A Random Effects Model Two-Factor ANOVA with K=1

Statistical Methods

Nels Grevstad

Metropolitan State University of Denver

ngrevsta@msudenver.edu

October 16, 2019

イロト イポト イヨト イヨト

= 990

Nels Grevstad

A Random Effects Model Two-Factor ANOVA with K=1

Topics

2 Two-Factor ANOVA with K = 1

Nels Grevstad

・ロト ・聞 ト ・ ヨト ・ ヨトー

■ のへの

Objectives:

- State the random effects version of the one-factor ANOVA model.
- State the treatment effects version of the two-factor ANOVA model when K = 1.
- Carry out two-factor ANOVA F tests for the effects of Factors A and B when K = 1.

A Random Effects Model Two-Factor ANOVA with K = 1

A Random Effects Model

• Up to now, the **levels** of the **factor** were assumed to have been **hand-picked**.

イロト イポト イヨト イヨト

= 990

A Random Effects Model Two-Factor ANOVA with K = 1

A Random Effects Model

• Up to now, the **levels** of the **factor** were assumed to have been **hand-picked**.

For example, the five labs were singled out because they specifically were of interest to the inspectors.

イロト イ押ト イヨト イヨトー

æ

A Random Effects Model

• Up to now, the **levels** of the **factor** were assumed to have been **hand-picked**.

For example, the five labs were singled out because they specifically were of interest to the inspectors.

三 🕨 👘

 In some studies, the levels of the factor are selected randomly from a *population of levels*.

A Random Effects Model

• Up to now, the **levels** of the **factor** were assumed to have been **hand-picked**.

For example, the five labs were singled out because they specifically were of interest to the inspectors.

 In some studies, the levels of the factor are selected randomly from a *population of levels*.

For example, five labs could be **randomly** selected from a **population** of **labs**.

ヘロン 人間 とくほ とくほ とう

In the first case, the so-called *fixed effects* model was

$$X_{ij} = \mu + \alpha_i + \epsilon_{ij} \,,$$

where the **effects** $\alpha_1, \alpha_2, \ldots, \alpha_I$ are unknown **constants** that sum to zero:

$$\sum_{i=1}^{I} \alpha_i = 0.$$

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

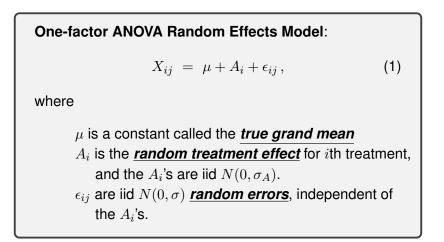
 In the second case, the appropriate model is the so-called random effects model:

$$X_{ij} = \mu + A_i + \epsilon_{ij} \,,$$

where the effects A_1, A_2, \ldots, A_I are random variables with expected value zero:

$$E(A_i) = 0$$
 for $i = 1, 2..., I$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ ○ ○ ○



◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

 In terms of the random effects ANOVA model, the hypotheses are:

$$H_0: \sigma_A = 0$$
$$H_a: \sigma_A > 0$$

イロト イポト イヨト イヨト

3

The **null hypothesis** says there's **no variation** in the treatment effects (i.e. the effects are all the same).

 In terms of the random effects ANOVA model, the hypotheses are:

$$H_0: \sigma_A = 0$$
$$H_a: \sigma_A > 0$$

The **null hypothesis** says there's **no variation** in the treatment effects (i.e. the effects are all the same).

The **alternative** says the the effects **vary** (i.e. they're *not* all the same).

イロト イポト イヨト イヨト

э.

• Although the *hypotheses* in the one-factor **fixed** and **random effects models** are different, *they're tested in exactly the same way*:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

 Although the *hypotheses* in the one-factor fixed and random effects models are different, *they're tested in* exactly the same way:

P-value = Tail area under the $F_{I-1,I(J-1)}$ distribution to the right of F = MSTr/MSE.

A Random Effects Model Two-Factor ANOVA with K = 1

Two-Factor ANOVA with K = 1

Introduction

• We're sometimes interested in *simultaneously* testing for the effects of *two* factors on a response variable.

イロト イポト イヨト イヨト

= 990

Example

A study was carried out ascertain the stability of vitamin C in reconstituted frozen orange juice stored in a refrigerator for up to one week.

イロト イポト イヨト イヨト

Example

A study was carried out ascertain the stability of vitamin C in reconstituted frozen orange juice stored in a refrigerator for up to one week.

Three **brands** of orange juice were tested at three **storage times** (in days after the orange juice was blended).

ヘロト 人間 ト ヘヨト ヘヨト

æ

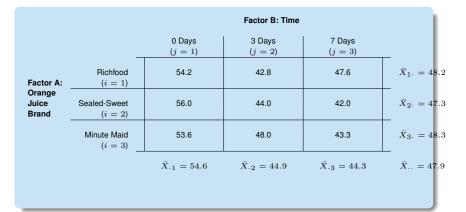
Example

A study was carried out ascertain the stability of vitamin C in reconstituted frozen orange juice stored in a refrigerator for up to one week.

Three **brands** of orange juice were tested at three **storage times** (in days after the orange juice was blended).

The response variable is milligrams of ascorbic acid (vitamin C) per liter. The data are on the next slide.

ヘロト 人間 ト ヘヨト ヘヨト



イロト イポト イヨト イヨト

The study was designed to find out:

The study was designed to find out:

Does the brand of orange juice affect the vitamin C content (i.e. is there a <u>factor A main effect</u>)?

イロン 不得 とくほ とくほとう

The study was designed to find out:

- Does the brand of orange juice affect the vitamin C content (i.e. is there a <u>factor A main effect</u>)?
- Does storage time affect vitamin C content (i.e. is there a <u>factor B main effect</u>)?

イロト イポト イヨト イヨト

• We'll refer to each combination of levels of the two factors as a *treatment group*.

• We'll refer to each combination of levels of the two factors as a *treatment group*.

Example: In study of vitamin C in orange juice, there were nine treatment groups (each consisting of a single observation).

イロト イポト イヨト イヨト

э.

• We'll refer to each combination of levels of the two factors as a *treatment group*.

Example: In study of vitamin C in orange juice, there were nine treatment groups (each consisting of a single observation).

ヘロト 人間 ト ヘヨト ヘヨト

 We'll start by focusing on the case in which there's only one observation per group.

• Notation:

Nels Grevstad

Notation:

- I = The number of levels of Factor A.
- J = The number of levels of Factor B.
- K = The common sample size in each of the IJgroups (combinations of levels of Factors A and B).

For now, we'll assume K = 1.

 X_{ij} = The (single) observation at the *i*th level of Factor A and *j*th level of Factor B (*i*, *j*th group).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

• Notation:

- I = The number of levels of Factor A.
- J = The number of levels of Factor B.
- K = The common sample size in each of the IJgroups (combinations of levels of Factors A and B).

For now, we'll assume K = 1.

 X_{ij} = The (single) observation at the *i*th level of Factor A and *j*th level of Factor B (*i*, *j*th group).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

(In practice, the sample sizes *don't* all have to be the same).

• The data can be laid out in a table as below:

• The data can be laid out in a table as below:

Level j = 1Level i = 2Level j = J \bar{X}_1 . Level i = 1 X_{11} X_{12} X_{1J} Factor Level i = 2 \overline{X}_2 . Α X_{21} X_{22} X_{2J} \bar{X}_I . Level i = I X_{I1} X_{I2} X_{IJ} $\bar{X}_{.1}$ $\bar{X}_{\cdot 2}$ $\bar{X}_{\cdot,I}$ *X*...

Factor B

イロト イポト イヨト イヨト

∃ <2 <</p>

(cont'd)

- \bar{X}_{i} . = The *i*th <u>*Factor A level mean*</u> of all observations at level *i* of Factor A.
- \bar{X}_{j} = The *j*th <u>*Factor B level mean*</u> of all observations at level *j* of Factor B.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

 $\bar{X}_{..}$ = The *grand mean* of *all* IJ observations.

• Note: $\bar{X}_{\cdot \cdot}$ can be obtained as:

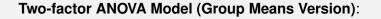
- Note: $\bar{X}_{..}$ can be obtained as:
 - The average of the *I* Factor A level means.
 - The average of the *J* Factor B level means.

イロト イポト イヨト イヨト

The Two-Factor ANOVA Model (Two Versions)

• On the next slide is one **statistical model** for describing data from a two-factor study.

イロト イポト イヨト イヨト



$$X_{ij} = \mu_{ij} + \epsilon_{ij}, \qquad (2)$$

where

 μ_{ij} is the <u>true mean</u> response to level *i* of Factor A and level *j* of Factor B. ϵ_{ij} are iid $N(0, \sigma)$ <u>random errors</u>.

Two-Factor ANOVA Model (Additive Effects Version)

 When there's only one observation per cell, there aren't enough data to estimate all the parameters in the model (2):

イロン イボン イヨン イヨン

э.

Two-Factor ANOVA Model (Additive Effects Version)

 When there's only one observation per cell, there aren't enough data to estimate all the parameters in the model (2):

we could estimate each μ_{ij} by X_{ij} , but that would "use up" all the data and there'd be none left over to estimate σ .

Two-Factor ANOVA Model (Additive Effects Version)

 When there's only one observation per cell, there aren't enough data to estimate all the parameters in the model (2):

we could estimate each μ_{ij} by X_{ij} , but that would "use up" all the data and there'd be none left over to estimate σ .

• Furthermore, it's preferable to use a model like the one on the next slide that has parameters representing the **effects** of the two factors.

ヘロト ヘアト ヘヨト ヘ

三) (

Two-factor ANOVA Model (Additive Effects Version): Assume the existence of *I* parameters $\alpha_1, \alpha_2, \ldots, \alpha_I$ and *J* parameters $\beta_1, \beta_2, \ldots, \beta_J$ such that

$$X_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij}, \tag{3}$$

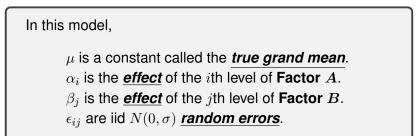
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

so that

$$\mu_{ij} = \mu + \alpha_i + \beta_j \,,$$

where

$$\sum_{i=1}^{I} \alpha_i = 0$$
 and $\sum_{j=1}^{J} \beta_j = 0$,



イロト イポト イヨト イヨト

• Some comments:

- Some comments:
 - The two models are equivalent if it's reasonable to assume that the μ_{ij}'s satisfy the additivity structure:

$$\mu_{ij} = \mu + \alpha_i + \beta_j \,. \tag{4}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(cont'd)

The parameters μ, α₁, α₂,..., α_I, and β₁, β₂,..., β_J woudn't be uniquely defined without imposing the constraints:

$$\sum_{i} \alpha_i = 0$$
 and $\sum_{j} \beta_j = 0.$

For example, adding a constant c to μ and subtracting c from each α_i (or each β_j) would lead to the *same* value of μ_{ij} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- (cont'd)
 - With these constraints, it can be shown (by summing both sides of (4) over *i* and *j*) that

$$\mu = \frac{\sum_i \sum_j \mu_{ij}}{IJ} \,,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

i.e. the true grand mean the average of the IJ group means), ...

(cont'd)

• With these constraints, it can be shown (by summing both sides of (4) over *i* and *j*) that

$$\mu = \frac{\sum_i \sum_j \mu_{ij}}{IJ} \,,$$

i.e. the true grand mean the average of the IJ group means), ...

and (by summing both sides of (4) first over *i* and then over *j*) that the **effects** $\alpha_1, \alpha_2, \ldots, \alpha_I$ and $\beta_1, \beta_2, \ldots, \beta_J$ are

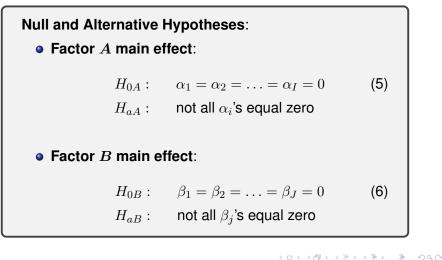
$$\alpha_i = \mu_{i\cdot} - \mu$$
 and $\beta_j = \mu_{\cdot j} - \mu$,

where $\mu_{\cdot j}$ and μ_i . are the **true Factor A** and **B level means**, defined as the average of the μ_{ij} 's in the *i*th row or *j*th column:

$$\mu_{i\cdot} = \frac{\sum_{j} \mu_{ij}}{J} \quad \text{and} \quad \mu_{j\cdot} = \frac{\sum_{i} \mu_{ij}}{J + I = 1} \cdot E \quad E \quad O \leq C$$
Nels Grevstad

• We'll want to test two sets of hypotheses:

• We'll want to test two sets of hypotheses:



*H*_{0A} says Factor A doesn't have any effect, and *H*_{aA} says it does.

• *H*_{0A} says Factor A doesn't have any effect, and *H*_{aA} says it does.

 ${\cal H}_{0B}$ says Factor B doesn't have any effect, and ${\cal H}_{aB}$ says is does.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Sums of Squares and the ANOVA Partition

• We can *partition* the **total variation** in the data into three parts:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Sums of Squares and the ANOVA Partition

- We can *partition* the **total variation** in the data into three parts:
 - One reflecting variation between the levels of Factor A.
 - Another reflecting variation between the levels of Factor B.

イロト イポト イヨト イヨト

= 990

• The other reflecting variation within the groups.

Sums of Squares and the ANOVA Partition

- We can *partition* the **total variation** in the data into three parts:
 - One reflecting variation **between** the levels of **Factor A**.
 - Another reflecting variation between the levels of Factor B.
 - The other reflecting variation within the groups.

The **ANOVA** F **tests** are based on the amount of variation **between** levels of the factor relative to the amount of variation within groups.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

• The **partition** will involve the following *sums of squares* (shown with their **df**):

・ロト・日本・ ・ ヨト・ ヨト・

∃ 𝒫𝔅

- The **partition** will involve the following *sums of squares* (shown with their **df**):
 - SST is the total sum of squares, defined as

SST =
$$\sum_{i=1}^{I} \sum_{j=1}^{J} (X_{ij} - \bar{X}_{..})^2$$
 $df = IJ - 1$

イロト イポト イヨト イヨト

= 990

which measures the **total** variation in the X_{ij} 's.

• (cont'd):

• SSA is the Factor A sum of squares, defined as

SSA =
$$\sum_{i=1}^{I} \sum_{j=1}^{J} (\bar{X}_{i\cdot} - \bar{X}_{\cdot\cdot})^2$$

= $J \sum_{i=1}^{I} (\bar{X}_{i\cdot} - \bar{X}_{\cdot\cdot})^2$ $df = I - 1$

which measures variation between the **levels** of **Factor A** due to both the **Factor A effect** and **random error**.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• (cont'd):

• SSB is the Factor B sum of squares, defined as

$$SSB = \sum_{i=1}^{I} \sum_{j=1}^{J} (\bar{X}_{.j} - \bar{X}_{..})^2$$
$$= I \sum_{i=1}^{I} (\bar{X}_{.j} - \bar{X}_{..})^2 \qquad df = J - 1$$

which measures variation between the **levels** of **Factor B** due to both the **Factor B effect** and **random error**.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• (cont'd):

• SSE is the error sum of squares, defined as

$$SSE = \sum_{i=1}^{I} \sum_{j=1}^{J} (X_{ij} - \bar{X}_{i.} - \bar{X}_{.j} + \bar{X}_{..})^2 \qquad df = (I-1)(J-1)$$

which measures variation of the X_{ij} 's within treatment groups due to random error.

Proposition

ANOVA Partition of the Total Variation: It can be shown that

$$SST = SSA + SSB + SSE$$
.

Nels Grevstad

Additive Property of Degrees of Freedom:

df for SST = df for SSA + df for SSB + df for SSE

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

Nels Grevstad

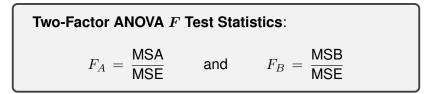
Mean Squares

• The *Factor A mean square*, *Factor B mean square*, and *mean squared error* are:

$$MSA = \frac{SSA}{I-1}$$
$$MSB = \frac{SSB}{J-1}$$
$$MSE = \frac{SSE}{(I-1)(J-1)}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

The Two-Factor ANOVA F Tests



▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 F_A will be **large** when there's substantial variation in $\bar{X}_{1\cdot}, \bar{X}_{2\cdot}, \ldots, \bar{X}_{I\cdot}$, which are estimates of the true level means $\mu_{1\cdot}, \mu_{2\cdot}, \ldots, \mu_{I\cdot}$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

 F_A will be **large** when there's substantial variation in $\bar{X}_{1\cdot}, \bar{X}_{2\cdot}, \ldots, \bar{X}_{I\cdot}$, which are estimates of the true level means $\mu_{1\cdot}, \mu_{2\cdot}, \ldots, \mu_{I\cdot}$.

• *F_B* reflects variation **between** levels of Factor B (**MSB**) relative to **within**-groups variation (**MSE**).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

 F_A will be **large** when there's substantial variation in $\bar{X}_{1\cdot}, \bar{X}_{2\cdot}, \ldots, \bar{X}_{I\cdot}$, which are estimates of the true level means $\mu_{1\cdot}, \mu_{2\cdot}, \ldots, \mu_{I\cdot}$.

• *F_B* reflects variation **between** levels of Factor B (**MSB**) relative to **within**-groups variation (**MSE**).

 F_B will be **large** when there's substantial variation in $\bar{X}_{.1}, \bar{X}_{.2}, \ldots, \bar{X}_{.J}$, which are estimates of the true level means $\mu_{.1}, \mu_{.2}, \ldots, \mu_{.J}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

 F_A will be **large** when there's substantial variation in $\bar{X}_{1\cdot}, \bar{X}_{2\cdot}, \ldots, \bar{X}_{I\cdot}$, which are estimates of the true level means $\mu_{1\cdot}, \mu_{2\cdot}, \ldots, \mu_{I\cdot}$.

• *F_B* reflects variation **between** levels of Factor B (**MSB**) relative to **within**-groups variation (**MSE**).

 F_B will be **large** when there's substantial variation in $\bar{X}_{.1}, \bar{X}_{.2}, \ldots, \bar{X}_{.J}$, which are estimates of the true level means $\mu_{.1}, \mu_{.2}, \ldots, \mu_{.J}$.

In other words, F_A will be large when Factor A has an effect, and F_B will be large when Factor B has an effect.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Large values of F_A provide evidence against H_0 in favor of H_a : Not all of the α_i 's are zero.

Large values of F_B provide evidence against H_0 in favor of H_a : Not all of the β_j 's are zero.

Suppose data in a two-factor study follow the two-factor
 ANOVA model, where the error terms ε_{ijk} are iid N(0, σ).

イロト イポト イヨト イヨト

∃ 𝒫𝔅

Sampling Distributions of the Test Statistics Under H_0 :

1. If F_A is the F test statistic for Factor A, then when

$$H_{0A}: \alpha_1 = \alpha_2 = \dots = \alpha_I = 0$$

is true,

$$F \sim F(I-1, (I-1)(J-1)).$$

2. If F_B is the tF test statistic for Factor B, then when

$$H_{0B}:\beta_1=\beta_2=\cdots=\beta_J=0$$

is true,

$$F \sim F(J-1, (I-1)(J-1)).$$

• The F(I - 1, (I - 1)(J - 1)) and F(J - 1, (I - 1)(J - 1)) curves give us:

- The F(I 1, (I 1)(J 1)) and F(J 1, (I 1)(J 1)) curves give us:
 - The *rejection regions* as the extreme largest 100α% of *F* values.

- The F(I 1, (I 1)(J 1)) and F(J 1, (I 1)(J 1)) curves give us:
 - The *rejection regions* as the extreme largest 100α% of *F* values.

• The *p-values* as the tail areas to the right of the observed *F_A* and *F_B* values.

The ANOVA Table

• ANOVA results are summarized in an ANOVA table:

The ANOVA Table

• ANOVA results are summarized in an ANOVA table:

Source of		Sum of	Mean		
Variation	df	Squares	Square	f	P-value
Factor A	I - 1	SSA	MSA = SSA/(I - 1)	$F_A = MSA/MSE$	р
Factor B	J - 1	SSB	MSB = SSB/(J - 1)	$F_B = MSB/MSE$	р
Error	(I-1)(J-1)	SSE	MSE = SSE/(I-1)(J-1)		
Total	IJ - 1	SST			

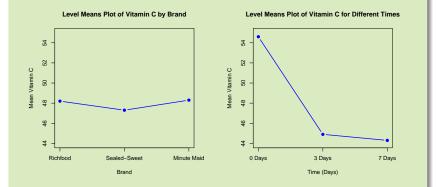
Exercise

For the study of the effects of **brand** and **storage time** on vitamin C in orange juice, the **ANOVA table** is below.

Source of		Sum of	Mean		
Variation	df	Squares	Square	f	P-value
Brand	2	1.70	0.85	0.101	0.9058
Time	2	199.94	99.97	11.961	0.0205
Error	4	33.43	8.36		
Total	8	235.06			

イロト イポト イヨト イヨト

Here are so-called *level means plots*.



<ロト < 回 > < 回 > <

프 🕨 🗉 프

What conclusions can be drawn?

Nels Grevstad