Statistical Methods

Nels Grevstad

Metropolitan State University of Denver ngrevsta@msudenver.edu

September 26, 2019

Nels Grevstad

Normal Probability Plots One-Factor ANOVA for Population Means $\mu_1, \mu_2, \dots, \mu_I$

Topics

Notes

Normal Probability Plots

2 One-Factor ANOVA for Population Means $\mu_1, \mu_2, \dots, \mu_I$

Nels Grevstad

Normal Probability Plots One-Factor ANOVA for Population Means $\mu_1, \mu_2, \dots, \mu_I$

Objectives

Objectives:

- Use normal probability plots to assess whether a sample is from a normal population.
- Interpret sums of squares, degrees of freedom, and mean squares in a one-factor ANOVA context.
- State the ANOVA partition of the total variation in a data set.
- Carry out a one-factor ANOVA F test for population means $\mu_1, \mu_2, \ldots, \mu_I$.

 Normal Probability Plots

 One-Factor ANOVA for Population Means μ1, μ2,...,μ1

 Normal Probability Plots

Notes

Notes

• Two ways to assess the normality of data:

Nels Grevstad

- A histogram. It should be roughly bell-shaped.
- A normal probability plot. The points should hug the line.

Notes

Notes

• Let X_1, X_2, \ldots, X_n be a random sample from *some* distribution.

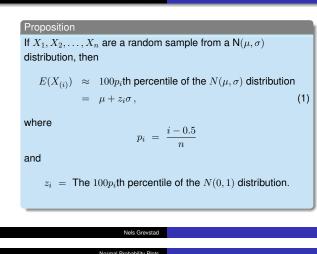
Let $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$ denote the same data set, but **sorted** from smallest to largest.

Thus $X_{(1)}$ is the smallest value in the data set, $X_{(2)}$ is the second smallest, etc.

• The proposition ahead gives the **expected values** of $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$ when the sample is from a **normal** population.

Nels Grevstad

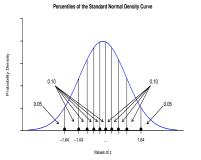
Normal Probability Plots One-Factor ANOVA for Population Means $\mu_1, \mu_2, \dots, \mu_I$



One-Factor ANOVA for Population Means $\mu_1, \mu_2, \dots, \mu_I$

• For example, in a sample of size n = 10 from a N(0, 1) distribution, the **expected** sample values are the points shown on the next slide.

Nels Grevstad Normal Probability Plots One-Factor ANOVA for Population Means $\mu_1, \mu_2, \dots, \mu_I$



These points are the 5th, 15th, ..., 95th percentiles of the $\mathsf{N}(0,\,1)$ distribution:

Nels Grevstad

Normal Probability Plots One-Factor ANOVA for Population Means $\mu_1, \mu_2, \dots, \mu_I$

- If a sample is from a $N(\mu,\sigma)$ distribution, then
 - The points in a plot of

 $(\mu + z_i \sigma, X_{(i)}),$

should fall close to the line y = x.

• The points in a plot of

 $(z_i, X_{(i)})$,

should fall close to the line $y = \mu + \sigma x$.

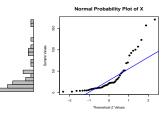
• A *normal probability plot* (or *quantile-quantile plot*) is a plot of the points

 $(z_i, X_{(i)})$.

Curved patterns indicate non-normality.

 Nels Grevstad

One-Factor ANOVA for Population Means $\mu_1, \mu_2, \dots, \mu_I$



Normal Probability Plots e-Factor ANOVA for Population Means $\mu_1, \mu_2, \dots, \mu_I$

Nels Grevstad

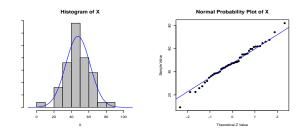


Figure: Histogram of symmetric, approximately normal data (left). Normal probability plot of the same data (right).

Normal Probability Plots One-Factor ANOVA for Population Means #1, #2,..., #1

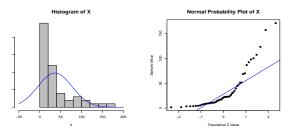


Figure: Histogram of non-normal, right skewed data (left). Normal probability plot of the same data (right).

Nels Grevstad

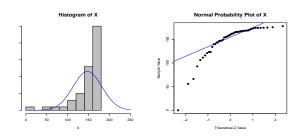


Figure: Histogram of non-normal, left skewed data (left). Normal probability plot of the same data (right).

Normal Probability Plots

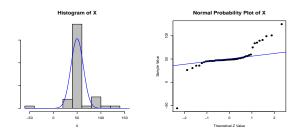


Figure: Histogram of non-normal, "heavy tailed" data (left). Normal probability plot of the same data (right).

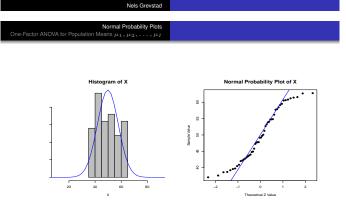


Figure: Histogram of non-normal, "light tailed" data (left). Normal probability plot of the same data (right).

Nels Grevstad

Normal Probability Plots One-Factor ANOVA for Population Means $\mu_1, \mu_2, \dots, \mu_I$

One-Factor ANOVA for Population Means

μ_1,μ_2,\ldots,μ_I

Introduction

• Suppose we have independent random samples from *I* populations having **possibly different means** but **equal standard deviations**.

The populations might represent different *groups* or they might represent *treatments* in an experiment.

We want to decide if there are any differences among the population means.

Nels Grevstad

Notes

Notes

Notes

Example

A quality assurance study was carried out to compare lead measurements made in water sent to I = 5 laboratories.

Differences among the five labs' results may signify improperly calibrated equipment or poorly trained technicians.

A vat of wastewater was split into 50 specimens randomized to the labs (J = 10 each) for analysis.

The lead measurements ($\mu g/L)$ and their summary statistics are on the next slide.

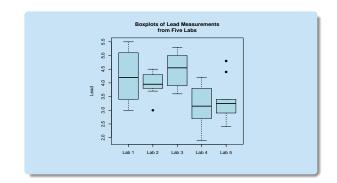
Nels Grevstad

Normal Probability Plots One-Factor ANOVA for Population Means $\mu_1, \mu_2, \dots, \mu_I$

Measured Lead Concentrations						
Lab 1	Lab 2	Lab 3	Lab 4	Lab 5		
3.4	4.5	5.3	3.2	3.3		
3.0	3.7	4.7	3.4	2.4		
3.4	3.8	3.6	3.1	2.7		
5.0	3.9	5.0	3.0	3.2		
5.1	4.3	3.6	3.9	3.3		
5.5	3.9	4.5	2.0	2.9		
5.4	4.1	4.6	1.9	4.4		
4.2	4.0	5.3	2.7	3.4		
3.8	3.0	3.9	3.8	4.8		
4.2	4.5	4.1	4.2	3.0		
$\bar{X}_1 = 4.30$	$\bar{X}_2 = 3.97$	$\bar{X}_3 = 4.46$	$\bar{X}_4 = 3.12$	$\bar{X}_{5} = 3.34$		
$S_1 = 0.904$	$S_2 = 0.440$	$S_3 = 0.642$	$S_4 = 0.764$	$S_5 = 0.737$		

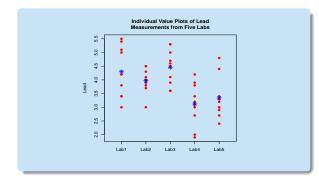
Nels Grevstad

One-Factor ANOVA for Population Means $\mu_1, \mu_2, \ldots, \mu_I$



Nels Grevstad

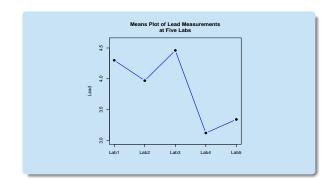
Normal Probability Plots One-Factor ANOVA for Population Means $\mu_1, \mu_2, \dots, \mu_I$



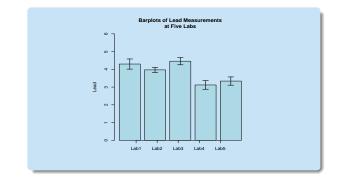
Nels Grevstad

Notes

Notes



Normal Probability Plots One-Factor ANOVA for Population Means $\mu_1, \mu_2, \dots, \mu_I$



Nels Grevstad

One-Factor ANOVA for Population Means $\mu_1, \mu_2, \ldots, \mu_I$

- Suppose we have random samples, each of size J, from I populations ($I \ge 2$),
- We'll see how to use the samples to decide if there are differences among the **population means** μ₁, μ₂, ..., and μ_I.

The appropriate test is called the **one-factor ANOVA** *F* **test**.

Nels Grevstad

Nels Grevstad

Normal Probability Plots One-Factor ANOVA for Population Means $\mu_1, \mu_2, \dots, \mu_I$

Notes

• Comments:

- The sample sizes **don't** all have to be the same. But we'll only look at the equal-sample size case.
- The data can be **samples** from populations **or** responses to treatments in a **randomized experiment**.

Notes

Notes

One-Factor ANOVA for Population Means $\mu_1, \mu_2, \ldots, \mu_H$

Notes

 The null hypothesis is that there are no differences among the population means μ₁, μ₂, ..., μ_I:

Null Hypothesis:

 $H_0: \mu_1 = \mu_2 = \cdots = \mu_I$

Nels Grevstad

Normal Probability Plots One-Factor ANOVA for Population Means $\mu_1, \mu_2, \dots, \mu_I$

Notes

• The alternative hypothesis is that there's at least one difference among the set of means:

Alternative Hypothesis: The alternative hypothesis will be

 $H_a: \mbox{At}$ least two of the $\mu_i\mbox{'s}$ are different

Notation:

One-Factor ANOVA for Population Means $\mu_1, \mu_2, \ldots, \mu_I$

I = The number of treatment groups

Nels Grevstad

- J = The common sample size for the I groups
- X_{ij} = The *j*th observation in the *i*th treatment group
- $ar{X}_{i\cdot}$ = The sample mean for the ith treatment group
- S_i = The sample standard deviation for the *i*th treatment group
- $\bar{X}_{...}$ = The *grand mean* of all IJ observations

Note:

$$\bar{X}_{\cdot\cdot} = \frac{1}{\bar{I}} \sum_{i=1}^{I} \bar{X}_i.$$

(when the sample sizes are all the same).

Normal Probability Plots One-Factor ANOVA for Population Means $\mu_1, \mu_2, \dots, \mu_I$

Sums of Squares and the ANOVA Partition

- We can *partition* the **total variation** in the data into two parts:
 - One reflecting variation between the treatment groups.
 - The other reflecting variation within the groups.

The **ANOVA** F **test** is based on the amount of **between**-groups variation relative to the amount of **within**-groups variation.

Nels Grevstad

Notes

- The partition will involve the following sums of squares:
 - SST is the total sum of squares, defined as

$$SST = \sum_{i=1}^{I} \sum_{j=1}^{J} (X_{ij} - \bar{X}_{..})^2,$$

which measures the **total** variation in the X_{ij} 's.

Nels Grevstad

Normal Probability Plots One-Factor ANOVA for Population Means $\mu_1, \mu_2, \ldots, \mu_I$

Notes

Notes

- (cont'd):
 - SSTr is the treatment sum of squares, defined as

SSTr =
$$\sum_{i=1}^{I} \sum_{j=1}^{J} (\bar{X}_{i.} - \bar{X}_{..})^2 = J \sum_{i=1}^{I} (\bar{X}_{i.} - \bar{X}_{..})^2$$
,

which measures variation **between** the treatment group means due to both **treatment effects** and **random error**.

One-Factor ANOVA for Population Means $\mu_1, \mu_2, \ldots, \mu_I$

• (cont'd):

• SSE is the error sum of squares, defined as

Nels Grevstad

Nels Grevstad

$$SSE = \sum_{i=1}^{I} \sum_{j=1}^{J} (X_{ij} - \bar{X}_{i.})^2,$$

which measures variation of the $X_{ij}\,{\rm 's}$ within treatment groups due to random error.

One-Factor ANOVA for Population Means $\mu_1, \mu_2, \ldots, \mu_I$

Proposition

ANOVA Partition of the Total Variation: It can be shown that

SST = SSTr + SSE.

- One-Factor ANOVA for Population Means $\mu_1, \mu_2, \ldots, \mu_I$
 - The ANOVA partition holds because we can write:

 $X_{ij} - \bar{X}_{..} = \bar{X}_{i.} - \bar{X}_{..} + X_{ij} - \bar{X}_{i.}$

Upon squaring both sides and then summing over all i and j, the "cross product" terms on the right side sum to zero, and we get

$$\sum_{i} \sum_{j} (X_{ij} - \bar{X}_{\cdot \cdot})^2 = \sum_{i} \sum_{j} (\bar{X}_{i \cdot} - \bar{X}_{\cdot \cdot})^2 + \sum_{i} \sum_{j} (X_{ij} - \bar{X}_{i \cdot})^2,$$

which is the ANOVA partition.

Nels Grevstad
Normal Probability Plots One-Factor ANOVA for Population Means µ1, µ2,µ7
Example
For the data on lead measurements at five labs, software gives
SST = 36.758
SSTr = 13.813
SSE = 22.945
The ANOVA partition holds:
36.758 = 13.813 + 22.945
↑ ↑ ↑
Total Between Within
variation groups groups
variation variation
Nels Grevstad
Normal Probability Plots

Degrees of Freedom

ne-Factor ANOVA for Population Means $\mu_1, \mu_2, \ldots, \mu_I$

• Each sum of squares has an associated *degrees of freedom* (or *df*).

Nels Grevstad

The **df** for a sum of squares is determined by how many deviations, among those used to compute the sum of squares, are "**free to vary**" (**unconstrained**).

One-Factor ANOVA for Population Means $\mu_1, \mu_2, \dots, \mu_I$

Notes

Degrees of	of Freedom:
------------	-------------

SST has IJ - 1 df **SST** has I - 1 df **SSE** has I(J - 1) = IJ - I df

Nels Grevstad

Notes

Notes

One-Factor ANOVA for Population Means $\mu_1, \mu_2, \dots, \mu_I$

Notes

- To see why:
 - The *IJ* deviations *X_{ij} X̄*.. used to compute **SST** are subject to the **one constraint** that they **sum to zero**, i.e.

$$\sum_{i} \sum_{j} (X_{ij} - \bar{X}_{..}) = 0$$

so only IJ - 1 of them are "free to vary" (i.e. any IJ - 1 of them determines the remaining one).

Normal Probability Plots One-Factor ANOVA for Population Means $\mu_1, \mu_2, \dots, \mu_I$

Notes

- (cont'd):
 - The *I* deviations X
 _i. X
 _. used to compute SSTr are subject to the one constraint that that they sum to zero, i.e.

Nels Grevstad

Nels Grevstad

$$\sum_{\cdot} (\bar{X}_{i\cdot} - \bar{X}_{\cdot\cdot}) = 0,$$

so only I - 1 of the deviations are "free to vary" (i.e. any I - 1 of them determines the remaining one).

Normal Probability Plots One-Factor ANOVA for Population Means $\mu_1, \mu_2, \dots, \mu_I$

- (cont'd):
 - The *IJ* deviations $X_{ij} \bar{X}_{i}$ used to compute **SSE** are subject to the *I* constraints that they sum to zero within each of the *I* groups, i.e.

$$\sum_{j} (X_{ij} - \bar{X}_{i\cdot}) = 0 \qquad \text{ for each } i = 1, 2, \dots, I$$

Thus within each of the ${\it I}$ samples, only ${\it J}-1$ deviations are "free to vary" (i.e. any J-1 of them determines the remaining one).

Normal Probability Plots One-Factor ANOVA for Population Means $\mu_1, \mu_2, \dots, \mu_I$

> Additive Property of Degrees of Freedom: df for SST = df for SSTr + df for SSE since IJ - 1 = (I - 1) + I(J - 1).

> > Nels Grevstad

Nels Grevstad

Notes

Mean Squares

• The *ANOVA F test* is based on the amount of **between**-groups variation relative to the amount of **within**-groups variation.

But **SSTr** and **SSE** *aren't* directly comparable (they depend in different ways on *I* and *J*).

• A mean square a sum of squares divided by its df.

Example: A sample variance S^2 is a mean square.

Nels Grevstad

Normal Probability Plots One-Factor ANOVA for Population Means $\mu_1, \mu_2, \dots, \mu_I$

Notes

Notes

(cont'd)

• The mean square for treatments, denoted MSTr, is

$$\mathsf{MSTr} \;=\; \frac{\mathsf{SSTr}}{I-1}\,.$$

Normal Probability Plots One-Factor ANOVA for Population Means $\mu_1, \mu_2, \dots, \mu_I$

(cont'd)

• The mean squared error, denoted MSE, is

Nels Grevstad

$$\mathsf{MSE} = \frac{\mathsf{SSE}}{I(J-1)} \, .$$

It's easy to verify that

$$\mathsf{MSE} = \frac{S_1^2 + S_2^2 + \dots + S_I^2}{I}$$

(when the sample sizes are all the same).

Nels Grevstad

Thus **MSE** is the **average** (or **pooled**) **sample variance**.

Normal Probability Plots One-Factor ANOVA for Population Means $\mu_1, \mu_2, \dots, \mu_I$

Notes

• MSTr and MSE are directly comparable.

The One-Factor ANOVA F Test

One-Factor ANOVA F Test Statistic: $F = \frac{\text{MSTr}}{\text{MSE}}.$

Nels Grevstad

Normal Probability Plots One-Factor ANOVA for Population Means $\mu_1, \mu_2, \dots, \mu_I$

Notes

- F reflects between-groups variation (MSTr) relative to within-groups variation (SSE).
- **MSTr** will be **large** when there's substantial variation in $\bar{X}_{1.}, \bar{X}_{2.}, \ldots, \bar{X}_{I.}$, which are estimates of the population means $\mu_1, \mu_2, \ldots, \mu_I$.

It will be **large** when there are **differences** among $\mu_1, \mu_2, \dots, \mu_I$.

Nels Grevstad

One-Factor ANOVA for Population Means $\mu_1, \mu_2, \ldots, \mu_I$

Notes

Large values of F provide evidence against H_0 in favor of H_a : At least two of the μ_i 's are different.

Normal Probability Plots One-Factor ANOVA for Population Means $\mu_1, \mu_2, \dots, \mu_I$

Notes

• Now suppose the *I* samples are from $N(\mu_1, \sigma)$, $N(\mu_2, \sigma)$..., $N(\mu_I, \sigma)$ distributions and that they were drawn *independently* of each other.

Nels Grevstad

Nels Grevstad

Alternatively, the samples could be from **non-normal** populations as long as the common sample size J is **large**.

One-Factor ANOVA for Population Means $\mu_1, \mu_2, \ldots, \mu_I$

Notes

Sampling Distribution of the Test Statistic Under H_0 : If F is the one-factor ANOVA F test statistic, then when

 $H_0: \mu_1 = \mu_2 = \dots = \mu_I$

is true,

$$F \sim F(I-1, I(J-1)).$$

Normal Probability Plots One-Factor ANOVA for Population Means $\mu_1, \mu_2, \dots, \mu_I$

Notes

• The F(I-1, I(J-1)) curve gives us:

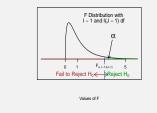
Nels Grevstad

Nels Grevstad

- The rejection region as the extreme largest 100 α % of F values.
- The p-value as the tail area to the right of the observed F value.

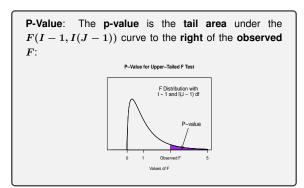
One-Factor ANOVA for Population Means $\mu_1, \mu_2, \ldots, \mu_I$

Rejection Region: The rejection region is the set of F values in the tail of the F(I-1, I(J-1)) curve to the right of $F_{\alpha, I-1, I(J-1)}$: Rejection Region for Upper-Tailed F Test



Nels Grevstad

Normal Probability Plots One-Factor ANOVA for Population Means $\mu_1, \mu_2, \dots, \mu_I$



Notes

The ANOVA Table

• ANOVA results are summarized in an ANOVA table:

Source of		Sum of	Mean		
Variation	df	Squares	Square	f	P-value
Treatment	I - 1	SSTr	MSTr = SSTr/(I-1)	MSTr/MSE	р
Error	I(J - 1)	SSE	MSE = SSE/(I(J-1))		
Total	IJ-1	SST			

Normal Probability Plots One-Factor ANOVA for Population Means $\mu_1, \mu_2, \dots, \mu_I$

Notes

Notes

Earland mar	easurements m	and a st flura	laha tha		In inc
For lead me	easurements n	iade al live	laos ine	ANUVA 100	Ie Is:

Nels Grevstad

Source of Variation	df	Sum of Squares	Mean Square	f	P-value
Treatment	4	13.813	3.453	6.77	0.000
Error	45	22.945	0.510		
Total	49	36.758			

Nels Grevstad

One-Factor ANOVA for Population Means $\mu_1, \mu_2, \ldots, \mu_I$

- a) Verify that df for SSTr = I 1, that df for SSE = I(J 1), and that df for SST = IJ - 1.
- b) Verify that SST = SSTr + SSE and that the df for SST = df for SSTr + df for SSE.
- c) Verify that the **mean squares** are the **sums of squares** divided by their **df**.
- d) Verify that the F statistic is MSTr divided by MSE.

Nels Grevstad

Normal Probability Plots One-Factor ANOVA for Population Means $\mu_1, \mu_2, \dots, \mu_I$

Notes

e) State the hypotheses.

- f) Using $\alpha = 0.05$, is there statistically significant evidence for systematic differences in lead measurements among the five labs?
- g) If there are significant differences among the five labs, describe the nature of those differences (using the plots of the data given earlier in these slides).

- Notes
- For comparing **two population means** μ_1 and μ_2 , the ANOVA F test and a *two-sided* pooled two-sample t test are equivalent.

The square of the t statistic is the F statistic, and the p-values will be the same.

One-Factor ANOVA for Population Means $\mu_1, \mu_2, \ldots, \mu_I$

Example

An example in a previous set of slides presented results of a computer simulation to compare the time (in seconds) to complete a semiconductor manufacturing process using one and two operators.

Nels Grevstad

Here are the summary statistics:

One Operator	Two Operators
m = 16	n = 16
$ar{X}$ = 373.6	$ar{Y}~=~374.8$
$S_1 = 7.8$	$S_2 = 7.3$

One-Factor ANOVA for Population Means $\mu_1, \mu_2, \ldots, \mu_I$

If we carry out a (pooled) two-sample t test of
$H_0: \mu_1 = \mu_2$
$H_a: \mu_1 \neq \mu_2$
we get:
Pooled t
Test Statistic P-Value
t = -0.445 0.6596

One-Factor ANOVA for Population Means $\mu_1, \mu_2, \ldots, \mu_I$

lf v	If we carry out a one-factor ANOVA, we get:						
	Source of Variation	df	Sum of Squares	Mean Square	f	P-value	
	Treatment	1	11.3	11.3	0.198	0.6596	
	Error	30	1710.2	57.0			
	Total	31	1721.5				

Nels Grevstad

We see that $t^2 = F$ and the **p-values** for the two tests are the same.

Nels Grevstad

Notes

Notes

- Normal Probability Plots One-Factor ANOVA for Population Means $\mu_1, \mu_2, \ldots, \mu_I$
 - In general, the **square** of a *t* random variable is an *F* random variable.

Proposition		
lf		
	$T \sim t(u)$	
then		
	$T^2 \sim F(1,\nu).$	

Nels Grevstad

Notes

Notes

Notes