Statistical Methods

Nels Grevstad

Metropolitan State University of Denver

ngrevsta@msudenver.edu

September 10, 2019

イロト イポト イヨト イヨト

= 990

Nels Grevstad

Topics

Digression: Type I and II Errors and Their Probabilities (Cont'd)

Nels Grevstad

₹ 990

Objectives:

 Compute the Type II error probability and power for the one-sample *z* test for μ.

Digression: Type I and II Errors and Their Probabilities (Cont'd) (8.1, 8.2)

Type II Error Probabilities and the Power of a Test

 We denote the probability of making a Type II error (when H_a is true) by β:

$$\beta = P(\text{Type II Error}).$$

イロト イポト イヨト イヨト

э.

Digression: Type I and II Errors and Their Probabilities (Cont'd) (8.1, 8.2)

Type II Error Probabilities and the Power of a Test

 We denote the probability of making a Type II error (when H_a is true) by β:

$$\beta = P(\text{Type II Error}).$$

• The *power* of a test is the **probability** that you *don't* make a Type II error (when H_a is true):

Power = $1 - \beta$.

Digression: Type I and II Errors and Their Probabilities (Cont'd) (8.1, 8.2)

Type II Error Probabilities and the Power of a Test

 We denote the probability of making a Type II error (when H_a is true) by β:

$$\beta = P(\text{Type II Error}).$$

• The *power* of a test is the **probability** that you *don't* make a Type II error (when H_a is true):

Power = $1 - \beta$.

(i.e. the **probability** that you **reject** H_0 when H_a is true).

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

- Takeaway:
 - The more **power** a test has, the more likely it is to detect **departures from** *H*₀.

- Takeaway:
 - The more **power** a test has, the more likely it is to detect **departures from** *H*₀.

Example: Clinical trial to test the effectiveness of a new drug, i.e.

 H_0 : The drug has **no effect** H_a : The drug has **an effect**

The more **power** the hypothesis test has, the more likely it is to detect **an effect** (if there is one).

ヘロン 人間 とくほ とくほ とう

Type II Error Probability and Power for the One-Sample zTest

 The power is (relatively) easy to compute for the <u>one-sample z test</u>, which is used (instead of the *t* test) when the population standard deviation σ is known.

ヘロン 人間 とくほ とくほ とう

One-Sample *z* Test Statistic: $Z = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}$

Nels Grevstad

Sampling Distribution of the Test Statistic Under H_0 : If Z is the one-sample z test statistic, then when

 $H_0: \mu = \mu_0$

is true,

 $Z \sim N(0,1).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへの

Nels Grevstad

• The N(0,1) curve gives us:

Nels Grevstad

- The N(0,1) curve gives us:
 - The *rejection region* as the extreme 100α% of z values (in the direction(s) specified by H_a).

- The N(0,1) curve gives us:
 - The *rejection region* as the extreme 100α% of z values (in the direction(s) specified by H_a).
 - The *p-value* as the tail area(s) beyond the observed *z* value (in the direction(s) specified by *H_a*).

Example

Suppose X_1, X_2, \ldots, X_n are a random sample from a N(μ, σ) distribution, where σ is known, and we want to test

$$H_0: \mu = \mu_0$$
$$H_a: \mu > \mu_0$$

The test statistic is

$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \, .$$

Reject H_0 if $Z > z_{\alpha}$ Fail to reject H_0 if $Z \leq z_{\alpha}$

or equivalently

Reject H_0 if $\bar{X} > \mu_0 + z_{\alpha} \frac{\sigma}{\sqrt{n}}$ Fail to reject H_0 if $\bar{X} \le \mu_0 + z_{\alpha} \frac{\sigma}{\sqrt{n}}$

Nels Grevstad

Reject H_0 if $Z > z_{\alpha}$ Fail to reject H_0 if $Z \leq z_{\alpha}$

or equivalently

Reject H_0 if $\bar{X} > \mu_0 + z_{\alpha} \frac{\sigma}{\sqrt{n}}$ Fail to reject H_0 if $\bar{X} \leq \mu_0 + z_{\alpha} \frac{\sigma}{\sqrt{n}}$

where \boldsymbol{z}_{α} is the $100(1 - \alpha)$ th percentile of the N(0, 1) distribution.

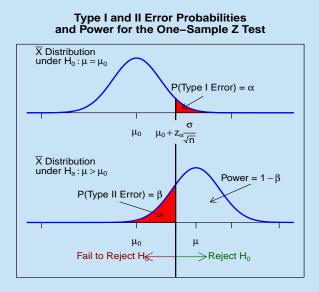
Reject H_0 if $Z > z_{\alpha}$ Fail to reject H_0 if $Z \leq z_{\alpha}$

or equivalently

Reject H_0 if $\bar{X} > \mu_0 + z_\alpha \frac{\sigma}{\sqrt{n}}$ Fail to reject H_0 if $\bar{X} \le \mu_0 + z_\alpha \frac{\sigma}{\sqrt{n}}$

where \boldsymbol{z}_{α} is the $100(1-\alpha)$ th percentile of the N(0,1) distribution.

The **Type II error probability** β is the *shaded* area under the bottom curve on the next slide. The **power** is the *unshaded* area.



To compute β and the **power**, first recall that

$$\bar{X} \sim \mathsf{N}\left(\mu, \frac{\sigma}{\sqrt{n}}\right),$$

and so

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1) \,.$$

Nels Grevstad

```
When H_a: \mu > \mu_0 is true,
```

```
\beta = P(\text{Type II error}) = P(\text{Not rejecting } H_0)
```

 $\beta = P(\text{Type II error}) = P(\text{Not rejecting } H_0)$

$$= P\left(\bar{X} \leq \mu_0 + z_\alpha \frac{\sigma}{\sqrt{n}}\right)$$

 $\beta = P(\text{Type II error}) = P(\text{Not rejecting } H_0)$

$$= P\left(\bar{X} \leq \mu_0 + z_\alpha \frac{\sigma}{\sqrt{n}}\right)$$
$$= P\left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \leq z_\alpha + \frac{\mu_0 - \mu}{\sigma/\sqrt{n}}\right)$$

 $\beta = P(\text{Type II error}) = P(\text{Not rejecting } H_0)$

$$= P\left(\bar{X} \leq \mu_0 + z_\alpha \frac{\sigma}{\sqrt{n}}\right)$$
$$= P\left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \leq z_\alpha + \frac{\mu_0 - \mu}{\sigma/\sqrt{n}}\right)$$
$$= P\left(Z \leq z_\alpha + \frac{\mu_0 - \mu}{\sigma/\sqrt{n}}\right)$$

 $\beta = P(\text{Type II error}) = P(\text{Not rejecting } H_0)$

$$= P\left(\bar{X} \leq \mu_0 + z_\alpha \frac{\sigma}{\sqrt{n}}\right)$$
$$= P\left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \leq z_\alpha + \frac{\mu_0 - \mu}{\sigma/\sqrt{n}}\right)$$
$$= P\left(Z \leq z_\alpha + \frac{\mu_0 - \mu}{\sigma/\sqrt{n}}\right)$$
$$= \Phi\left(z_\alpha + \frac{\mu_0 - \mu}{\sigma/\sqrt{n}}\right)$$
(1)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

where $\Phi(z) = P(Z \leq z)$ denotes the **cdf** of the N(0, , 1) distribution.

Of course the **power** of the test is

Power = $1 - \beta$.

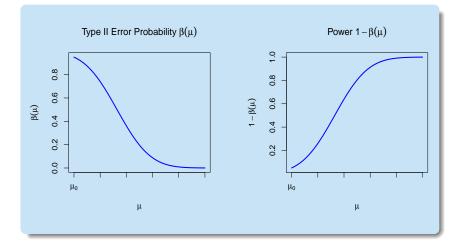
Nels Grevstad

Of course the **power** of the test is

Power = $1 - \beta$.

 β depends on the value of μ , so it's more appropriate to denote the **Type II error probability** as $\beta(\mu)$ and the **power** as

Power = $1 - \beta(\mu)$.



(日) (四) (三) (三) (三) (三) (○)

Nels Grevstad

 For lower-tailed and two-tailed *z* tests, expressions for β(μ) are found in a similar manner.

▲□▶▲圖▶▲≣▶▲≣▶ = ● のQ@

Alternative Hypothesis	Type II Error Probability $eta(\mu)$	
$H_a: \mu > \mu_0$	$\Phi\left(z_lpha+rac{\mu_0-\mu}{\sigma/\sqrt{n}} ight)$	(1)
$H_a: \mu < \mu_0$	$1 - \Phi\left(-z_{\alpha} + \frac{\mu_0 - \mu}{\sigma/\sqrt{n}}\right)$	(2)
$H_a: \mu \neq \mu_0$	$\Phi\left(z_{\alpha/2} + \frac{\mu_0 - \mu}{\sigma/\sqrt{n}}\right) - \Phi\left(-z_{\alpha/2} + \frac{\mu_0 - \mu}{\sigma/\sqrt{n}}\right)$	(3)

Suppose we have a sample of size n = 16 and we want to test

$$H_0: \mu = 10$$
$$H_a: \mu > 10$$

using a level of significance $\alpha = 0.05$. Suppose also that we know that $\sigma = 4$, so the *z* **test** is appropriate.

・ロット (雪) () () () ()

Suppose we have a sample of size n = 16 and we want to test

$$H_0: \mu = 10$$
$$H_a: \mu > 10$$

using a level of significance $\alpha = 0.05$. Suppose also that we know that $\sigma = 4$, so the *z* **test** is appropriate.

a) Find $\beta(12)$, the **probability** of a **Type II error** when $\mu = 12$.

э

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Suppose we have a sample of size n = 16 and we want to test

$$H_0: \mu = 10$$
$$H_a: \mu > 10$$

using a level of significance $\alpha = 0.05$. Suppose also that we know that $\sigma = 4$, so the *z* **test** is appropriate.

a) Find $\beta(12)$, the **probability** of a **Type II error** when $\mu = 12$.

Hint: $z_{0.05} = 1.64$, and you should get $\beta(12) = 0.3594$.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

э

Suppose we have a sample of size n = 16 and we want to test

$$H_0: \mu = 10$$
$$H_a: \mu > 10$$

using a level of significance $\alpha = 0.05$. Suppose also that we know that $\sigma = 4$, so the *z* **test** is appropriate.

a) Find $\beta(12)$, the **probability** of a **Type II error** when $\mu = 12$.

Hint: $z_{0.05} = 1.64$, and you should get $\beta(12) = 0.3594$.

イロト イポト イヨト イヨト

b) Find the **power** of the test when $\mu = 12$.

Suppose we have a sample of size n = 16 and we want to test

$$H_0: \mu = 10$$
$$H_a: \mu > 10$$

using a level of significance $\alpha = 0.05$. Suppose also that we know that $\sigma = 4$, so the *z* **test** is appropriate.

a) Find $\beta(12)$, the **probability** of a **Type II error** when $\mu = 12$.

Hint: $z_{0.05} = 1.64$, and you should get $\beta(12) = 0.3594$.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

э

b) Find the **power** of the test when $\mu = 12$.

Hint: You should get $\beta(12) = 0.6406$.

c) Which of the following would you expect to be true?

 $\beta(12) < \beta(13) < \beta(14)$

or

 $\beta(12) > \beta(13) > \beta(14)$

Nels Grevstad

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

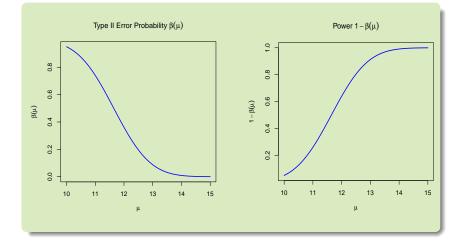
c) Which of the following would you expect to be true?

 $\beta(12) < \beta(13) < \beta(14)$

or

 $\beta(12) > \beta(13) > \beta(14)$

Hint: Refer to the graphs of $\beta(\mu)$ and $1 - \beta(\mu)$ on the next slide.



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Nels Grevstad

 For t tests (and other tests), expressions for β(μ) are more complicated.

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● のへで

 For t tests (and other tests), expressions for β(μ) are more complicated.

(See the textbook.)

 For t tests (and other tests), expressions for β(μ) are more complicated.

(See the textbook.)

The **Type II error probability** and **power** can be obtained using software.

 For fixed μ, as n increases, β(μ) decreases, and therefore the power increases (see (1), (2), and (3)).

- For fixed μ, as n increases, β(μ) decreases, and therefore the power increases (see (1), (2), and (3)).
 - A larger sample size results in a more powerful test.

 For fixed μ, as n increases, β(μ) decreases, and therefore the power increases (see (1), (2), and (3)).

A larger sample size results in a more powerful test.

We can determine how big n needs to be in order to attain a desired β(μ) (for any specified value of μ).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

 For fixed μ, as n increases, β(μ) decreases, and therefore the power increases (see (1), (2), and (3)).

A larger sample size results in a more powerful test.

We can determine how big n needs to be in order to attain a desired β(μ) (for any specified value of μ).

(See the textbook or the **optional** sides ahead for details).

Example

Consider again a test of

 $H_0: \mu = 10$ $H_a: \mu > 10$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

using a level of significance $\alpha = 0.05$, and that $\sigma = 4$.

Nels Grevstad

Example

Consider again a test of

 $H_0: \mu = 10$ $H_a: \mu > 10$

using a level of significance $\alpha = 0.05$, and that $\sigma = 4$.

Now suppose we want n to be **large enough** so that the **Type II error probability** when $\mu = 12$ is **0.20**, which will give a **power** of **0.80**.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

We need n to be large enough that

 $\beta(12) = 0.20.$

We need n to be large enough that

$$\beta(12) = 0.20.$$

From (1), this means we need

$$0.20 = \Phi\left(z_{\alpha} + \frac{\mu_0 - \mu}{\sigma/\sqrt{n}}\right) = \Phi\left(1.64 + \frac{10 - 12}{4/\sqrt{n}}\right).$$

We need n to be large enough that

$$\beta(12) = 0.20.$$

From (1), this means we need

$$0.20 = \Phi\left(z_{\alpha} + \frac{\mu_0 - \mu}{\sigma/\sqrt{n}}\right) = \Phi\left(1.64 + \frac{10 - 12}{4/\sqrt{n}}\right).$$

But from a N(0,1) table,

$$0.20 = \Phi(-0.84)$$

(i.e. $z_{0.20} = 0.84$).

We need n to be large enough that

$$\beta(12) = 0.20.$$

From (1), this means we need

$$0.20 = \Phi\left(z_{\alpha} + \frac{\mu_0 - \mu}{\sigma/\sqrt{n}}\right) = \Phi\left(1.64 + \frac{10 - 12}{4/\sqrt{n}}\right).$$

But from a N(0,1) table,

$$0.20 = \Phi(-0.84)$$

(i.e. $z_{0.20} = 0.84$). This implies

$$1.64 + \frac{10 - 12}{4/\sqrt{n}} = -0.84$$

Nels Grevstad

Solving for *n* gives

$$n = \left(\frac{4(1.64+0.84)}{10-12}\right)^2 = 24.60, \tag{5}$$

・ロト ・聞ト ・ヨト ・ヨト

= 990

Solving for *n* gives

$$n = \left(\frac{4(1.64+0.84)}{10-12}\right)^2 = 24.60, \tag{5}$$

・ロト ・聞 と ・ ヨ と ・ ヨ と …

= 990

so we'd need a sample size of at least n = 25.

• Generalizing from (5):

Sample Size for a Desired Type II Error Probability: The sample size n for which a level α test has a desired Type II error probability β at the specified value μ is

$$n = \begin{cases} \left(\frac{\sigma(z_{\alpha}+z_{\beta})}{\mu_{0}-\mu}\right)^{2} \\ \left(\frac{\sigma(z_{\alpha/2}+z_{\beta})}{\mu_{0}-\mu}\right)^{2} \end{cases}$$

for a one-tailed (upper or lower) test

for a two-tailed test

(6)

くロト (過) (目) (日)

Exercise

Consider again a test of

$$H_0: \mu = 10$$
$$H_a: \mu > 10$$

・ロン・西方・ ・ ヨン・ ヨン・

2

using $\alpha = 0.05$, and suppose again that $\sigma = 4$.

Exercise

Consider again a test of

 $H_0: \mu = 10$ $H_a: \mu > 10$

using $\alpha = 0.05$, and suppose again that $\sigma = 4$.

a) Use (6) to determine how big n needs to be for the **Type II** error probability to be 0.10 when $\mu = 11$.

Exercise

Consider again a test of

 $H_0: \mu = 10$ $H_a: \mu > 10$

using $\alpha = 0.05$, and suppose again that $\sigma = 4$.

a) Use (6) to determine how big n needs to be for the **Type II** error probability to be **0.10** when $\mu = 11$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Hint: $z_{0.10} = 1.28$ and $z_{0.05} = 1.64$.

b) Use (6) to determine how big n needs to be for the **Type II** error probability to be 0.10 when $\mu = 12$.

イロト イポト イヨト イヨト

= 990

- b) Use (6) to determine how big n needs to be for the **Type II** error probability to be 0.10 when $\mu = 12$.
- c) If we want the **Type II error probability** to be **0.10** when $\mu = 13$, will *n* need to be **larger** or **smaller** than the one in Part *b*?

ヘロト 人間 ト ヘヨト ヘヨト

- b) Use (6) to determine how big n needs to be for the **Type II** error probability to be 0.10 when $\mu = 12$.
- c) If we want the **Type II error probability** to be **0.10** when $\mu = 13$, will *n* need to be **larger** or **smaller** than the one in Part *b*?
- d) If we want the Type II error probability to be 0.20 when µ = 12, will n need to be larger or smaller than the one in Part b?

ヘロト ヘアト ヘビト ヘビト

 For t tests (and other tests), expressions for the sample size n needed to attain a desired Type II error probability or power are more complicated.

イロト イポト イヨト イヨト

3

• For *t* tests (and other tests), expressions for the sample size *n* needed to attain a desired Type II error probability or power are more complicated.

イロト イポト イヨト イヨト

э.

(See the textbook.)

• For *t* tests (and other tests), expressions for the sample size *n* needed to attain a desired Type II error probability or power are more complicated.

(See the textbook.)

The sample size n can be obtained using software.

ヘロン 人間 とくほ とくほ とう

э.