Statistical Methods

Nels Grevstad

Metropolitan State University of Denver ngrevsta@msudenver.edu

September 17, 2019

Topics

1 F Distributions

 $oxed{2}$ F Test for Two Population Standard Deviations σ_1 and σ_2

Objectives

Objectives:

- State the main properties of F distributions.
- Carry out an F test for two population standard deviations σ_1 and σ_2 .

F Distributions

• Suppose X_1, X_2, \ldots, X_m and Y_1, Y_2, \ldots, Y_n are random samples from a $N(\mu_1, \sigma_1)$ and $N(\mu_2, \sigma_2)$ distributions, respectively, and that they were drawn *independently* of each other. Then the random variable

$$F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \tag{1}$$

F Distributions

• Suppose X_1, X_2, \ldots, X_m and Y_1, Y_2, \ldots, Y_n are random samples from a $N(\mu_1, \sigma_1)$ and $N(\mu_2, \sigma_2)$ distributions, respectively, and that they were drawn *independently* of each other. Then the random variable

$$F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \tag{1}$$

follows an \underline{F} distribution with m-1 numerator df and n-1 denominator df, denoted F(m-1,n-1).

• Also, the **reciprocal** of F follows an F(n-1, m-1) distribution (the **df** get **swapped**), i.e.

$$\frac{1}{F} = \frac{S_2^2/\sigma_2^2}{S_1^2/\sigma_1^2} \sim F(n-1, m-1).$$

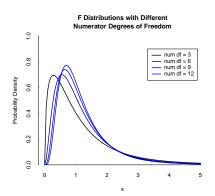
• Properties of *F* distributions:

• Properties of F distributions:

1. They're right skewed and lie entirely to the right of zero.

• Properties of F distributions:

- They're right skewed and lie entirely to the right of zero.
- 2. The **numerator** and **denominator df** control the shape, center, and spread of the distribution.



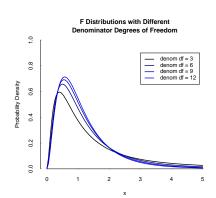


Figure: F(m-1,10) distributions with different values of m (left); F(6,n-1) distributions with different values of n (right).

 Even if the samples are from non-normal distributions, the random variable (1) follows an F distribution if m and n are large. Even if the samples are from non-normal distributions, the random variable (1) follows an F distribution if m and n are large.

Proposition

Suppose X_1, X_2, \ldots, X_m and Y_1, Y_2, \ldots, Y_n are a random samples from *any* distributions whose standard deviations are σ_1 and σ_2 , respectively, and that the samples were drawn *independently* of each other. Then **if** m **and** n **are large**,

$$F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(m-1, n-1)$$

approximately.

F Test for Two Population Standard Deviations σ_1 and σ_2

 Suppose we have random samples of sizes m and n from two populations.

F Test for Two Population Standard Deviations σ_1 and σ_2

- Suppose we have random samples of sizes m and n from two populations.
- We'll see how to use the samples to decide if the population standard deviations σ₁ and σ₂ are different.

F Test for Two Population Standard Deviations σ_1 and σ_2

- Suppose we have random samples of sizes m and n from two populations.
- We'll see how to use the samples to decide if the **population standard deviations** σ_1 and σ_2 are different.

The appropriate test is called the F *test for* σ_1 *and* σ_2 .

• The **null hypothesis** is that no difference between the population standard deviations σ_1 and σ_2 :

Null Hypothesis:

$$H_0: \sigma_1 = \sigma_2$$

 The alternative hypothesis will depend on what we're trying to "prove":

Alternative Hypothesis: The alternative hypothesis will be one of

- 1. $H_a: \sigma_1 > \sigma_2$ (one-sided, upper-tailed)
- 2. $H_a: \sigma_1 < \sigma_2$ (one-sided, lower-tailed)
- 3. $H_a: \sigma_1 \neq \sigma_2$ (two-sided, two-tailed)

depending on what we're trying to verify using the data.

F Test Statistic for σ_1 and σ_2 :

$$F = \frac{S_1^2}{S_2^2}$$

F Test Statistic for σ_1 and σ_2 :

$$F = \frac{S_1^2}{S_2^2}$$

• S_1 and S_2 are estimators of σ_1 and σ_2 , respectively, so ...

F Test Statistic for σ_1 and σ_2 :

$$F = \frac{S_1^2}{S_2^2}$$

- S_1 and S_2 are estimators of σ_1 and σ_2 , respectively, so ...
 - 1. F will be approximately **one** (most likely) if $\sigma_1 = \sigma_2$.
 - 2. It larger than one (most likely) if $\sigma_1 > \sigma_2$.
 - 3. It will be **smaller than one** (most likely) if $\sigma_1 < \sigma_2$.

1. Large values of F provide evidence against H_0 in favor of

$$H_a:\sigma_1>\sigma_2.$$

2. Small values of F provide evidence against H_0 in favor of

$$H_a:\sigma_1<\sigma_2.$$

3. Large and small values of F provide evidence against H_0 in favor of

$$H_a:\sigma_1\neq\sigma_2$$
.

Sampling Distribution of the Test Statistic Under H_0 :

If $F = S_1^2/S_2^2$ is the F test statistic, then when

$$H_0: \sigma_1 = \sigma_2$$

is true,

$$F \sim F(m-1, n-1).$$

• The F(m-1, n-1) curve gives us:

- The F(m-1, n-1) curve gives us:
 - The *rejection region* as the extreme 100 α % of F values (in the direction(s) specified by H_a).

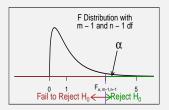
- The F(m-1, n-1) curve gives us:
 - The *rejection region* as the extreme 100 α % of F values (in the direction(s) specified by H_a).
 - The *p-value* as the tail area(s) beyond the observed F
 value (in the direction(s) specified by H_a).

• We'll use $F_{\alpha,m-1,n-1}$ to denote the F critical value that's the $100(1-\alpha)$ th percentile of the F(m-1,n-1) distribution (i.e. the it has probability α to its right).

Rejection Region: The rejection region is the set of F values in the tail of the F(m-1,n-1) curve:

1. To the **right of** $F_{\alpha, m-1, n-1}$ if the alternative hypothesis is $H_a: \sigma_1 > \sigma_2$:

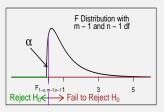
Rejection Region for Upper-Tailed F Test



Values of F

2. To the **left of** $F_{1-\alpha, m-1, n-1}$ if the alternative hypothesis is $H_a: \sigma_1 < \sigma_2$:

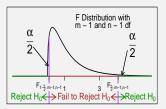
Rejection Region for Lower-Tailed F Test



Values of F

3. To the **left of** $F_{1-\alpha/2, m-1, n-1}$ **and right of** $F_{\alpha/2, m-1, n-1}$ if the alternative hypothesis is $H_a: \sigma_1 \neq \sigma_2$:

Rejection Region for Two-Tailed F Test

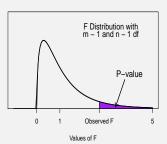


Values of F

P-Value: The **p-value** is the **tail area** under the F(m-1,n-1) curve:

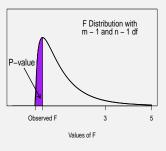
1. To the **right** of the **observed** F if the alternative hypothesis is $H_a: \sigma_1 > \sigma_2$:

P-Value for Upper-Tailed F Test



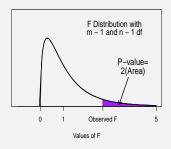
2. To the **left** of the **observed** F if the alternative hypothesis is $H_a: \sigma_1 < \sigma_2$:

P-Value for Lower-Tailed F Test

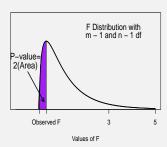


3. To the **left of** F **or right of** F, whichever is **smaller**, then **multiplied by two** if the alternative hypothesis is $H_a: \sigma_1 \neq \sigma_2$:

P-Value for Upper-Tailed F Test



P-Value for Two-Tailed F Test



Exercise

To determine whether calcium affects **blood pressure**, twenty one men were randomized two groups.

Exercise

To determine whether calcium affects **blood pressure**, twenty one men were randomized two groups.

The first consisted of m=10 men given a **calcium** supplement for 12 weeks, and the second of n=11 men given a **placebo** that appeared identical to the actual supplement.

The variable of interest is the **decrease** in blood pressure, as shown below.

Calcium Group (X)			Placebo Group (Y)		
Begin	End	Decrease	Begin	End	Decrease
107	100	7	123	124	-1
110	114	-4	109	97	12
123	105	18	12	113	-1
129	112	17	102	105	-3
112	115	-3	98	95	3
111	116	-5	114	119	-5
107	106	1	119	114	5
112	102	10	114	112	2
136	125	11	110	121	-11
102	104	-2	117	118	-1
			130	133	-3

The summary statistics are:

Calcium	Placebo		
m = 10	n = 11		
$ar{X}=5.00$	$ar{Y} = -0.27$		
$S_1 = 8.7$	$S_2=5.9$		

Carry out an F test to decide if the (unknown) population standard deviation σ_1 for people who take calcium is greater than the population standard deviation σ_2 for people who take a placebo. Use level of significance $\alpha = 0.05$.

Carry out an F test to decide if the (unknown) population standard deviation σ_1 for people who take calcium is greater than the population standard deviation σ_2 for people who take a placebo. Use level of significance $\alpha=0.05$.

Hints: You should get F=2.17 and a critical value $F_{0.05,9,10}=3.02$.

• Comment: If $F \sim F(m-1, n-1)$,

$$\alpha = P(F > F_{\alpha,m-1,n-1}) = P\left(\frac{1}{F} < \frac{1}{F_{\alpha,m-1,n-1}}\right)$$
. (2)

• Comment: If $F \sim F(m-1, n-1)$,

$$\alpha = P(F > F_{\alpha,m-1,n-1}) = P\left(\frac{1}{F} < \frac{1}{F_{\alpha,m-1,n-1}}\right)$$
. (2)

But $1/F \sim F(n-1,m-1)$ (df swapped), so (2) implies that

$$F_{1-\alpha,n-1,m-1} = \frac{1}{F_{\alpha,m-1,n-1}}$$
.

• Comment: If $F \sim F(m-1, n-1)$,

$$\alpha = P(F > F_{\alpha,m-1,n-1}) = P\left(\frac{1}{F} < \frac{1}{F_{\alpha,m-1,n-1}}\right)$$
. (2)

But $1/F \sim F(n-1,m-1)$ (df swapped), so (2) implies that

$$F_{1-\alpha,n-1,m-1} = \frac{1}{F_{\alpha,m-1,n-1}}$$
.

This eliminates the need for *F* distribution tables to show critical values in *both* tails of the distribution.

Exercise

Below are summary statistics for two independent samples from **normal** populations.

Sample	Sample Size	Sample Standard Deviation
1	10	1.76
2	16	3.05

a) Carry out a one-sided, lower tailed test of

$$H_0: \sigma_1 = \sigma_2$$

 $H_a: \sigma_1 < \sigma_2$

where σ_1 and σ_1 are the **first** and **second population** standard deviations, respectively. Use level of significance $\alpha=0.05$.

a) Carry out a one-sided, lower tailed test of

$$H_0: \sigma_1 = \sigma_2$$

 $H_a: \sigma_1 < \sigma_2$

where σ_1 and σ_1 are the **first** and **second population** standard deviations, respectively. Use level of significance $\alpha=0.05$.

Hints: You should get F=0.333 and the **critical value** $F_{0.95,9,15}=0.332$.

b) Carry out a two-sided test of

$$H_0: \sigma_1 = \sigma_2$$

$$H_a:\sigma_1 \neq \sigma_2$$

Use level of significance $\alpha = 0.10$.

b) Carry out a two-sided test of

$$H_0: \sigma_1 = \sigma_2$$

 $H_a: \sigma_1 \neq \sigma_2$

Use level of significance $\alpha = 0.10$.

Hints: You should get F=0.333 and the **critical values** $F_{0.95,9,15}=0.332$ and $F_{0.05,9,15}=2.59$.