Statistical Methods

Nels Grevstad

Metropolitan State University of Denver

ngrevsta@msudenver.edu

October 22, 2019

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ 三 のなの

Nels Grevstad

1 Two-Factor ANOVA with K = 1 (Cont'd)

Nels Grevstad

Objectives

Objectives:

- Carry out Tukey's multiple comparison procedure after a two-factor ANOVA with K = 1, and interpret the results.
- Give the definition of a randomized block experiment, state the goal of randomized block experiments and describe their advantage over completely randomized experiments.

ヘロト ヘアト ヘビト ヘビト

Two-Factor ANOVA with K = 1 (Cont'd)

Multiple Comparisons in the Additive Effects Model

• After rejecting either H_{0A} or H_{0B} , **Tukey's procedure** can be used to determine *which* **levels** of the factor **differ**.

イロト イポト イヨト イヨト

э.

Tukey's Multiple Comparison Procedure: *After* the twofactor ANOVA F test rejects H_{0A} or H_{0B} :

- 1. Choose an overall familywise confidence level $100(1-\alpha)\%$ (usually $\alpha = 0.05$ for a 95% confidence level).
- 2. For Factor A comparisons, compute the I(I-1)/2 CIs:

$$\bar{X}_{i\cdot} - \bar{X}_{i'\cdot} \pm Q_{\alpha,I,IJ-I-J+1} \sqrt{\frac{MSE}{J}}$$

For Factor B comparisons, compute the J(J-1)/2 CIs:

$$\bar{X}_{.j} - \bar{X}_{.j'} \pm Q_{\alpha,J,IJ-I-J+1} \sqrt{\frac{MSE}{I}}$$

3. For any interval that **doesn't contain zero**, deem those **levels** of the given factor to be **different**.

イロト イポト イヨト イヨト

= 990

For the study of the effects of **brand** and **storage time** on vitamin C in orange juice, we found that **storage time** had an **effect**, but **brand** didn't.

イロン 不良 とくほ とうせい

For the study of the effects of **brand** and **storage time** on vitamin C in orange juice, we found that **storage time** had an **effect**, but **brand** didn't.

The Tukey procedure in R produces the following CIs:

Times	Difference	Lower End Pt	Upper End Pt	
Day3-Day7	0.63	-7.779	9.046	
Day0-Day7	10.30	1.887	18.713	*
Day0-Day3	9.67	1.254	18.079	*

ヘロト 人間 とくほ とくほう

Intervals marked with asterisks don't contain zero.

For the study of the effects of **brand** and **storage time** on vitamin C in orange juice, we found that **storage time** had an **effect**, but **brand** didn't.

The Tukey procedure in R produces the following CIs:

Times	Difference	Lower End Pt	Upper End Pt	
Day3-Day7	0.63	-7.779	9.046	
Day0-Day7	10.30	1.887	18.713	*
Day0-Day3	9.67	1.254	18.079	*

Intervals marked with asterisks don't contain zero.

We conclude that **Day 0** differs from both **Days 3** and **7**, but **Days 3** and **7** don't differ from each other.

ヘロト 人間 とくほ とくほう

Estimating Parameters in the Additive Effects Model

 Recall that the *additive effects version* of the two-factor ANOVA model is:

$$X_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij} \,. \tag{1}$$

Model Parameter Estimators: We estimate the unknown model parameters μ , α_i , β_j , and σ using the **estimators** $\hat{\mu}$, $\hat{\alpha}_i$, $\hat{\beta}_j$, and $\hat{\sigma}$ defined as:

Model Parameter	Estimator
μ	$\hat{\mu} = \bar{X}_{}$
$\alpha_i = \mu_{i.} - \mu$	$\hat{\alpha}_i = \bar{X}_{i\cdot} - \bar{X}_{\cdot\cdot}$
$\beta_j = \mu_{\cdot j} - \mu$	$\hat{\beta}_i = \bar{X}_{\cdot j} - \bar{X}_{\cdot \cdot}$
σ	$\hat{\sigma} = \sqrt{MSE}$

Predicted Values and Residuals for the Additive Effects Model

The <u>fitted value</u> (or <u>predicted value</u>) for the individual in the *i*, *j*th cell, X̂_{ij}, is defined as:

$$\hat{X}_{ij} = \hat{\mu} + \hat{\alpha}_i + \hat{\beta}_j
= \bar{X}_{..} + (\bar{X}_{i.} - \bar{X}_{..}) + (\bar{X}_{.j} - \bar{X}_{..})
= \bar{X}_{i.} + \bar{X}_{.j} - \bar{X}_{..}$$

Predicted Values and Residuals for the Additive Effects Model

The <u>fitted value</u> (or <u>predicted value</u>) for the individual in the *i*, *j*th cell, X̂_{ij}, is defined as:

$$\hat{X}_{ij} = \hat{\mu} + \hat{\alpha}_i + \hat{\beta}_j
= \bar{X}_{..} + (\bar{X}_{i.} - \bar{X}_{..}) + (\bar{X}_{.j} - \bar{X}_{..})
= \bar{X}_{i.} + \bar{X}_{.j} - \bar{X}_{..}$$

 \hat{X}_{ij} is the value we'd predict, based on the data, for the response of the individual in the *i*, *j*th cell.

イロト イポト イヨト イヨト

э.

The <u>residual</u> for the observation in the *i*, *j*th cell, *e_{ij}*, is defined as

$$e_{ij} = X_{ij} - \hat{X}_{ij}$$

= $X_{ij} - (\hat{\mu} + \hat{\alpha}_i + \hat{\beta}_j)$
= $X_{ij} - \bar{X}_{i\cdot} - \bar{X}_{\cdot j} + \bar{X}_{\cdot}$

The <u>residual</u> for the observation in the *i*, *j*th cell, *e_{ij}*, is defined as

$$e_{ij} = X_{ij} - \hat{X}_{ij}$$

= $X_{ij} - (\hat{\mu} + \hat{\alpha}_i + \hat{\beta}_j)$
= $X_{ij} - \bar{X}_{i} - \bar{X}_{\cdot j} + \bar{X}_{\cdot}$

The **residual** e_{ij} corresponds to the **random error** term ϵ_{ij} in the model.

• Comment: The error sum of squares (Slides 13) is the sum of squared residuals, i.e.

$$\mathsf{SSE} \;=\; \sum_i \sum_j e_{ij}^2 \,.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Randomized Block Experiments

In a one-factor <u>completely randomized experiment</u>, IJ individuals are randomly split into I treatment groups, with J individuals per group.

イロト イポト イヨト イヨト

Randomized Block Experiments

- In a **one-factor** *completely randomized experiment*, *IJ* individuals are randomly split into *I* treatment groups, with *J* individuals per group.
- But heterogeneity among individuals can inflate the random variation in the observed responses, making it harder to detect treatment effects.

ヘロン 人間 とくほ とくほ とう

A study investigated the productivity of secretaries with different word processing programs. The study design called for giving an identical task to **nine** secretaries, allocated to **three** treatment groups.

イロト イポト イヨト イヨト

= 990

A study investigated the productivity of secretaries with different word processing programs. The study design called for giving an identical task to **nine** secretaries, allocated to **three** treatment groups.

Group 1 used a primarily menu-driven program. Group 2 used a command-driven program and Group 3 used a mixture of both approaches.

The time (in minutes) taken to complete the task was recorded.

ヘロト ヘアト ヘビト ヘビト

The secretaries had **different** levels of experience, typing speed, and computer skills.

The secretaries had **different** levels of experience, typing speed, and computer skills.

If a *completely randomized* one-factor experiment was carried out, this **heterogeneity** would contribute to the **random variation** in completion times **within** each group.

ヘロト ヘアト ヘビト ヘビト

Factor: Word Processing Program

Menu Driven	Command Driven	Mixture	
13	14	11	
10	12	8	
8	9	7	

Factor: Word Processing Program

Menu Driven	Command Driven	Mixture
13	14	11
10	12	8
8	9	7

Some of the observed variation within treatment groups is due to differences in experience levels.

ъ

< ロ > < 同 > < 臣 > < 臣 > -

In a *randomized block experiment*, the *IJ* individuals are first divided into *J* groups of *I* individuals per group, called *blocks*, that are homogeneous with respect to a so-called *blocking variable* that's believed to contribute to variation in observed responses.

ヘロン 人間 とくほ とくほ とう

э.

In a <u>randomized block experiment</u>, the IJ individuals are first divided into J groups of I individuals per group, called <u>blocks</u>, that are homogeneous with respect to a so-called <u>blocking variable</u> that's believed to contribute to variation in observed responses.

Then, separately for each block, the *I* individuals within the block are randomized to the *I* treatments.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

For the secretary productivity study using a *randomized block experiment*, the **nine** secretaries are first split into **three** *blocks* (groups) of **three** secretaries each based on **experience level** (less than 1 year, 1 - 5 years, and more than 5 years).

ヘロン 人間 とくほ とくほ とう

э.

For the secretary productivity study using a *randomized block experiment*, the **nine** secretaries are first split into **three** *blocks* (groups) of **three** secretaries each based on **experience level** (less than 1 year, 1 - 5 years, and more than 5 years).

Then, within each block, the three secretaries are randomly assigned to the three word processing programs.

イロト イポト イヨト イヨト

For the secretary productivity study using a *randomized block experiment*, the **nine** secretaries are first split into **three** *blocks* (groups) of **three** secretaries each based on **experience level** (less than 1 year, 1 - 5 years, and more than 5 years).

Then, within each block, the three secretaries are randomly assigned to the three word processing programs.

ヘロト ヘアト ヘビト ヘビト

The data are on the next slide.

Factor: Word Processing Program

		Menu Driven	Command Driven	Mixture	
	< 1 Year	13	14	11	
Blocks: Experience Level	1-5 Years	10	12	8	
	> 5 Years	8	9	7	
	_	1		<u> </u>	

In randomized block experiments:

• The effects of the treatments are of major interest to the experimenter.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

In randomized block experiments:

- The effects of the treatments are of major interest to the experimenter.
- The effects of the blocking variable are generally not of interest.

イロト イポト イヨト イヨト

In randomized block experiments:

- The effects of the treatments are of major interest to the experimenter.
- The effects of the blocking variable are generally not of interest.

くロト (過) (目) (日)

• The analysis is carried out **exactly** as if the **blocking variable** was a **second factor** in the experiment.

For the study of secretary productivity using the *randomized blocks design*, the **ANOVA table** is below.

Source of		Sum of	Mean		
of Variation	df	Squares	Square	f	P-value
Blocks (Experience)	2	32.89	16.444	59.2	0.00107
Treatments (Program)	2	13.56	6.778	24.4	0.00574
Error	4	1.11	0.278		
Total	8	47.56			

ヘロト ヘアト ヘビト ヘビト

3

The word processing program has an statistically significant effect on the time to complete the task.

 A randomized block experiment explicitly models the blocking variable as a source of deterministic (non-random) variation in the data, thereby eliminating it as a contributor to random variation.

 A randomized block experiment explicitly models the blocking variable as a source of deterministic (non-random) variation in the data, thereby eliminating it as a contributor to random variation.

The goal is to gain power for detecting a treatment effect.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

 A randomized block experiment explicitly models the blocking variable as a source of deterministic (non-random) variation in the data, thereby eliminating it as a contributor to random variation.

The goal is to gain power for detecting a treatment effect.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

In the secretary productivity study, **if blocking** *wasn't* used the data would be as shown below.

Factor: Word Processing Program

Menu Driven	Command Driven	Mixture
13	14	11
10	12	8
8	9	7

イロト イヨト イヨト イ

프 🕨 🛛 프

In the secretary productivity study, **if blocking** *wasn't* used the data would be as shown below.

Factor: Word Processing Program

Menu Driven	Command Driven	Mixture
13	14	11
10	12	8
8	9	7

< D > < P > < E >

Some of the **random variation** within groups is due to differences in secretaries' experience levels.

The one-factor ANOVA table is below.

Source of		Sum of	Mean		
of Variation	df	Squares	Square	f	P-value
Treatments (Program)	2	13.56	6.778	1.20	0.3650
Error	6	34.00	5.667		
Total	8	47.56			

The one-factor ANOVA table is below.

Source of		Sum of	Mean		
of Variation	df	Squares	Square	f	P-value
Treatments (Program)	2	13.56	6.778	1.20	0.3650
Error	6	34.00	5.667		
Total	8	47.56			

The SSE here is much larger than when blocking was used.

イロト イポト イヨト イヨト

= 990

The one-factor ANOVA table is below.

Source of		Sum of	Mean		
of Variation	df	Squares	Square	f	P-value
Treatments (Program)	2	13.56	6.778	1.20	0.3650
Error	6	34.00	5.667		
Total	8	47.56			

The SSE here is much larger than when blocking was used.

(In fact, the SSE here is the the SSE for the **blocked model** *plus* the SSA for that model.)

イロト イポト イヨト イヨト

э.

The larger SSE here leads to a larger MSE, smaller F value, and **non-significant** treatment (program) effect.

Comment: Although blocking leads to a smaller SSE, it also leads to fewer df for SSE (*IJ* − *I* − *J* + 1 compared to *I*(*J* − 1)).

▲□▶▲□▶▲□▶▲□▶ □ のQの

Comment: Although blocking leads to a smaller SSE, it also leads to fewer df for SSE (*IJ* − *I* − *J* + 1 compared to *I*(*J* − 1)).

Thus blocking **can** lead to a **larger MSE** if the **reduction** in **SSE** is **small** relative to the decrease in **df**.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Comment: Although blocking leads to a smaller SSE, it also leads to fewer df for SSE (*IJ* − *I* − *J* + 1 compared to *I*(*J* − 1)).

Thus blocking **can** lead to a **larger MSE** if the **reduction** in **SSE** is **small** relative to the decrease in **df**.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

In this case, there's no advantage to blocking.

 Comment: A matched pairs study is a randomized block experiment in which there are two treatment groups and each pair is a block.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで