Two-Sample Z Test for Two Population Proportions p_1 and p_2 Two-Sample Z Confidence Interval for p_1-p_2

Statistical Methods

Nels Grevstad

Metropolitan State University of Denver ngrevsta@msudenver.edu

September 14, 2019

Nels Grevstad

Two-Sample Z Test for Two Population Proportions p_1 and p_2 Two-Sample Z Confidence Interval for $p_1 - p_2$

Topics

Nels Grevstad

Two-Sample Z Confidence Interval for $p_1 - p_2$

Objectives

Objectives:

- Carry out a two-sample z test for two population proportions.
- Compute and interpret a two-sample z CI for the difference between two population proportions.

Nels Grevstad

Two-Sample Z Test for Two Population Proportions p_1 and p_2

Two-Sample Z Test for Two Population Proportions p_1 and p_2 $_{(9.4)}$

- Suppose we have random samples of sizes m and n from two populations of successes and failures.
- ullet We'll see how to use the samples to decide if the **population proportions** of **successes** p_1 and p_2 are different.

The appropriate test is called the $\emph{two-sample}\ z$ $\emph{test for}\ p_1-p_2.$

Notes			
Notes			
Notes			
Notes			
. 10100			
Notes			

• The **null hypothesis** is that no difference between the population proportions p_1 and p_2 :

Null Hypothesis:

$$H_0: p_1 - p_2 = 0$$

Nels Grevstad

Two-Sample Z Test for Two Population Proportions p_1 and p_2

 The alternative hypothesis will depend on what we're trying to "prove":

Alternative Hypothesis: The alternative hypothesis will be one of

- 1. $H_a: p_1 p_2 > 0$
- (one-sided, upper-tailed)
- 2. $H_a: p_1 p_2 < 0$
- (one-sided, lower-tailed)
- 3. $H_a: p_1 p_2 \neq 0$
- (two-sided, two-tailed)

depending on what we're trying to verify using the data.

Nels Grevstad

Two-Sample Z lest for two Population Proportions p_1 and p_2 Two-Sample Z Confidence Interval for p_1-p_2

The Sampling Distribution of $\hat{P}_1 - \hat{P}_2$

- Suppose we have random samples of sizes m and n from two populations whose proportions of successes are p₁ and p₂.
- The difference $\hat{P}_1 \hat{P}_2$ between the two sample proportions is an estimator of $p_1 p_2$.

Nels Grevstad

Two-Sample Z Test for Two Population Proportions p_1 and p_2

• Because \hat{P}_1 and \hat{P}_2 are (approximately) **normal** random variables when m and n are both **large** (Class Notes 4), and linear combinations of normal random variables are themselves normal (Class Notes 1), we have the following fact.

Notes			
Notes			
Notes			
Notes			
Notes			
Notes			

Proposition

If we have random samples of sizes m and n (drawn independently of each other) from **two populations** whose **proportions** of **successes** are p_1 and p_2 , then if m and n are both large.

$$\hat{P}_1 - \hat{P}_2 \sim N \left(p_1 - p_2, \ \sqrt{\frac{p_1(1-p_1)}{m} + \frac{p_2(1-p_2)}{n}} \right)$$

(approximately). In this case,

$$Z = \frac{\hat{P}_1 - \hat{P}_2 - (p_1 - p_2)}{\sqrt{\frac{p_1(1-p_1)}{m} + \frac{p_2(1-p_2)}{n}}} \sim \mathsf{N}(0,1) \tag{1}$$

(approximately).

Nels Grevstad

Two-Sample Z Test for Two Population Proportions p_1 and p_2 Two-Sample Z Confidence Interval for $p_1 - p_2$

This follows because

$$\hat{P}_1 \sim N\left(p_1,\,\sqrt{\frac{p_1(1-p_1)}{m}}\right) \quad \text{and} \quad \hat{P}_2 \sim N\left(p_2,\,\sqrt{\frac{p_2(1-p_2)}{n}}\right)$$

(approximately), and so $\hat{P}_1-\hat{P}_2$ is a linear combination of two independent normal random variables.

Nels Grevstad

Two-Sample Z Test for Two Population Proportions p_1 and p_2

• It follows (from the proposition) that **when** $H_0: p_1 - p_2 = 0$ is **true**, the random variable

$$Z = \frac{\hat{P}_1 - \hat{P}_2 - 0}{\sqrt{p(1-p)\left(\frac{1}{m} + \frac{1}{n}\right)}} \sim N(0,1)$$

(approximately), where p is the **common value** of p_1 and p_2 .

Nels Grevsta

Two-Sample Z Test for Two Population Proportions p_1 and p_2

Two-Sample z Test Statistic for p_1-p_2 :

$$Z = \frac{\hat{P}_1 - \hat{P}_2 - 0}{\sqrt{\hat{P}(1 - \hat{P})\left(\frac{1}{m} + \frac{1}{n}\right)}}$$

where \hat{P} is a **pooled estimator of** p, defined as

 $\hat{P} = rac{ ext{Total number of } successes ext{ in both samples combined}}{ ext{Total sample size when both samples are combined}}$

$$= \ \frac{m}{m+n} \cdot \hat{P}_1 + \frac{n}{m+n} \cdot \hat{P}_2$$

Notes	
Notes	
Notes Notes Notes Notes	
Notes	
Notes	
Notes	
Notes	
Notes	
Notes	
Notes	
Notes	
Notes	
Notes	

- Z measures how many standard errors $\hat{P}_1 \hat{P}_2$ is away from 0
- $\hat{P}_1 \hat{P}_2$ is an estimator of the unknown difference $p_1 p_2$, so
 - 1. Z will be approximately **zero** (most likely) if $p_1 p_2 = 0$.
 - 2. It will be **positive** (most likely) if $p_1 p_2 > 0$.
 - 3. It will be **negative** (most likely) if $p_1 p_2 < 0$.

Nels Grevsta

Two-Sample Z Test for Two Population Proportions p_1 and p_2

1. Large positive values of Z provide evidence against ${\cal H}_0$ in favor of

$$H_a: p_1 - p_2 > 0.$$

2. Large negative values of Z provide evidence against \mathbf{H}_0 in favor of

$$H_a: p_1 - p_2 < 0.$$

3. Large positive and large negative values of Z provide evidence against ${\cal H}_0$ in favor of

$$H_a: p_1-p_2\neq 0.$$

Nels Grevstad

Two-Sample Z Test for Two Population Proportions p_1 and p_2

Sampling Distribution of the Test Statistic Under H_0 :

If Z is the two-sample z test statistic, then when m and n are both large and $% \left(1\right) =\left(1\right) ^{n}$

$$H_0: p_1 - p_2 = 0$$

is true,

$$Z \sim N(0, 1)$$

(approximately).

Nels Grevstad

Two-Sample Z Test for Two Population Proportions p_1 and p_2

- The N(0, 1) curve gives us:
 - The *rejection region* as the extreme 100 α % of z values (in the direction(s) specified by H_a).
 - The *p-value* as the **tail area(s) beyond the observed** z **value** (in the direction(s) specified by H_a).

Notes					
Notes					
Notes	Notos				
	Notes				
Notes					
Notes	Nistas				
Notes	Notes				
Notes	Notes				
Notes	Notes				
Notes	Notes				
Notes	Notes				
Notes	Notes				
Notes	Notes				
Notes	Notes				
Notes	Notes				
Notes	Notes				

Exercise

A study appearing in the journal *Science* investigated whether there's a link between television violence and aggressive behavior by those who watch a lot of TV.

The researchers randomly sampled **707** families in New York state and made follow-up observations over 17 years.

The table on the next slide shows results about whether a sampled teenager later conducted any aggressive act against another person.

Nels Grevstag

Two-Sample Z Test for Two Population Proportions p_1 and p_2 Two-Sample Z Confidence Interval for $p_1 - p_2$

	Sample		essive Act
Time Watching TV	Size	Yes	No
Less than 1 hr per day	m = 88	5	83
More than 1 hr per day	n = 619	154	465

The sample proportions that conducted aggressive acts are

$$\hat{P}_1 = \frac{5}{88} =$$
0.057 and $\hat{P}_2 = \frac{154}{619} =$ **0.249**

Nels Grevstad

Two-Sample Z Test for Two Population Proportions p_1 and p_2

Carry out the two-sample z test of the hypotheses:

$$H_0: p_1 - p_2 = 0$$

 $H_a: p_1 - p_2 < 0$

where p_1 is the **proportion** that conduct aggressive acts in the **population** that watches **less than 1 hour** of TV per day, and p_2 is the **proportion** in the **population** that watches **more than 1 hour** per day.

Hints: You should get the pooled estimate $\hat{P}=0.225$, a test statistic Z=-4.04, and a p-value **0.0000**.

Nels Grevstad

Two-Sample Z Test for Two Population Proportions p_1 and p_2 Two-Sample Z Confidence Interval for p_1-p_2

Two-Sample Z Confidence Interval for p_1-p_2

Two-Sample Z **CI**: For independent samples of sizes m and n from two populations whose proportions of *successes* are p_1 and p_2 , a $100(1-\alpha)\%$ *two-sample* z *confidence interval for* p_1-p_2 is

$$\hat{P}_1 - \hat{P}_2 \pm z_{\alpha/2} \cdot \sqrt{\frac{\hat{P}_1(1-\hat{P}_1)}{m} + \frac{\hat{P}_2(1-\hat{P}_2)}{n}}$$
.

Notes	Notes			
Notes				
	Notes			
Notes	Notes			
Notes				
votes	Notos			
	Notes			

ullet The CI is valid as long as the sample sizes m and n are both large

Nels Grevstag

Two-Sample Z Test for Two Population Proportions p_1 and p_2 Two-Sample Z Confidence Interval for $p_1 - p_2$

Evorciso

Consider again the study of TV violence and aggressive behavior in people who watch TV.

- a) Give a (point) **estimate** of the (unknown) difference p_1-p_2 .
- b) Compute and interpret a 95% CI for p_1-p_2 .

Hints: The z **critical value** is $z_{0.025}=1.96$ and you should get $-0.192\pm0.059=(-0.251,\,-0.133)$.

Nels Grevstad

Notes	
Notes	
Notes	
Notes	