F Test for Two Population Standard Deviations σ_1 and σ_2

Notes

Statistical Methods

Nels Grevstad

Metropolitan State University of Denver ngrevsta@msudenver.edu

September 17, 2019

Nels Grevstad

F Distributions F Test for Two Population Standard Deviations σ_1 and σ_2

Topics

1 F Distributions

2 F Test for Two Population Standard Deviations σ_1 and σ_2

F Distributions F Test for Two Population Standard Deviations σ_1 and σ_2

Objectives

Objectives:

• State the main properties of F distributions.

Nels Grevstad

Nels Grevstad

• Carry out an F test for two population standard deviations σ_1 and σ_2 .

F Distributions F Test for Two Population Standard Deviations σ_1 and σ_2

- F Distributions
 - Suppose X_1, X_2, \ldots, X_m and Y_1, Y_2, \ldots, Y_n are random samples from a $N(\mu_1, \sigma_1)$ and $N(\mu_2, \sigma_2)$ distributions, respectively, and that they were drawn *independently* of each other. Then the random variable

$$F = \frac{S_1^2 / \sigma_1^2}{S_2^2 / \sigma_2^2} \tag{1}$$

follows an <u>*F* distribution</u> with m - 1 numerator df and n - 1 denominator df, denoted F(m - 1, n - 1).

Nels Grevstad

Notes

Notes

Notes

Also, the reciprocal of F follows an F(n - 1, m - 1) distribution (the df get swapped), i.e.

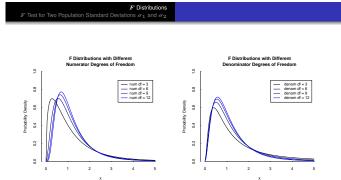
Nels Grevstad

$$\frac{1}{F} \; = \; \frac{S_2^2/\sigma_2^2}{S_1^2/\sigma_1^2} \; \sim \; F(n-1,m-1).$$

F Test for Two Population Standard Deviations

Notes

- Properties of F distributions:
 - 1. They're right skewed and lie entirely to the right of zero.
 - 2. The **numerator** and **denominator df** control the shape, center, and spread of the distribution.



Nels Grevstad

Figure: F(m-1, 10) distributions with different values of m (left); F(6, n-1) distributions with different values of n (right).

Nels Grevstad

F Distributions F Test for Two Population Standard Deviations σ_1 and σ_2

• Even if the samples are from **non-normal** distributions, the random variable (1) follows an *F* distribution if *m* and *n* are large.

Proposition

Suppose X_1, X_2, \ldots, X_m and Y_1, Y_2, \ldots, Y_n are a random samples from *any* distributions whose standard deviations are σ_1 and σ_2 , respectively, and that the samples were drawn *independently* of each other. Then **if** *m* **and** *n* **are large**,

$$F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(m-1, n-1)$$

Nels Grevstad

approximately.



 σ_2

F Test for Two Population Standard Deviations σ_1 and

Notes

- Suppose we have random samples of sizes *m* and *n* from **two populations**.
- We'll see how to use the samples to decide if the population standard deviations σ₁ and σ₂ are different.

The appropriate test is called the *F* test for σ_1 and σ_2 .

Nels Grevstad

F Distributions F Test for Two Population Standard Deviations σ_1 and σ_2

Notes

• The **null hypothesis** is that no difference between the population standard deviations *σ*₁ and *σ*₂:

Null Hypothesis:

 $H_0:\sigma_1 = \sigma_2$

F Distributions F Test for Two Population Standard Deviations σ_1 and σ_2

• The alternative hypothesis will depend on what we're trying to "prove":

 Alternative Hypothesis: The alternative hypothesis will be one of

 1. $H_a: \sigma_1 > \sigma_2$ (one-sided, upper-tailed)

 2. $H_a: \sigma_1 < \sigma_2$ (one-sided, lower-tailed)

3. $H_a: \sigma_1 \neq \sigma_2$ (two-sided, two-tailed)

depending on what we're trying to verify using the data.

Nels Grevstad

F Test for Two Population Standard Deviations σ_1 and σ_2

 ${\pmb F}$ Test Statistic for $\sigma_{\bf 1}$ and $\sigma_{\bf 2}$: $F ~=~ \frac{S_1^2}{S_2^2} \label{eq:F}$

• S_1 and S_2 are estimators of σ_1 and σ_2 , respectively, so ...

- 1. *F* will be approximately **one** (most likely) if $\sigma_1 = \sigma_2$.
- 2. It larger than one (most likely) if $\sigma_1 > \sigma_2$.

Nels Grevstad

3. It will be smaller than one (most likely) if $\sigma_1 < \sigma_2$.

Notes

- 1. Large values of *F* provide evidence against H_0 in favor of $H_a: \sigma_1 > \sigma_2$.
- 2. Small values of F provide evidence against H_0 in favor of

 $H_a: \sigma_1 < \sigma_2.$

3. Large and small values of F provide evidence against H_0 in favor of

Nels Grevstad

 $H_a: \sigma_1 \neq \sigma_2.$

F Distributions F Test for Two Population Standard Deviations σ_1 and σ_2

Notes

Notes

Sampling Distribution of the Test Statistic Under H_0 : If $F = S_1^2/S_2^2$ is the F test statistic, then when

 $H_0: \sigma_1 = \sigma_2$

$$F \sim F(m-1, n-1).$$

Nels Grevstad

F Test for Two Population Standard Deviations σ_1 and σ_2

• The F(m-1, n-1) curve gives us:

Nels Grevstad

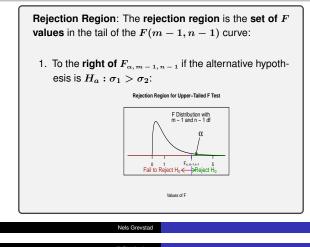
Nels Grevstad

- The *rejection region* as the extreme 100 α % of *F* values (in the direction(s) specified by H_a).
- The *p-value* as the **tail area(s) beyond the observed** *F* **value** (in the direction(s) specified by *H*_a).

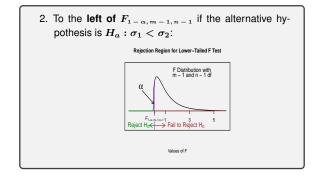
F Test for Two Population Standard Deviations σ_1 and σ_2

Notes

• We'll use $F_{\alpha,m-1,n-1}$ to denote the *F* critical value that's the $100(1-\alpha)$ th percentile of the F(m-1, n-1) distribution (i.e. the it has probability α to its right).



F Distributions F Test for Two Population Standard Deviations σ_1 and σ_2



Nels Grevstad

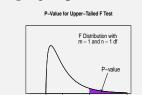
IWO PO	pulation Standard Deviations σ_1 and σ_2
3.	To the left of $F_{1-\alpha/2, m-1, n-1}$ and right of $F_{\alpha/2, m-1, n-1}$ if the alternative hypothesis is $H_a: \sigma_1 \neq \sigma_2$:
	Rejection Region for Two-Tailed F Test
	$\begin{array}{c c} & F \text{ Distribution with} \\ \hline & m-1 \text{ and } n-1 \text{ df} \\ \hline & 2 \\ \hline & & \sqrt{2} \\ \hline & & & \\ \hline & & F_{1 \pm m, n-1} \\ \hline & & & \\ \hline \hline & & & \\ \hline & & \\ \hline & & & \\ \hline \hline & & & \\ \hline & & \\ \hline & & & \\ \hline \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline \hline & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline$
	Values of F

F Distributions F Test for Two Population Standard Deviations σ_1 and σ_2

 $\mbox{P-Value:}$ The $\mbox{p-value}$ is the tail area under the F(m-1,n-1) curve:

Nels Grevstad

1. To the **right** of the **observed** *F* if the alternative hypothesis is $H_a: \sigma_1 > \sigma_2$:



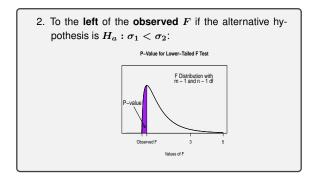
Notes

Notes

Notes

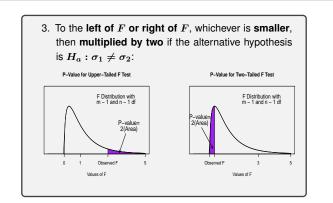
Notes

Observed F Values of F



Nels Grevstad

F Distributions F Test for Two Population Standard Deviations σ_1 and σ_2



F Distributions F Test for Two Population Standard Deviations σ_1 and σ_2

Exercise

To determine whether calcium affects **blood pressure**, twenty one men were randomized two groups.

Nels Grevstad

The first consisted of m = 10 men given a **calcium** supplement for 12 weeks, and the second of n = 11 men given a **placebo** that appeared identical to the actual supplement.

Nels Grevstad

F Test for Two Population Standard Deviations σ_1 and σ_2

The variable of interest is the decrease in blood pressure, as
shown below.

oup(Y)	cebo Gr	Plac	Calcium Group (X)		
Decrease	End	Begin	Decrease	End	Begin
-1	124	123	7	100	107
12	97	109	-4	114	110
-1	113	12	18	105	123
-3	105	102	17	112	129
3	95	98	-3	115	112
-5	119	114	-5	116	111
5	114	119	1	106	107
2	112	114	10	102	112
-11	121	110	11	125	136
-1	118	117	-2	104	102
-3	133	130			

Nels Grevstad

Notes

Notes

Notes

The summary statistics are:

Placebo
n = 11
$ar{Y}=-0.27$
$S_2=5.9$

F Distributions F Test for Two Population Standard Deviations σ_1 and σ_2

Notes

Notes

Carry out an *F* test to decide if the (unknown) **population standard deviation** σ_1 for people who take **calcium** is **greater than** the **population standard deviation** σ_2 for people who take a **placebo**. Use level of significance $\alpha = 0.05$.

Hints: You should get F = 2.17 and a critical value $F_{0.05,9,10} = 3.02$.

Nels Grevstad

Nels Grevstad

F Test for Two Population Standard Deviations σ_1 and σ_2

• Comment: If
$$F \sim F(m-1,n-1)$$
,

$$\alpha = P(F > F_{\alpha,m-1,n-1}) = P\left(\frac{1}{F} < \frac{1}{F_{\alpha,m-1,n-1}}\right).$$
 (2)

But $1/F \sim F(n-1,m-1)$ (df swapped), so (2) implies that

$$F_{1-\alpha,n-1,m-1} = \frac{1}{F_{\alpha,m-1,n-1}}.$$

This eliminates the need for F distribution tables to show critical values in *both* tails of the distribution.

F Distributions F Test for Two Population Standard Deviations σ_1 and σ_2

Exercise

Below are summary statistics for two independent samples from **normal** populations.

Nels Grevstad

Sample Sample Size		Sample Standard Deviation	
1	10	1.76	
2	16	3.05	

Nels Grevstad

Notes

F Test for Two Population Standard Deviations σ_1 and σ_2

a) Carry out a one-sided, lower tailed test of

 $\begin{array}{rcl} H_0:\sigma_1 &=& \sigma_2 \\ H_a:\sigma_1 &<& \sigma_2 \end{array}$

where σ_1 and σ_1 are the first and second population standard deviations, respectively. Use level of significance $\alpha = 0.05$.

Hints: You should get F = 0.333 and the critical value $F_{0.95,9,15} = 0.332$.

Nels Grevstad

\$F\$ Distributions \$F\$ Test for Two Population Standard Deviations σ_1 and σ_2

Notes

Notes

b) Carry out a two-sided test of

$$H_0: \sigma_1 = \sigma_2$$
$$H_a: \sigma_1 \neq \sigma_2$$

Use level of significance $\alpha = 0.10$.

Nels Grevstad

Hints: You should get F = 0.333 and the critical values $F_{0.95,9,15} = 0.332$ and $F_{0.05,9,15} = 2.59$.

Notes