Identifying Causality: Experiments vs Observational Studies Paired t Test for Two Population Means μ_1 and μ_2 Paired t Confidence Interval	Notes
Statistical Methods	
Nels Grevstad	
Metropolitan State University of Denver **rangerevsta@msudenver.edu**	
September 12, 2019	
Nels Grevstad Identifying Causality: Experiments vs Observational Studies	
Paired t Test for Two Population Means μ_1 and μ_2	Notes
Identifying Causality: Experiments vs Observational Studies	
2 Paired t Test for Two Population Means μ_1 and μ_2	
$oxed{3}$ Paired t Confidence Interval	
Nels Grevstad Identifying Causality: Experiments vs Observational Studies	
Paired & Test for Two Population Means μ_1 and μ_2 Paired & Confidence Interval Objectives	Notes
Objectives:	
 Identify potentially confounding variables (in observational studies). 	
 Carry out a paired t test for two population means. Compute and interpret a paired t CI for the difference 	
between two population means.	
Nels Grevstad	
	Notes
Identifying Causality: Experiments vs Observational Studies	

• Does a person's risk of colon cancer (response) depend on their diet (explanatory variable)?

Does a person's income (response) depend on their gender

 Many studies are carried out to examine whether two variables (called *explanatory* and *response* variables) are

related to each other. For example:

(explanatory variable)?

Identifying Causality: Experiments vs Observational Studies
Paired t Test for Two Population Means μ_1 and μ_2 Paired t Confidence Interval

- Such studies can be either of two types:
 - Observational study: The investigator merely observes whether the two variables vary together.

No attempt is made to **induce changes** in the response variable.

• Experiment: Treatments are imposed on individuals.

A **deliberate attempt** is made to **induce changes** in the response variable.

Nels Grevstad

Identifying Causality: Experiments vs Observational Studies
Paired t Test for Two Population Means μ_1 and μ_2 Paired t Confidence Interval

 An observational study (by itself) can't establish cause and effect.

Such studies suffer from the possible presence of variables whose effects on the response are *confounded* with the effect (if any) of the explanatory variable.

Nels Grevstad

Identifying Causality: Experiments vs Observational Studies
Paired t Test for Two Population Means μ_1 and μ_2 Paired t Confidence Interval

Exercise

An **observational study** showed that people who eat foods rich in antioxidants (such as fruits and vegetables) have lower rates of colon cancer than those who don't eat such foods.

- a) Can we conclude that eating such foods **reduces** the risk of colon cancer?
- b) List a few possible confounding variables that might explain the lower rates of colon cancer.

Hint: Try to identify **other** ways in which people who eat lots of fruits and vegetables might differ from people who don't.

Nels Grevstad

Identifying Causality: Experiments vs Observational Studies
Paired t Test for Two Population Means μ_1 and μ_2 Paired t Confidence Interval

 To establish cause and effect, we need to carry out an experiment.

Notes	
Notes	
Notes	
Notes	

Identifying Causality: Experiments vs Observational Studies Paired t Test for Two Population Means μ_1 and μ_2 Paired t Confidence Interval

Example

In a clinical trial (**experiment** on human subjects) to investigate whether dietary antioxidants (vitamins A, C, and E) would lower colon cancer rates, **864** subjects were **randomized** to four treatment groups given different amounts of antioxidants:

Group 1: Daily beta carotene (vitamin A)

Group 2: Daily vitamins C and E

Group 3: All three vitamins daily

Group 4: No vitamin supplements.

After four years, researchers were surprised to find no significant difference in colon cancer among these groups.

Nels Grevstac

dentifying Causality: Experiments vs Observational Studies
Paired t Test for Two Population Means μ_1 and μ_2 Paired t Confidence Interval

Note:

- Randomization produces groups that are similar with respect to variables whose effects might otherwise be confounded with antioxidant intake (e.g. amount of exercise, smoking and drinking status, etc.).
- Before imposing treatments, any differences across groups in propensity for developing colon cancer would be due to chance.
- Therefore, after imposing treatments, any statistically significant differences in colon cancer rates could be attributed the effects of the treatments (antioxidants).

Nels Grevstad

Identifying Causality: Experiments vs Observational Studies
Paired t Test for Two Population Means μ_1 and μ_2 Paired t Confidence Interval

Paired t Test for Two Population Means μ_1 and μ_2

Paired Samples Study Designs

 The paired t test is used with two samples collected using a paired samples study design.

Nels Grevstad

Identifying Causality: Experiments vs Observational Studies
Paired t Test for Two Population Means μ1 and μ2
Paired t Confidence Interval

Exercise

An **experiment** is to be carried out to compare the amount of wear using two different materials for soles of boys' shoes.

Independent Samples Study Design: Randomly split twenty boys into two treatment groups of size ten, one receiving shoes with **material A** and the other shoes with **material B**.

Paired Samples Study Design: Give each of ten boys one shoe made with **material A** and the other with **material B**. Randomly choose which shoe (left or right) gets which material.

Which study design is preferred? Why?

Notes
Notes
Notes
Notes
Voices

- Because boys spend different amounts of time on their feet and run, walk, and play differently, the amount of shoe wear will vary from one boy to the next.
- In the paired samples study design, each boy serves as his own control (or comparison) – the amount of time he spends on his feet and the way he runs, walks, and plays affects both feet equally.

Nels Grevstag

Identifying Causality: Experiments vs Observational Studies
Paired t Test for Two Population Means μ_1 and μ_2 Paired t Confidence Interval

Paired t Test

- Suppose we have two samples from a paired samples study design.
- We'll see how to use the samples to decide if the two population means μ_1 and μ_2 are different.
- We denote the first sample by X_1, X_2, \ldots, X_n and the second by Y_1, Y_2, \ldots, Y_n , where each X_i is **paired** with it's corresponding Y_i .

Nels Grevstad

Identifying Causality: Experiments vs Observational Studies
Paired t Test for Two Population Means μ_1 and μ_2 Paired t Confidence Interval

• The **null hypothesis** is that no difference between the population means μ_1 and μ_2 :

Null Hypothesis:

$$H_0: \mu_1 - \mu_2 = 0$$

Nels Grevstad

Identifying Causality: Experiments vs Observational Studies
Paired t Test for Two Population Means μ_1 and μ_2 Paired t Confidence Interval

 The alternative hypothesis will depend on what we're trying to "prove":

Alternative Hypothesis: The alternative hypothesis will be one of

1. $H_a: \mu_1 - \mu_2 > 0$ (one-sided, upper-tailed)

2. $H_a: \mu_1 - \mu_2 < 0$ (one-sided, lower-tailed)

3. $H_a: \mu_1 - \mu_2 \neq 0$ (two-sided, two-tailed)

depending on what we're trying to verify using the data.

Notes		
Notes		
Notes		
Notes		
-	 -	

ullet Consider the n differences

$$\begin{array}{rcl} D_1 & = & X_1 - Y_1 \\ D_2 & = & X_2 - Y_2 \\ & \vdots \\ D_n & = & X_n - Y_n \end{array}$$

Nels Grevstad

Identifying Causality: Experiments vs Observational Studies Paired t Test for Two Population Means μ_1 and μ_2 Paired t Confidence Interval

Example

Here are the data on amount of wear in soles of boys shoes.

Boy	Material B	Material A	Difference
1	14.0	13.2	0.8
2	8.8	8.2	0.6
3	11.2	10.9	0.3
4	14.2	14.3	-0.1
5	11.8	10.7	1.1
6	6.4	6.6	-0.2
7	9.8	9.5	0.3
8	11.3	10.8	0.5
9	9.3	8.8	0.5
10	13.6	13.3	0.3
	$\bar{X} = 11.04$	$\bar{Y} = 10.63$	$\bar{D} = 0.41$
	$s_x = 2.52$	$s_u = 2.45$	$s_D = 0.39$

Nels Grevstad

Identifying Causality: Experiments vs Observational Studies
Paired t Test for Two Population Means μ_1 and μ_2 Paired t Confidence Interval

• We considered D_1, D_2, \ldots, D_n to be a single random sample from a *population of differences* whose **mean** is μ_d .

Nels Grevstad

dentifying Causality: Experiments vs Observational Studies
Paired t Test for Two Population Means μ₁ and μ₂
Paired t Confidence Interval

Equivalent Ways of Stating the Hypotheses

Proposition

 μ_d is related to μ_1 and μ_2 as follows.

$$\mu_d = \mu_1 - \mu_2.$$

Notes			
Notes			
Notes			
Notes			
	 	 	 _

• The above fact holds because

$$\mu_d = E(D_i) = E(X_i - Y_i),$$

and $X_i - Y_i$ is a **linear combination** of X_i and Y_i , so

$$E(X_i - Y_i) = E(X_i) - E(Y_i) = \mu_1 - \mu_2$$
.

Nels Grevstad

dentifying Causality: Experiments vs Observational Studies

Paired t Test for Two Population Means μ_1 and μ_2

• Hypotheses about $\mu_1 - \mu_2$ can be written in terms of μ_d :

Hypothesis	Equivalent
about μ_1 and μ_2	Hypothesis about μ_d
$H_0: \mu_1 - \mu_2 = 0$	$H_0: \mu_d = 0$
$H_a: \mu_1 - \mu_2 > 0$	$H_a: \mu_d > 0$
$H_a: \mu_1 - \mu_2 < 0$	$H_a: \mu_d < 0$
$H_a: \mu_1 - \mu_2 \neq 0$	$H_a: \mu_d \neq 0$

Nels Grevstad

Identifying Causality: Experiments vs Observational Studies
Paired t Test for Two Population Means μ1 and μ2
Paired t Confidence Interval

Paired t Test Statistic for $\mu_1 - \mu_2$ (or μ_d):

$$T \ = \ \frac{\bar{D} - \mu_d}{S_D/\sqrt{n}} \, , \label{eq:Tau}$$

where \bar{D} and S_D are the sample mean and sample standard deviation of the differences D_1, D_2, \ldots, D_n .

ullet t is just the **one-sample** t **test statistic** for a test of μ_d .

Nels Grevstad

dentifying Causality: Experiments vs Observational Studies
Paired t Test for Two Population Means μ1 and μ2
Paired t Confidence Interval

• Now suppose either the sample of **differences** is from a $N(\mu_d, \sigma_d)$ population or n is *large*.

In this case, the sampling distribution of the test statistic is as follows.

Sampling Distribution of the Test Statistic Under H_0 : If t is the paired t test statistic, then when

$$H_0: \mu_1 - \mu_2 = 0$$
 (or $H_0: \mu_d = 0$)

is true,

$$t \sim t(n-1)$$
.

Notes			
Notes			
10162			
Notes			
Notes			
Notes			
VOICS			

- ullet The t(n-1) curve gives us:
 - The *rejection region* as the extreme 100 α % of t values (in the direction(s) specified by H_a).
 - The $\emph{p-value}$ as the tail area(s) beyond the observed t value (in the direction(s) specified by H_a).

Nels Grevstac

Identifying Causality: Experiments vs Observational Studies
Paired t Test for Two Population Means μ_1 and μ_2 Paired t Confidence Interval

• Comment: Sometimes we want to test

$$H_0: \mu_d = \Delta_0$$

where Δ_0 is some non-zero value. In this case the test statistic is

$$T \, = \, \frac{\bar{D} - \Delta_0}{S_D/\sqrt{n}},$$

which follows a t(n-1) distribution when ${\cal H}_0$ is true.

Nels Grevstad

dentifying Causality: Experiments vs Observational Studies
Paired t Test for Two Population Means μ1 and μ2
Paired t Confidence Interval

Exercise

Here (again) are the data on amount of wear in soles of boys shoes.

Boy	Material B	Material A	Difference
1	14.0	13.2	0.8
2	8.8	8.2	0.6
3	11.2	10.9	0.3
4	14.2	14.3	-0.1
5	11.8	10.7	1.1
6	6.4	6.6	-0.2
7	9.8	9.5	0.3
8	11.3	10.8	0.5
9	9.3	8.8	0.5
10	13.6	13.3	0.3
	$\bar{X} = 11.04$	$\bar{Y} = 10.63$	$\bar{D} = 0.41$
	$s_x = 2.52$	$s_y = 2.45$	$s_D = 0.39$

Nels Grevstac

Identifying Causality: Experiments vs Observational Studies
Paired t Test for Two Population Means μ_1 and μ_2 Paired t Confidence Interval

assumption is tenable.

Histogram of Differences in Wear (B minus A)

A histogram of the n=10 differences suggests the normality

Nels Grevstad

Notes			
140100			
Notes			
Notes			

a) Carry out a paired t test, with $\alpha=0.05$, to decide if there's any difference in wear for the two the materials.

Hint: You should get t = 3.324 and **p-value = 0.0089**.

b) If you found a difference in Part a, which material is preferred?

Nels Grevstad

Identifying Causality: Experiments vs Observational Studies Paired t Test for Two Population Means μ_1 and μ_2

• The differences D_1, D_2, \ldots, D_n will be normally distributed if the X_i 's and Y_i 's are drawn from normal populations.

Proposition

Suppose $X_i \sim N(\mu_1, \sigma_1)$ and $Y_i \sim N(\mu_2, \sigma_2)$. Let

$$D_i = X_i - Y_i.$$

Then

$$D_i \sim N(\mu_d, \sigma_d)$$

where $\mu_d = \mu_1 - \mu_2$ (and σ_d is discussed later).

Nels Grevstad

Identifying Causality: Experiments vs Observational Studies
Paired t Test for Two Population Means μ_1 and μ_2 Paired t Confidence Interval

ullet The above fact holds because **linear combinations** of **normally distributed** random variables are **normally distributed** (and X_i-Y_i is a linear combination of X_i and Y_i).

Nels Grevstad

Identifying Causality: Experiments vs Observational Studies
Paired t Test for Two Population Means μ_1 and μ_2 Paired t Confidence Interval

(Optional Section) Advantage of Matched Pairs Study Designs

Proposition

It can be shown that

$$\bar{D} = \bar{X} - \bar{Y},$$

where \bar{D} is the sample mean of D_1,D_2,\ldots,D_n and \bar{X} and \bar{Y} are the sample means of X_1,X_2,\ldots,X_n and Y_1,Y_2,\ldots,Y_n .

Notes			
-			
-			
Notes			
	<u> </u>	<u> </u>	 <u> </u>
-			
Notes			
Notes			

• Compare the **paired** t and **two-sample** t **test statistics** (when m=n):

Paired t Test Statistic:

Two-Sample t Test Statistic:

$$T = \frac{\bar{X} - \bar{Y} - 0}{S_D / \sqrt{n}}$$

$$T = \frac{\bar{X} - \bar{Y} - 0}{\sqrt{S_1^2/n + S_2^2/n}}$$

It can be shown that usually ${\cal S}_D^2 < {\cal S}_1^2 + {\cal S}_2^2$

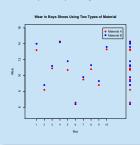
(because $\sigma_d^2 = \sigma_1^2 + \sigma_2^2 - \rho \sigma_1 \sigma_2,$ where $0 < \rho < 1$).

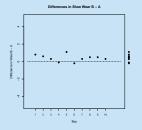
Nels Grevstad

dentifying Causality: Experiments vs Observational Studies
Paired t Test for Two Population Means μ1 and μ2
Paired t Confidence Interval

Example

The figure below shows two representations of the data from the study comparing two materials for soles of boys shoes.





Nels Grevstad

Identifying Causality: Experiments vs Observational Studies
Paired t Test for Two Population Means μ_1 and μ_2 Paired t Confidence Interval

Compare:

Material A: $S_1^2 = 6.35$

Material B: $S_2^2 = 6.00$

 $\frac{\text{Differences}}{S_D^2 = 0.15}$

Compare:

Two-Sample t:

t = 0.37df = 17

p-value = 0.7165

Paired t:

t = 3.32

df = 9

p-value = 0.0089

Nels Grevstad

dentifying Causality: Experiments vs Observational Studies Paired t Test for Two Population Means μ_1 and μ_2

Paired t Confidence Interval for $\mu_1 - \mu_2$

Paired t **CI**: When the differences D_1,D_2,\ldots,D_n in **paired samples** can be treated as a sample from a population whose mean is μ_d (= $\mu_1-\mu_2$) a $100(1-\alpha)\%$ **paired** t **confidence interval for** $\mu_1-\mu_2$ is:

$$\bar{D} \pm t_{\alpha/2,n-1} \cdot \frac{S_D}{\sqrt{n}}$$

Notes	
Notes	
Notes	

Identifying Causality: Experiments vs Observational Studies Paired t Test for Two Population Means μ_1 and μ_2 Paired t Confidence Interval

- The CI is valid if either the sample of differences is from a normal population or n is large.
- In either case, we can be $100(1-\alpha)\%$ confident that $\mu_1-\mu_2$ will be contained in the CI.
- ullet The CI is just the **one-sample** t **CI** based on the **differences**.

Nels Grevstag

Identifying Causality: Experiments vs Observational Studies
Paired t Test for Two Population Means μ_1 and μ_2 Paired t Confidence Interval

Exercise

For the boys' shoe wear data set, the **sample mean** and **standard deviation** of the **differences** was

$$ar{D}=0.41$$
 and $S_D=0.39.$

- a) Give the (point) **estimate** of the true difference in means $\mu_1 \mu_2$ (or μ_d).
- b) Compute a 95% paired t CI for $\mu_1 \mu_2$ (or μ_d). Hint: Using $t_{0.025,9} = \textbf{2.262}$, you should get (0.116, 0.704).
- c) Does the CI contain the value **zero**? What does this say about the shoe wear for the two materials?

Nels Grevstad

Notes		
Notes		
Notes		
Notes		