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Objectives

Objectives:

Use normal probability plots to assess whether a sample is
from a normal population.

Interpret sums of squares, degrees of freedom, and mean
squares in a one-factor ANOVA context.

State the ANOVA partition of the total variation in a data
set.

Carry out a one-factor ANOVA F test for population means
µ1, µ2, . . . , µI .
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Normal Probability Plots

Two ways to assess the normality of data:

A histogram. It should be roughly bell-shaped.

A normal probability plot. The points should hug the line.

Nels Grevstad

Notes

Notes

Notes

Notes



Normal Probability Plots
One-Factor ANOVA for Population Means µ1, µ2, . . . , µI

Let X1, X2, . . . , Xn be a random sample from some
distribution.

Let X(1), X(2), . . . , X(n) denote the same data set, but
sorted from smallest to largest.

Thus X(1) is the smallest value in the data set, X(2) is the
second smallest, etc.

The proposition ahead gives the expected values of
X(1), X(2), . . . , X(n) when the sample is from a normal
population.
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Proposition

If X1, X2, . . . , Xn are a random sample from a N(µ, σ)

distribution, then

E(X(i)) ≈ 100pith percentile of the N(µ, σ) distribution

= µ+ ziσ , (1)

where
pi =

i− 0.5

n

and

zi = The 100pith percentile of the N(0, 1) distribution.
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For example, in a sample of size n = 10 from a N(0, 1)

distribution, the expected sample values are the points
shown on the next slide.
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Percentiles of the Standard Normal Density Curve
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These points are the 5th, 15th, ..., 95th percentiles of the
N(0, 1) distribution:

z1 = −1.64 is the 5th percentile
z2 = −1.04 is the 15th percentile
z3 = −0.67 is the 25th percentile

...
z10 = 1.64 is the 95th percentile
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If a sample is from a N(µ, σ) distribution, then

The points in a plot of(
µ+ ziσ, X(i)

)
,

should fall close to the line y = x.

The points in a plot of (
zi, X(i)

)
,

should fall close to the line y = µ+ σx.

A normal probability plot (or quantile-quantile plot) is a
plot of the points (

zi, X(i)

)
.

Curved patterns indicate non-normality.
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Figure: Histogram of symmetric, approximately normal data (left).
Normal probability plot of the same data (right).
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Figure: Histogram of non-normal, right skewed data (left). Normal
probability plot of the same data (right).
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Figure: Histogram of non-normal, left skewed data (left). Normal
probability plot of the same data (right).
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Figure: Histogram of non-normal, ”heavy tailed” data (left). Normal
probability plot of the same data (right).
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Figure: Histogram of non-normal, ”light tailed” data (left). Normal
probability plot of the same data (right).
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One-Factor ANOVA for Population Means
µ1, µ2, . . . , µI

Introduction

Suppose we have independent random samples from I

populations having possibly different means but equal
standard deviations.

The populations might represent different groups or they
might represent treatments in an experiment.

We want to decide if there are any differences among the
population means.
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Example

A quality assurance study was carried out to compare lead
measurements made in water sent to I = 5 laboratories.

Differences among the five labs’ results may signify improperly
calibrated equipment or poorly trained technicians.

A vat of wastewater was split into 50 specimens randomized to
the labs (J = 10 each) for analysis.

The lead measurements (µg/L) and their summary statistics
are on the next slide.
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Measured Lead Concentrations
Lab 1 Lab 2 Lab 3 Lab 4 Lab 5
3.4 4.5 5.3 3.2 3.3
3.0 3.7 4.7 3.4 2.4
3.4 3.8 3.6 3.1 2.7
5.0 3.9 5.0 3.0 3.2
5.1 4.3 3.6 3.9 3.3
5.5 3.9 4.5 2.0 2.9
5.4 4.1 4.6 1.9 4.4
4.2 4.0 5.3 2.7 3.4
3.8 3.0 3.9 3.8 4.8
4.2 4.5 4.1 4.2 3.0

X̄1 = 4.30 X̄2 = 3.97 X̄3 = 4.46 X̄4 = 3.12 X̄5 = 3.34

S1 = 0.904 S2 = 0.440 S3 = 0.642 S4 = 0.764 S5 = 0.737
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Suppose we have random samples, each of size J , from I

populations (I ≥ 2),

We’ll see how to use the samples to decide if there are
differences among the population means µ1, µ2, . . ., and
µI .

The appropriate test is called the one-factor ANOVA F
test.
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Comments:

The sample sizes don’t all have to be the same. But we’ll
only look at the equal-sample size case.

The data can be samples from populations or responses
to treatments in a randomized experiment.
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The null hypothesis is that there are no differences
among the population means µ1, µ2, . . ., µI :

Null Hypothesis:

H0 : µ1 = µ2 = · · · = µI
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The alternative hypothesis is that there’s at least one
difference among the set of means:

Alternative Hypothesis: The alternative hypothesis will
be

Ha : At least two of the µi’s are different
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Notation:

I = The number of treatment groups
J = The common sample size for the I groups
Xij = The jth observation in the ith treatment group
X̄i· = The sample mean for the ith treatment group
Si = The sample standard deviation for the ith treat-

ment group
X̄·· = The grand mean of all IJ observations

Note:

X̄·· =
1

I

I∑
i=1

X̄i·

(when the sample sizes are all the same).
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Sums of Squares and the ANOVA Partition

We can partition the total variation in the data into two
parts:

One reflecting variation between the treatment groups.

The other reflecting variation within the groups.

The ANOVA F test is based on the amount of
between-groups variation relative to the amount of
within-groups variation.
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The partition will involve the following sums of squares:

SST is the total sum of squares, defined as

SST =

I∑
i=1

J∑
j=1

(Xij − X̄··)
2,

which measures the total variation in the Xij ’s.
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(cont’d):

SSTr is the treatment sum of squares, defined as

SSTr =

I∑
i=1

J∑
j=1

(X̄i· − X̄··)
2 = J

I∑
i=1

(X̄i· − X̄··)
2,

which measures variation between the treatment group
means due to both treatment effects and random error.
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(cont’d):

SSE is the error sum of squares, defined as

SSE =

I∑
i=1

J∑
j=1

(Xij − X̄i·)
2,

which measures variation of the Xij ’s within treatment
groups due to random error.
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Proposition
ANOVA Partition of the Total Variation: It can be shown that

SST = SSTr + SSE.
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The ANOVA partition holds because we can write:

Xij − X̄·· = X̄i· − X̄·· + Xij − X̄i·

Upon squaring both sides and then summing over all i and
j, the ”cross product” terms on the right side sum to zero,
and we get∑
i

∑
j

(Xij−X̄··)
2 =

∑
i

∑
j

(X̄i·−X̄··)
2 +

∑
i

∑
j

(Xij−X̄i·)
2 ,

which is the ANOVA partition.
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Example

For the data on lead measurements at five labs, software gives

SST = 36.758

SSTr = 13.813

SSE = 22.945

The ANOVA partition holds:

36.758 = 13.813 + 22.945

⇑ ⇑ ⇑
Total Between Within

variation groups groups
variation variation
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Degrees of Freedom

Each sum of squares has an associated degrees of
freedom (or df).

The df for a sum of squares is determined by how many
deviations, among those used to compute the sum of
squares, are ”free to vary” (unconstrained).
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Degrees of Freedom:

SST has IJ − 1 df

SSTr has I − 1 df

SSE has I(J − 1) = IJ − I df
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To see why:

The IJ deviations Xij − X̄·· used to compute SST are
subject to the one constraint that they sum to zero, i.e.∑

i

∑
j

(Xij − X̄··) = 0,

so only IJ − 1 of them are ”free to vary” (i.e. any IJ − 1 of
them determines the remaining one).
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(cont’d):

The I deviations X̄i· − X̄·· used to compute SSTr are
subject to the one constraint that that they sum to zero,
i.e. ∑

i

(X̄i· − X̄··) = 0,

so only I − 1 of the deviations are ”free to vary” (i.e. any
I − 1 of them determines the remaining one).
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(cont’d):

The IJ deviations Xij − X̄i· used to compute SSE are
subject to the I constraints that they sum to zero within
each of the I groups, i.e.∑

j

(Xij − X̄i·) = 0 for each i = 1, 2, . . . , I

Thus within each of the I samples, only J − 1 deviations
are ”free to vary” (i.e. any J − 1 of them determines the
remaining one).
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Additive Property of Degrees of Freedom:

df for SST = df for SSTr + df for SSE

since
IJ − 1 = (I − 1) + I(J − 1).
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Mean Squares

The ANOVA F test is based on the amount of
between-groups variation relative to the amount of
within-groups variation.

But SSTr and SSE aren’t directly comparable (they depend
in different ways on I and J).

A mean square a sum of squares divided by its df.

Example: A sample variance S2 is a mean square.
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(cont’d)

The mean square for treatments, denoted MSTr, is

MSTr =
SSTr
I − 1

.
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(cont’d)

The mean squared error, denoted MSE, is

MSE =
SSE

I(J − 1)
.

It’s easy to verify that

MSE =
S2
1 + S2

2 + · · ·+ S2
I

I

(when the sample sizes are all the same).

Thus MSE is the average (or pooled) sample variance.

Nels Grevstad

Normal Probability Plots
One-Factor ANOVA for Population Means µ1, µ2, . . . , µI

MSTr and MSE are directly comparable.
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The One-Factor ANOVA F Test

One-Factor ANOVA F Test Statistic:

F =
MSTr
MSE

.
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F reflects between-groups variation (MSTr) relative to
within-groups variation (SSE).

MSTr will be large when there’s substantial variation in
X̄1·, X̄2·, . . . , X̄I·, which are estimates of the population
means µ1, µ2, . . . , µI .

It will be large when there are differences among
µ1, µ2, . . . , µI .
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Large values of F provide evidence againstH0 in favor
of Ha : At least two of the µi’s are different.
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Now suppose the I samples are from N(µ1, σ), N(µ2, σ)

. . ., N(µI , σ) distributions and that they were drawn
independently of each other.

Alternatively, the samples could be from non-normal
populations as long as the common sample size J is large.
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Sampling Distribution of the Test Statistic Under H0:
If F is the one-factor ANOVA F test statistic, then when

H0 : µ1 = µ2 = · · · = µI

is true,
F ∼ F (I − 1, I(J − 1)).
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The F (I − 1, I(J − 1)) curve gives us:

The rejection region as the extreme largest 100α% of F
values.

The p-value as the tail area to the right of the observed
F value.
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Rejection Region: The rejection region is the set of F
values in the tail of the F (I − 1, I(J − 1)) curve to the
right of Fα, I − 1, I(J − 1):

Rejection Region for Upper−Tailed F Test

Values of F

0 1 Fα, I−1,I(J−1) 5

Reject H0Fail to Reject H0

α

F Distribution with
I − 1 and I(J − 1) df
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P-Value: The p-value is the tail area under the
F (I − 1, I(J − 1)) curve to the right of the observed
F :

P−Value for Upper−Tailed F Test

Values of F

0 1 Observed F 5

P−value

F Distribution with
I − 1 and I(J − 1) df
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The ANOVA Table

ANOVA results are summarized in an ANOVA table:

Source of Sum of Mean
Variation df Squares Square f P-value
Treatment I − 1 SSTr MSTr = SSTr/(I-1) MSTr/MSE p
Error I(J − 1) SSE MSE = SSE/(I(J-1))
Total IJ-1 SST
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Exercise

For lead measurements made at five labs, the ANOVA table is:

Source of Sum of Mean
Variation df Squares Square f P-value
Treatment 4 13.813 3.453 6.77 0.000
Error 45 22.945 0.510
Total 49 36.758
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a) Verify that df for SSTr = I − 1, that df for SSE = I(J − 1),
and that df for SST = IJ − 1.

b) Verify that SST = SSTr + SSE and that the df for SST = df
for SSTr + df for SSE.

c) Verify that the mean squares are the sums of squares
divided by their df.

d) Verify that the F statistic is MSTr divided by MSE.
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e) State the hypotheses.

f) Using α = 0.05, is there statistically significant evidence for
systematic differences in lead measurements among the
five labs?

g) If there are significant differences among the five labs,
describe the nature of those differences (using the plots of
the data given earlier in these slides).
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For comparing two population means µ1 and µ2, the
ANOVA F test and a two-sided pooled two-sample t test
are equivalent.

The square of the t statistic is the F statistic, and the
p-values will be the same.
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Example

An example in a previous set of slides presented results of a
computer simulation to compare the time (in seconds) to
complete a semiconductor manufacturing process using one
and two operators.

Here are the summary statistics:

One Operator Two Operators
m = 16 n = 16

X̄ = 373.6 Ȳ = 374.8

S1 = 7.8 S2 = 7.3
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If we carry out a (pooled) two-sample t test of

H0 : µ1 = µ2

Ha : µ1 6= µ2

we get:

Pooled t
Test Statistic P-Value
t = −0.445 0.6596

Nels Grevstad
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If we carry out a one-factor ANOVA, we get:

Source of Sum of Mean
Variation df Squares Square f P-value
Treatment 1 11.3 11.3 0.198 0.6596
Error 30 1710.2 57.0
Total 31 1721.5

We see that t2 = F and the p-values for the two tests are the
same.
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In general, the square of a t random variable is an F
random variable.

Proposition
If

T ∼ t(ν)

then
T 2 ∼ F (1, ν).

Nels Grevstad
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