Grevstad

Introduction to Hypothesis Testings
One-Sample t Test for μ Type Land II Errors and Their Probabilities

Steps in Performing a Hypothesis Test:

- 1. Identify and define the parameter(s) of interest.
- 2. State the null and alternative hypotheses.
- 3. Choose a level of significance α .
- 4. Check any assumptions required for the test.
- 5. Calculate the test statistic value.
- 6. Compute the p-value or determine the rejection region.
- 7. State the conclusion (using the decision rule).

Notes			
Notes			
Notes			
NOIGS			
Notes			

One-Sample t Test for μ (8.3)

- Suppose X_1, X_2, \dots, X_n are a random sample from a population whose (unknown) mean is μ .
- We'll see how to use the sample to decide if μ is different from some **hypothesized value** μ_0 .

Nels Grevstag

Introduction to Hypothesis Testings One-Sample t Test for μ Type I and II Errors and Their Probabilities

• Because we're seeking to "disprove" the claim that μ is equal to μ_0 , the **null hypothesis** is that it *is* equal to μ_0 .

Null Hypothesis:

$$H_0:\ \mu\ =\ \mu_0$$

Nels Grevstad

Introduction to Hypothesis Testings
One-Sample t Test for μ be I and II Errors and Their Probabilities

 The alternative hypothesis will depend on what we're trying to "prove":

Alternative Hypothesis: The alternative hypothesis will be one of

1. $H_a: \mu > \mu_0$

(one-sided, upper-tailed)

2. $H_a: \mu < \mu_0$

(one-sided, lower-tailed)

3. $H_a: \mu \neq \mu_0$

(two-sided, two-tailed)

depending on what we're trying to verify using the data.

Nels Grevstac

Introduction to Hypothesis Testings

One-Sample t Test for μ Type Land II Errors and Their Probabilities

One-Sample t Test Statistic:

$$T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}}$$

- ullet T measures how many standard errors \bar{X} is away from μ_0 .
- ullet \bar{X} is an estimator of the unknown population mean μ , so ...
 - 1. T will be approximately **zero** (most likely) if $\mu = \mu_0$.
 - 2. It will be **positive** (most likely) if $\mu > \mu_0$.
 - 3. It will be **negative** (most likely) if $\mu < \mu_0$.

Notes		
Notes		
votes		
Natas		
Notes		
Notes		
votes		

1. Large positive values of T provide evidence against H_0 in favor of

 $H_a: \mu > \mu_0.$

2. Large negative values of T provide evidence against \boldsymbol{H}_0 in favor of

 $H_a: \mu < \mu_0.$

3. Large positive and large negative values of T provide evidence

against H_0 in favor of

 $H_a: \mu \neq \mu_0.$

Nels Grevstad

Introduction to Hypothesis Testings

One-Sample t Test for μ

- If either:
 - 1. The sample is from a $N(\mu, \sigma)$ population, or
 - 2. The sample size n is large,

then

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1).$$

• It follows that if H_0 is true (so $\mu = \mu_0$),

$$\frac{\bar{X} - \mu_0}{S/\sqrt{n}} \sim t(n-1).$$

Nels Grevstad

Introduction to Hypothesis Testings
One-Sample t Test for μ Type I and II Errors and Their Probabilities

Sampling Distribution of the Test Statistic Under H_0 :

If T is the one-sample t test statistic, then when

$$H_0: \mu = \mu_0$$

is true,

$$T\,\sim\,t(n-1).$$

Nels Grevstad

Introduction to Hypothesis Testings
One-Sample t Test for μ Type I and II Errors and Their Probabilities

- The t(n-1) curve gives us:
 - The *rejection region* as the extreme 100 α % of t values (in the direction(s) specified by H_a).
 - The $\emph{p-value}$ as the tail area(s) beyond the observed t value (in the direction(s) specified by H_a).

Notes		
Notes		
Notes		
-		
Notes		

Introduction to Hypothesis Testings ${
m One ext{-}Sample}\ t$ Test for μ Type I and II Errors and Their Probabilities

Rejection Region: The rejection region is the set of t values in the tail of the t(n-1) curve:

Notes

1. To the **right of** $t_{\alpha,\,n\,-\,1}$ if the alternative hypothesis is $H_a:\mu>\mu_0$:

Nels Grevsta

Introduction to Hypothesis Testings One-Sample t Test for μ Type I and II Errors and Their Probabilities

2. To the **left of** $-t_{\alpha,\,n\,-\,1}$ if the alternative hypothesis is $H_a:\mu<\mu_0$:

Nels Grevstad

Introduction to Hypothesis Testings One-Sample t Test for μ Type I and II Errors and Their Probabilities

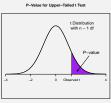
3. To the **left of** $-t_{\alpha/2,\,n-1}$ **and right of** $t_{\alpha/2,\,n-1}$ if the alternative hypothesis is $H_a:\mu\neq\mu_0$:

Nels Grevstad

Introduction to Hypothesis Testings One-Sample t Test for μ Type I and II Errors and Their Probabilities

P-Value: The **p-value** is the **tail area** under the t(n-1) curve:

1. To the **right** of the **observed** t if the alternative hypothesis is $H_a: \mu > \mu_0$:



Values of

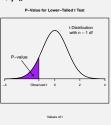
Nels Grevstad

Notes			
Notes			
Notes			

Introduction to Hypothesis Testings $\text{One-Sample } \textbf{\textit{t}} \text{ Test for } \boldsymbol{\mu}$ Type I and II Errors and Their Probabilities

2. To the **left** of the **observed** t if the alternative hypothesis is $H_a: \mu < \mu_0$:

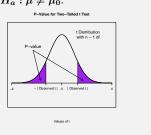
Notes



Nels Grevsta

Introduction to Hypothesis Testings One-Sample t Test for μ Type I and II Errors and Their Probabilities

3. To the **left of** -|t| **and right of** |t| if the alternative hypothesis is $H_a: \mu \neq \mu_0$:



Nels Grevstad

Introduction to Hypothesis Testings
One-Sample t Test for μ Type Land II From and Their Probabilities

• The rejection region and p-value approaches always reach the same conclusion.

(The **p-value** will be less than α if and only if t is in the **rejection region**).

Nels Grevstad

Introduction to Hypothesis Testings
One-Sample t Test for μ Type Land II Errors and Their Probabilities

Example

A quality control engineer monitors a machine that puts cereal into boxes.

According to the label, each box is supposed to contain ${f 16}$ oz of cereal.

The machine will need to be adjusted if the boxes are systematically being **under-filled** or **over-filled**.

From past experience, the engineer knows that the weight (ounces) of the cereal in a box follows a **normal** distribution.

Notes			
Notes			
Notes			
-			

To decide if the boxes are being **under-filled or overfilled**, the engineer will test the **hypotheses**

$$H_0: \mu = 16$$

 $H_a: \mu \neq 16$

where μ is the true (unknown) population mean weight.

A random sample of ten boxes gives

$$\bar{x} = 16.6$$

$$s = 0.9.$$

Nels Grevstad

Introduction to Hypothesis Testings One-Sample t Test for μ Type I and II Errors and Their Probabilities

The observed test statistic is

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$$
$$= \frac{16.6 - 16}{0.9/\sqrt{10}}$$

Thus the sample mean weight, $\bar{x}=16.6$, is about **2.11** standard errors above **16** ounces.

Nels Grevstad

Introduction to Hypothesis Testings
One-Sample t Test for μ be I and II Errors and Their Probabilities

For the rejection region, using a level of significance $\alpha=0.05,$ the t critical value is

$$t_{0.025,\,9} = 2.262,$$

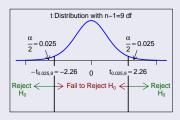
and so the decision rule is

 $\label{eq:holocond} \begin{aligned} & \text{Reject } H_0 \text{ if } \quad t < -2.262 \quad \text{or} \quad t > 2.262. \\ & \text{Fail to reject } H_0 \text{ otherwise.} \end{aligned}$

Nels Grevstad

Introduction to Hypothesis Testings
One-Sample t Test for μ Type I and II Errors and Their Probabilities

Rejection Region for Two-Sided t Test



Values of t

Notes			
Notes			
Notes			

Introduction to Hypothesis Testings ${\sf One ext{-}Sample}\ t$ Test for μ Type I and II Errors and Their Probabilities

Because the test statistic, t=2.11, is **not** in the rejection region, we **fail to reject** H_0 .

Thus the t value we got is **not** among the most extreme **5%** of values we'd get **if** the **population mean** μ was **16** ounces.

Mala Cassasta

Introduction to Hypothesis Testings

One-Sample t Test for μ Type Land II Errors and Their Probabilities

There's no statistically significant evidence that the population mean cereal box weight μ is different from 16 ounces.

The result that the engineer got (by taking a random sample) can be explained by chance variation (sampling error).

Nels Grevstad

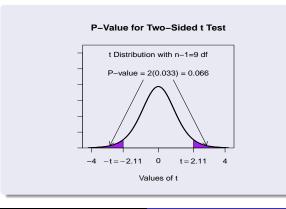
Introduction to Hypothesis Testings

One-Sample t Test for μ Type Land II Errors and Their Probabilities

The **p-value** is the **probability** that by chance we'd get a t value as far away from zero (in either direction) as t=2.11 if the **population mean** μ was **16** oz.

Nels Grevstad

One-Sample t Test for μ Type I and II Errors and Their Probabilities



Notes			
Notes			
Notes			
Notes			
Notes			

Introduction to Hypothesis Testings
One-Sample t Test for μ Type I and II Errors and Their Probabilities

From the **two tail** areas of the **sampling distribution** that the test statistic would follow under H_0 (the t(9) distribution), to the **right** of **2.11** and **left** of **-2.11**,

p-value = 2(0.033) = 0.066.

Thus we'd get a result like the one we got **6.6%** of the time **even if** the **population mean** μ was **16** ounces.

Nels Grevstac

Introduction to Hypothesis Testings
One-Sample t Test for μ Type Land II Errors and Their Probabilities

Using lpha=0.05, the decision rule is

Reject H_0 if p-value < 0.05. Fail to reject H_0 if p-value ≥ 0.05 .

Because $0.066 \ge 0.05$, we fail to reject H_0 .

Nels Grevstad

Introduction to Hypothesis Testings
One-Sample t Test for μ Type Land II Errors and Their Probabilities

ullet The next exercise illustrates the fact that using a **smaller** lpha means we require **stronger evidence** against H_0 before we're willing to reject H_0 .

Exercise

In the last example, if the engineer had used a level of significance $\alpha=0.10$ instead, would his **conclusion** be any **different?**

What if he used $\alpha = 0.01$?

Nels Grevstad

Introduction to Hypothesis Testings
One-Sample t Test for μ

Type Land II Errors and Their Probabilities

Data Snooping: Don't Do It

- \bullet Choosing a direction for a one-sided H_a is intended to be a prediction of what the data will indicate.
- Data snooping refers to waiting until after you've looked at the data to decide on a direction for H_a , and then choosing the direction for H_a that best fits what you already see in the data.
- Data snooping is "cheating" because it results in an artificially small p-value, which can lead to mistakenly declaring a spurious result to be real.

notes	
	_
	_
	_
Notes	
	_
	_
	_
	_
	_
	_
	_
Notes	
140103	
	_
	_
	_
Notes	
	_
	_
	_

 A one-sided H_a should only be used if you have a specific direction in mind prior to looking at the data.

Otherwise, use a **two-sided** H_a .

 The next example shows that data snooping can lead to a p-value that's half as large as it should be.

Nels Grevstad

Introduction to Hypothesis Testings One-Sample t Test for μ Type I and II Errors and Their Probabilities

Evercise

Suppose the engineer who monitors cereal box weights was to "cheat" by **data snooping**, and deciding, *after* and noticing that the sample mean, $\bar{x}=16.6$, is above the target value **16** oz, to do a **one-sided**, **upper-tailed** test of

$$H_0: \mu = 16$$

 $H_a: \mu > 16$

- a) What would the (artificially small) p-value be?
- b) Using lpha=0.05, as before, would the **conclusion** be different?

Nels Grevstad

 $\begin{array}{c} {\rm Introduction\ to\ Hypothesis\ Testings} \\ {\rm One\mbox{-}Sample\ }t\ {\rm Test\ for\ }\mu \\ {\rm Type\ I\ and\ II\ Errors\ and\ Their\ Probabilities} \end{array}$

Type I and II Errors and Their Probabilities

Type I and II Errors

- A $\underline{\textit{Type I error}}$ occurs when H_0 is mistakenly rejected (even though H_0 is true).
- A <u>Type II error</u> occurs when H_0 is mistakenly not rejected (even though H_a true).
- These are analogous to false positives and false negatives in medical tests.

Nels Grevstad

Introduction to Hypothesis Testings
One-Sample t Test for μ Type I and II Errors and Their Probabilities

		True State of Nature		
		\mathbf{H}_0	H_{a}	
Your Decision	Reject H ₀	Type I Error	Correct Decision	
	Fail to Reject \mathbf{H}_0	Correct Decision	Type II Error	

Notes				
Notes				
Notes				
Notes				
Notes				

Introduction to Hypothesis Testings One-Sample t Test for μ Type I and II Errors and Their Probabilities

Type I Error Probabilities and the Level of Significance

- It turns out that the **chance** of making a **Type I error** (when H_0 is true) is α , the **level of significance**.
- To see why, consider the rejection region approach.
 - The **rejection region** is the most extreme $100\alpha\%$ of the sampling distribution that the test statistic would follow if H_0 was true.
 - A Type I error occurs when the test statistic falls into the rejection region even though H_0 is true.

Nels Grevstad

Introduction to Hypothesis Testings
One-Sample t Test for μ Type I and II Froms and Their Probabilities

- Takeaway:
 - In order to reject H_0 when lpha= 0.05, we require that the evidence against H_0 be so strong that it would occur by chance only 5% of the time if H_0 was true.
 - In order to reject H_0 when $\alpha=0.01$, we require even stronger evidence. We require evidence that would occur by chance only 1% of the time.

Nels Grevstad

Introduction to Hypothesis Testings
One-Sample t Test for μ Type Land II Frrors and Their Probabilities

ullet The choice of what value to use for α will depend on the consequences of making a Type I error: if they're serious, choose α to be very small.

Nels Grevstad

Introduction to Hypothesis Testings
One-Sample t Test for μ Type I and II Frrors and Their Probabilities

Exercise

Let μ denote the true mean radioactivity level (pCi/L) in a certain lake.

The value 5 pCi/L is considered the dividing line between **safe** and **unsafe** water.

To decide whether the water is safe, 50 water specimens are sampled from the lake, and the radioactivity level measured in each specimen.

Notes		
-		
-		
Notes		
Notes		

Introduction to Hypothesis Testings One-Sample t Test for μ Type I and II Errors and Their Probabilities

 a) Describe what the Type I and Type II errors would be (in the context of this problem) for each of the following sets of hypotheses.

$$H_0: \mu = 5 \ H_a: \mu > 5 \ H_a: \mu < 5$$

b) If we were to test the second set of hypotheses, which level of significance would you recommend, $\alpha=0.10,$

lpha= 0.05, or lpha= 0.01?

Nels Grevstad

Notes			
Notes			
-			
Notes			
Notes			
-			