Statistical Methods

Nels Grevstad

Metropolitan State University of Denver ngrevsta@msudenver.edu

September 26, 2019

Topics

Normal Probability Plots

One-Factor ANOVA for Population Means $\mu_1, \mu_2, \ldots, \mu_I$

Objectives

Objectives:

- Use normal probability plots to assess whether a sample is from a normal population.
- Interpret sums of squares, degrees of freedom, and mean squares in a one-factor ANOVA context.
- State the ANOVA partition of the total variation in a data set.
- Carry out a one-factor ANOVA F test for population means $\mu_1, \mu_2, \dots, \mu_I$.

Normal Probability Plots

• Two ways to assess the normality of data:

Normal Probability Plots

- Two ways to assess the normality of data:
 - A histogram. It should be roughly bell-shaped.

Normal Probability Plots

- Two ways to assess the normality of data:
 - A histogram. It should be roughly bell-shaped.
 - A normal probability plot. The points should hug the line.

Let $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$ denote the same data set, but **sorted** from smallest to largest.

Let $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$ denote the same data set, but **sorted** from smallest to largest.

Thus $X_{(1)}$ is the smallest value in the data set, $X_{(2)}$ is the second smallest, etc.

Let $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$ denote the same data set, but **sorted** from smallest to largest.

Thus $X_{(1)}$ is the smallest value in the data set, $X_{(2)}$ is the second smallest, etc.

• The proposition ahead gives the **expected values** of $X_{(1)}, X_{(2)}, \dots, X_{(n)}$ when the sample is from a **normal** population.

Proposition

If X_1, X_2, \dots, X_n are a random sample from a $N(\mu, \sigma)$ distribution, then

$$E(X_{(i)}) ~\approx~ 100 p_i {\rm th~percentile~of~the}~N(\mu,\sigma)~{\rm distribution}$$

$$=~ \mu + z_i \sigma \,, \eqno(1)$$

where

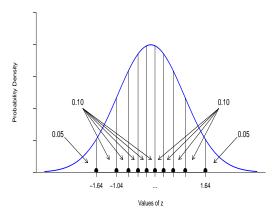
$$p_i = \frac{i - 0.5}{n}$$

and

 z_i = The $100p_i$ th percentile of the N(0,1) distribution.

shown on the next slide.

• For example, in a sample of size n = 10 from a N(0, 1) distribution, the **expected** sample values are the points



These points are the 5th, 15th, ..., 95th percentiles of the N(0, 1) distribution:

• If a sample is from a $N(\mu, \sigma)$ distribution, then

- If a sample is from a $N(\mu, \sigma)$ distribution, then
 - The points in a plot of

$$(\mu + z_i \sigma, X_{(i)}),$$

- If a sample is from a $N(\mu, \sigma)$ distribution, then
 - The points in a plot of

$$(\mu + z_i \sigma, X_{(i)}),$$

The points in a plot of

$$(z_i, X_{(i)}),$$

should fall close to the line $y = \mu + \sigma x$.

- If a sample is from a $N(\mu, \sigma)$ distribution, then
 - The points in a plot of

$$(\mu + z_i \sigma, X_{(i)}),$$

The points in a plot of

$$(z_i, X_{(i)})$$
,

should fall close to the line $y = \mu + \sigma x$.

 A normal probability plot (or quantile-quantile plot) is a plot of the points

$$(z_i, X_{(i)})$$
.

- If a sample is from a $N(\mu, \sigma)$ distribution, then
 - The points in a plot of

$$(\mu + z_i \sigma, X_{(i)}),$$

The points in a plot of

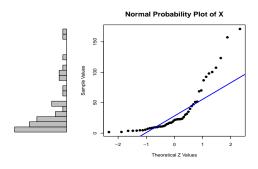
$$(z_i, X_{(i)}),$$

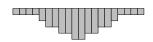
should fall close to the line $y = \mu + \sigma x$.

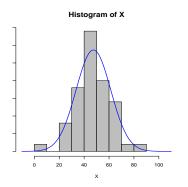
 A normal probability plot (or quantile-quantile plot) is a plot of the points

$$(z_i, X_{(i)})$$
.

Curved patterns indicate non-normality.







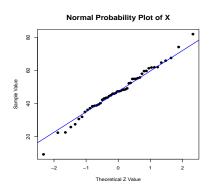


Figure: Histogram of symmetric, approximately normal data (left). Normal probability plot of the same data (right).

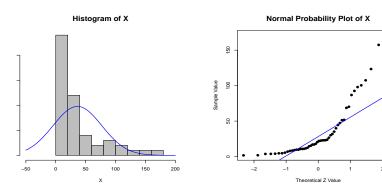


Figure: Histogram of non-normal, right skewed data (left). Normal probability plot of the same data (right).

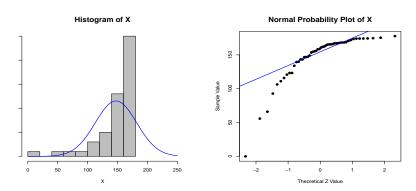


Figure: Histogram of non-normal, left skewed data (left). Normal probability plot of the same data (right).

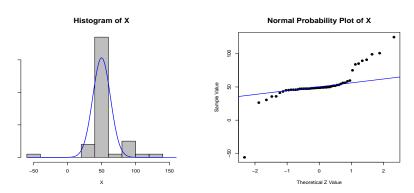


Figure: Histogram of non-normal, "heavy tailed" data (left). Normal probability plot of the same data (right).

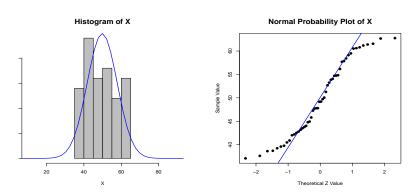


Figure: Histogram of non-normal, "light tailed" data (left). Normal probability plot of the same data (right).

One-Factor ANOVA for Population Means

$$\mu_1,\mu_2,\ldots,\mu_I$$

Introduction

Suppose we have independent random samples from I
populations having possibly different means but equal
standard deviations.

One-Factor ANOVA for Population Means

$$\mu_1,\mu_2,\ldots,\mu_I$$

Introduction

Suppose we have independent random samples from I
populations having possibly different means but equal
standard deviations.

The populations might represent different *groups* or they might represent *treatments* in an experiment.

One-Factor ANOVA for Population Means

$$\mu_1,\mu_2,\ldots,\mu_I$$

Introduction

Suppose we have independent random samples from I
populations having possibly different means but equal
standard deviations.

The populations might represent different *groups* or they might represent *treatments* in an experiment.

We want to decide if there are any differences among the population means.

A quality assurance study was carried out to compare **lead** measurements made in water sent to I = 5 laboratories.

A quality assurance study was carried out to compare **lead** measurements made in water sent to I=5 laboratories.

Differences among the five labs' results may signify improperly calibrated equipment or poorly trained technicians.

A quality assurance study was carried out to compare **lead** measurements made in water sent to I = 5 laboratories.

Differences among the five labs' results may signify improperly calibrated equipment or poorly trained technicians.

A vat of wastewater was split into **50** specimens randomized to the labs (J=10 each) for analysis.

A quality assurance study was carried out to compare **lead measurements** made in water sent to I=5 laboratories.

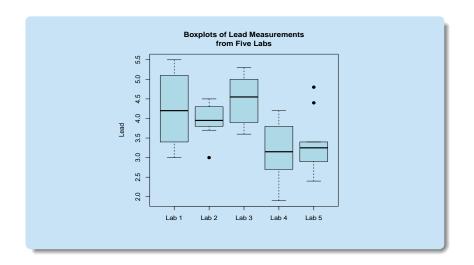
Differences among the five labs' results may signify improperly calibrated equipment or poorly trained technicians.

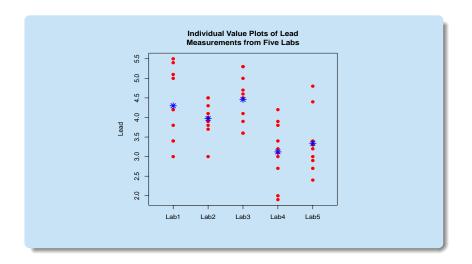
A vat of wastewater was split into **50** specimens randomized to the labs (J=10 each) for analysis.

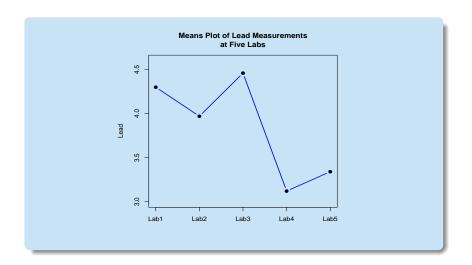
The **lead measurements** (μ g/L) and their summary statistics are on the next slide.

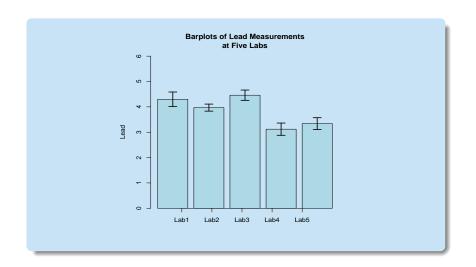
Lab 1	Lab 2	Lab 3	Lab 4	Lab 5
3.4	4.5	5.3	3.2	3.3
3.0	3.7	4.7	3.4	2.4
3.4	3.8	3.6	3.1	2.7
5.0	3.9	5.0	3.0	3.2
5.1	4.3	3.6	3.9	3.3
5.5	3.9	4.5	2.0	2.9
5.4	4.1	4.6	1.9	4.4
4.2	4.0	5.3	2.7	3.4
3.8	3.0	3.9	3.8	4.8
4.2	4.5	4.1	4.2	3.0

$$egin{array}{lll} ar{X}_1 = 4.30 & ar{X}_2 = 3.97 & ar{X}_3 = 4.46 & ar{X}_4 = 3.12 & ar{X}_5 = 3.34 \\ S_1 = 0.904 & S_2 = 0.440 & S_3 = 0.642 & S_4 = 0.764 & S_5 = 0.737 \end{array}$$









Suppose we have random samples, each of size J, from I populations (I > 2),

- Suppose we have random samples, each of size J, from I populations (I ≥ 2),
- We'll see how to use the samples to decide if there are differences among the **population means** μ_1, μ_2, \ldots , and μ_I .

- Suppose we have random samples, each of size J, from I populations (I ≥ 2),
- We'll see how to use the samples to decide if there are differences among the **population means** $\mu_1, \mu_2, ...,$ and μ_I .

The appropriate test is called the *one-factor ANOVA F test*.

Comments:

 The sample sizes don't all have to be the same. But we'll only look at the equal-sample size case.

Comments:

- The sample sizes don't all have to be the same. But we'll only look at the equal-sample size case.
- The data can be samples from populations or responses to treatments in a randomized experiment.

• The **null hypothesis** is that there are no differences among the population means $\mu_1, \mu_2, ..., \mu_I$:

Null Hypothesis:

$$H_0: \mu_1 = \mu_2 = \cdots = \mu_I$$

 The alternative hypothesis is that there's at least one difference among the set of means:

Alternative Hypothesis: The alternative hypothesis will be

 H_a : At least two of the μ_i 's are different

Notation:

I = The number of treatment groups

J =The common sample size for the I groups

 X_{ij} = The jth observation in the ith treatment group

 $ar{X}_{i\cdot}$ = The sample mean for the ith treatment group

 S_i = The sample standard deviation for the ith treatment group

 $\bar{X}_{...}$ = The *grand mean* of all IJ observations

Notation:

I = The number of treatment groups

J =The common sample size for the I groups

 X_{ij} = The jth observation in the ith treatment group

 $ar{X}_{i\cdot}$ = The sample mean for the ith treatment group

 S_i = The sample standard deviation for the ith treatment group

 $\bar{X}_{..}$ = The *grand mean* of all IJ observations

Note:

$$\bar{X}_{\cdot \cdot \cdot} = \frac{1}{I} \sum_{i=1}^{I} \bar{X}_{i \cdot \cdot}$$

(when the sample sizes are all the same).

Sums of Squares and the ANOVA Partition

 We can partition the total variation in the data into two parts:

Sums of Squares and the ANOVA Partition

- We can partition the total variation in the data into two parts:
 - One reflecting variation between the treatment groups.
 - The other reflecting variation within the groups.

Sums of Squares and the ANOVA Partition

- We can partition the total variation in the data into two parts:
 - One reflecting variation between the treatment groups.
 - The other reflecting variation within the groups.

The **ANOVA** F **test** is based on the amount of **between**-groups variation relative to the amount of within-groups variation.

• The partition will involve the following sums of squares:

- The partition will involve the following sums of squares:
 - SST is the total sum of squares, defined as

$$\mathsf{SST} \; = \; \sum_{i=1}^{I} \sum_{j=1}^{J} (X_{ij} - \bar{X}_{\cdot \cdot})^2,$$

which measures the **total** variation in the X_{ij} 's.

- (cont'd):
 - SSTr is the treatment sum of squares, defined as

$$\mathsf{SSTr} \ = \ \sum_{i=1}^I \sum_{j=1}^J (\bar{X}_{i\cdot} - \bar{X}_{\cdot\cdot})^2 \ = \ J \sum_{i=1}^I (\bar{X}_{i\cdot} - \bar{X}_{\cdot\cdot})^2,$$

which measures variation **between** the treatment group means due to both **treatment effects** and **random error**.

- (cont'd):
 - SSE is the *error sum of squares*, defined as

$$\mathsf{SSE} \; = \; \sum_{i=1}^{I} \sum_{j=1}^{J} (X_{ij} - \bar{X}_{i\cdot})^2,$$

which measures variation of the X_{ij} 's within treatment groups due to random error.

Proposition

ANOVA Partition of the Total Variation: It can be shown that

$$SST = SSTr + SSE.$$

$$X_{ij} - \bar{X}_{\cdot \cdot \cdot} = \bar{X}_{i \cdot \cdot} - \bar{X}_{\cdot \cdot \cdot} + X_{ij} - \bar{X}_{i \cdot}$$

$$X_{ij} - \bar{X}_{\cdot \cdot \cdot} = \bar{X}_{i \cdot \cdot} - \bar{X}_{\cdot \cdot \cdot} + X_{ij} - \bar{X}_{i \cdot}$$

Upon squaring both sides and then summing over all i and j, the "cross product" terms on the right side sum to zero, and we get

$$X_{ij} - \bar{X}_{\cdot \cdot} = \bar{X}_{i \cdot} - \bar{X}_{\cdot \cdot} + X_{ij} - \bar{X}_{i \cdot}$$

Upon squaring both sides and then summing over all i and j, the "cross product" terms on the right side sum to zero, and we get

$$\sum_{i} \sum_{j} (X_{ij} - \bar{X}_{..})^{2} = \sum_{i} \sum_{j} (\bar{X}_{i.} - \bar{X}_{..})^{2} + \sum_{i} \sum_{j} (X_{ij} - \bar{X}_{i.})^{2},$$

$$X_{ij} - \bar{X}_{\cdot \cdot \cdot} = \bar{X}_{i \cdot \cdot} - \bar{X}_{\cdot \cdot \cdot} + X_{ij} - \bar{X}_{i \cdot}$$

Upon squaring both sides and then summing over all i and j, the "cross product" terms on the right side sum to zero, and we get

$$\sum_{i} \sum_{j} (X_{ij} - \bar{X}_{..})^{2} = \sum_{i} \sum_{j} (\bar{X}_{i.} - \bar{X}_{..})^{2} + \sum_{i} \sum_{j} (X_{ij} - \bar{X}_{i.})^{2},$$

which is the ANOVA partition.

Example

For the data on lead measurements at five labs, software gives

$$SST = 36.758$$

$$SSTr = 13.813$$

$$\mathsf{SSE} = 22.945$$

Example

For the data on lead measurements at five labs, software gives

$$SST = 36.758$$

 $SSTr = 13.813$
 $SSE = 22.945$

The **ANOVA** partition holds:

$$36.758 = 13.813 + 22.945$$
 $\uparrow \uparrow \uparrow \uparrow$
Total Between Within variation groups groups variation variation

Degrees of Freedom

 Each sum of squares has an associated degrees of freedom (or df).

Degrees of Freedom

 Each sum of squares has an associated degrees of freedom (or df).

The **df** for a sum of squares is determined by how many deviations, among those used to compute the sum of squares, are **"free to vary"** (**unconstrained**).

Degrees of Freedom

 Each sum of squares has an associated degrees of freedom (or df).

The **df** for a sum of squares is determined by how many deviations, among those used to compute the sum of squares, are **"free to vary"** (**unconstrained**).

Degrees of Freedom:

SST has IJ-1 df

SSTr has I-1 **df**

SSE has I(J-1) = IJ - I df

- To see why:
 - The IJ deviations $X_{ij} \bar{X}$.. used to compute **SST** are subject to the one constraint that they sum to zero, i.e.

$$\sum_{i} \sum_{j} (X_{ij} - \bar{X}_{..}) = 0,$$

so only IJ-1 of them are "free to vary" (i.e. any IJ-1 of them determines the remaining one).

- (cont'd):
 - The I deviations $\bar{X}_{i\cdot} \bar{X}_{\cdot\cdot}$ used to compute **SSTr** are subject to the **one constraint** that that they **sum to zero**, i.e.

$$\sum_{i} (\bar{X}_{i\cdot} - \bar{X}_{\cdot\cdot}) = 0,$$

so only I-1 of the deviations are "free to vary" (i.e. any I-1 of them determines the remaining one).

- (cont'd):
 - The IJ deviations $X_{ij} \bar{X}_{i\cdot}$ used to compute SSE are subject to the I constraints that they sum to zero within each of the I groups, i.e.

$$\sum_{j} (X_{ij} - \bar{X}_{i\cdot}) = 0 \qquad \text{for each } i = 1, 2, \dots, I$$

Thus within each of the I samples, only J-1 deviations are "free to vary" (i.e. any J-1 of them determines the remaining one).

Additive Property of Degrees of Freedom:

df for SST = df for SSTr + df for SSE

since

$$IJ - 1 = (I - 1) + I(J - 1).$$

 The ANOVA F test is based on the amount of between-groups variation relative to the amount of within-groups variation.

 The ANOVA F test is based on the amount of between-groups variation relative to the amount of within-groups variation.

But **SSTr** and **SSE** *aren't* directly comparable (they depend in different ways on I and J).

- The ANOVA F test is based on the amount of between-groups variation relative to the amount of within-groups variation.
 - But **SSTr** and **SSE** *aren't* directly comparable (they depend in different ways on I and J).
- A mean square a sum of squares divided by its df.

- The ANOVA F test is based on the amount of between-groups variation relative to the amount of within-groups variation.
 - But **SSTr** and **SSE** *aren't* directly comparable (they depend in different ways on I and J).
- A mean square a sum of squares divided by its df.
 - **Example**: A sample variance S^2 is a mean square.

- (cont'd)
 - The mean square for treatments, denoted MSTr, is

$$MSTr = \frac{SSTr}{I-1}$$
.

- (cont'd)
 - The *mean squared error*, denoted MSE, is

$$\mathsf{MSE} \ = \ \frac{\mathsf{SSE}}{I(J-1)} \, .$$

- (cont'd)
 - The mean squared error, denoted MSE, is

$$\mathsf{MSE} \ = \ \frac{\mathsf{SSE}}{I(J-1)} \, .$$

It's easy to verify that

$$MSE = \frac{S_1^2 + S_2^2 + \dots + S_I^2}{I}$$

(when the sample sizes are all the same).

- (cont'd)
 - The mean squared error, denoted MSE, is

$$\mathsf{MSE} \ = \ \frac{\mathsf{SSE}}{I(J-1)} \, .$$

It's easy to verify that

$$MSE = \frac{S_1^2 + S_2^2 + \dots + S_I^2}{I}$$

(when the sample sizes are all the same).

Thus **MSE** is the **average** (or **pooled**) **sample variance**.

• MSTr and MSE are directly comparable.

The One-Factor ANOVA F Test

One-Factor ANOVA F Test Statistic:

$$F = \frac{MSTr}{MSF}$$

The One-Factor ANOVA F Test

One-Factor ANOVA F Test Statistic:

$$F = \frac{MSTr}{MSF}$$

 F reflects between-groups variation (MSTr) relative to within-groups variation (SSE).

- F reflects between-groups variation (MSTr) relative to within-groups variation (SSE).
- **MSTr** will be **large** when there's substantial variation in $\bar{X}_1, \bar{X}_2, \dots, \bar{X}_I$, which are estimates of the population means $\mu_1, \mu_2, \dots, \mu_I$.

- F reflects between-groups variation (MSTr) relative to within-groups variation (SSE).
- **MSTr** will be **large** when there's substantial variation in $\bar{X}_1, \bar{X}_2, \dots, \bar{X}_I$, which are estimates of the population means $\mu_1, \mu_2, \dots, \mu_I$.

It will be **large** when there are **differences** among $\mu_1, \mu_2, \dots, \mu_I$.

Large values of F provide evidence against H_0 in favor of H_a : At least two of the μ_i 's are different.

• Now suppose the I samples are from $N(\mu_1, \sigma)$, $N(\mu_2, \sigma)$..., $N(\mu_I, \sigma)$ distributions and that they were drawn independently of each other.

• Now suppose the I samples are from $N(\mu_1, \sigma)$, $N(\mu_2, \sigma)$..., $N(\mu_I, \sigma)$ distributions and that they were drawn independently of each other.

Alternatively, the samples could be from **non-normal** populations as long as the common sample size J is **large**.

Sampling Distribution of the Test Statistic Under H_0 :

If F is the one-factor ANOVA F test statistic, then when

$$H_0: \mu_1 = \mu_2 = \cdots = \mu_I$$

is true,

$$F \sim F(I-1, I(J-1)).$$

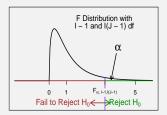
• The F(I-1, I(J-1)) curve gives us:

- The F(I-1, I(J-1)) curve gives us:
 - The *rejection region* as the extreme largest 100 α % of F values.

- The F(I-1, I(J-1)) curve gives us:
 - The *rejection region* as the extreme largest 100 α % of F values.
 - The p-value as the tail area to the right of the observed F value.

Rejection Region: The rejection region is the set of F values in the tail of the F(I-1,I(J-1)) curve to the right of $F_{\alpha,I-1,I(J-1)}$:

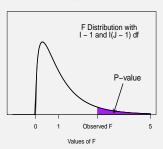
Rejection Region for Upper-Tailed F Test



Values of F

P-Value: The **p-value** is the **tail** area under the F(I-1,I(J-1)) curve to the **right** of the **observed** F:

P-Value for Upper-Tailed F Test



The ANOVA Table

ANOVA results are summarized in an ANOVA table:

The ANOVA Table

ANOVA results are summarized in an ANOVA table:

Source of Variation	df	Sum of Squares	Mean Square	f	P-value
Treatment	I-1	SSTr	MSTr = SSTr/(I-1)	MSTr/MSE	р
Error	I(J-1)	SSE	MSE = SSE/(I(J-1))		
Total	IJ-1	SST			

Exercise

For lead measurements made at five labs, the ANOVA table is:

Source of		Sum of	Mean		
Variation	df	Squares	Square	f	P-value
Treatment	4	13.813	3.453	6.77	0.000
Error	45	22.945	0.510		
Total	49	36.758			

a) Verify that **df for SSTr** = I - 1, that **df for SSE** = I(J - 1), and that **df for SST** = IJ - 1.

- a) Verify that **df for SSTr** = I 1, that **df for SSE** = I(J 1), and that **df for SST** = IJ 1.
- b) Verify that SST = SSTr + SSE and that the df for SST = df for SSTr + df for SSE.

- a) Verify that **df for SSTr** = I 1, that **df for SSE** = I(J 1), and that **df for SST** = IJ 1.
- b) Verify that SST = SSTr + SSE and that the df for SST = df for SSTr + df for SSE.
- verify that the mean squares are the sums of squares divided by their df.

- a) Verify that **df for SSTr** = I 1, that **df for SSE** = I(J 1), and that **df for SST** = IJ 1.
- b) Verify that SST = SSTr + SSE and that the df for SST = df for SSTr + df for SSE.
- verify that the mean squares are the sums of squares divided by their df.
- d) Verify that the F statistic is MSTr divided by MSE.

e) State the **hypotheses**.

- e) State the hypotheses.
- f) Using $\alpha=0.05$, is there statistically significant evidence for systematic differences in lead measurements among the five labs?

- e) State the hypotheses.
- f) Using $\alpha=0.05$, is there statistically significant evidence for systematic differences in lead measurements among the five labs?
- g) If there are significant differences among the five labs, describe the nature of those differences (using the plots of the data given earlier in these slides).

• For comparing two population means μ_1 and μ_2 , the ANOVA F test and a *two-sided* pooled two-sample t test are equivalent.

• For comparing two population means μ_1 and μ_2 , the ANOVA F test and a *two-sided* pooled two-sample t test are equivalent.

The **square** of the t statistic is the F statistic, and the **p-values** will be the **same**.

Example

An example in a previous set of slides presented results of a computer simulation to compare the time (in seconds) to complete a semiconductor manufacturing process using one and two operators.

Example

An example in a previous set of slides presented results of a computer simulation to compare the time (in seconds) to complete a semiconductor manufacturing process using one and two operators.

Here are the summary statistics:

One Operator	Two Operators
m = 16	n = 16
$\bar{X}=373.6$	$\bar{Y} = 374.8$
$S_1 = 7.8$	$S_2 = 7.3$

If we carry out a (pooled) two-sample t test of

$$H_0: \mu_1 = \mu_2$$

$$H_a: \mu_1 \neq \mu_2$$

we get:

Pooled t	
Test Statistic	P-Value
t = -0.445	0.6596

If we carry out a one-factor ANOVA, we get:

Source of		Sum of	Mean		
Variation	df	Squares	Square	f	P-value
Treatment	1	11.3	11.3	0.198	0.6596
Error	30	1710.2	57.0		
Total	31	1721.5			

If we carry out a one-factor ANOVA, we get:

Source of		Sum of	Mean		
Variation	df	Squares	Square	f	P-value
Treatment	1	11.3	11.3	0.198	0.6596
Error	30	1710.2	57.0		
Total	31	1721.5			

We see that $t^2 = F$ and the **p-values** for the two tests are the same.

 In general, the square of a t random variable is an F random variable.

Proposition

lf

$$T \sim t(\nu)$$

then

$$T^2 \sim F(1,\nu)$$
.