Homework 6 MTH 3220, Fall 2019 Due Tuesday, Oct. 22

Section in Book	Problems
10.2	Problem 1 (given below)
11.1	1*, 2**, 3***, 4***, 5, 6

* For **Problem 1** in Section 11.1, after calculating the test statistics F_A and F_B , you can obtain the p-values (*F* distribution upper tail areas) using the **pf()** function. For example, you should get $F_A = 7.16$, and so the p-value (from the *F*(3, 6) distribution) is obtained by typing:

> pf(q = 7.16, df1 = 3, df2 = 6, lower.tail = FALSE)

** For Problem 2 in Section 11.1, you're welcome to carry out the two-factor ANOVA using R. See the course website for the data set ex_11_2.txt. Then, after reading it into R using read.table(), type:

> my.anova <- aov(Corrosion ~ Coating + SoilType, data = my.data)</p> > summary(my.anova)

For **Part** \boldsymbol{b} , you can compute the grand mean \overline{X} . by typing:

> mean(my.data\$Corrosion)

and you can compute the Factor A level means $\overline{X}_{1.}, \overline{X}_{2.}, \overline{X}_{3.}$, and $\overline{X}_{4.}$ by typing:

> aggregate(Corrosion ~ Coating, data = my.data, FUN = mean)

and the Factor B level means $\overline{X}_{.1}$, $\overline{X}_{.2}$, and $\overline{X}_{.3}$ by typing:

> aggregate(Corrosion ~ SoilType, data = my.data, FUN = mean)

*** For Problems 3 and 4 in Section 11.1,, you may carry out the analysis using R. The data are in the files ex_11_3.txt and ex_11_4.txt on the course website. After reading the data into R using read.table() and carrying out the ANOVA using aov(), you can conduct *Tukey's multiple comparison procedure* by typing:

> TukeyHSD(my.anova)

Additional Problem (Next Page)

Problem 1 (cont'd from HW 5). Here are the data from the study to investigate the time (in minutes) taken to complete a task using three different word processing programs. The data are also in the file ergonomics.txt.

Group 1 Menu-Driven	Group 2 Command-Driven	Group 3 Mixed
12	14	10
15	11	8
12	12	10
10	11	7
11	13	9
13	14	8

Use **read.table()** (or **read.csv()**) to read to the data from **ergonomics.txt** into an R *data frame* named, say, **my.data**.

On **HW5**, you found statistically significant differences among the mean completion times for the three word processing programs via a one-factor ANOVA *F* test by typing:

> my.anova <- aov(Time ~ Group, data = my.data)</p> > summary(my.anova)

We want to check the assumptions required by the *F* test.

- i. Write out the **one-factor ANOVA model** for the data in terms of the true means μ_1 , μ_2 , and μ_3 and the random error terms ϵ_{ij} (i.e. the **group means version** of the model). Be sure to state any **assumptions** associated with the ϵ_{ij} 's.
- ii. State the **hypotheses** for a one-factor ANOVA *F* test in terms of the true means μ_1 , μ_2 , and μ_3 .
- iii. Now write out the **one-factor ANOVA model** in terms of the true grand mean μ , the treatment effects α_1 , α_2 , and α_3 , and the random error terms ε_{ij} (i.e. the **treatment effects version** of the model), where

 $\mu = \frac{\mu_1 + \mu_2 + \mu_3}{3}$ and $\alpha_i = \mu_i - \mu$ for i = 1, 2, 3.

Be sure to state any **assumptions** associated with the ε_{ij} 's.

iv. State the **hypotheses** for a one-factor ANOVA *F* test in terms of the treatment effects α_1 , α_2 , and α_3 .

- v. Is the **normality assumption** required for the ANOVA *F* test met? Check by making a histogram and a normal probability plot of the residuals:
 - > hist(my.anova\$residuals)
 - > qqnorm(my.anova\$residuals)
 - > qqline(my.anova\$residuals)
- vi. Is the **constant standard deviation assumption** required for the ANOVA *F* test met? Check by plotting the residuals (*y*-axis) versus the fitted values (*x*-axis):

> plot(x = my.anova\$fitted.values, y = my.anova\$residuals)
> abline(h = 0)

vii. Show that the error sum of squares **SSE** (from the ANOVA table) is equal to the **sum** of **squared residuals**:

> sum(my.anova\$residuals^2)

viii. Provide the numerical value of the **estimate**, \sqrt{MSE} , of the true (unknown) standard deviation σ of the N(0, σ) distribution of the random error term ϵ_{ij} in the ANOVA model.