Two-Factor ANOVA with More Than One Observation Per Cell	Notes
Statistical Methods	
Nels Grevstad Metropolitan State University of Denver ngrevsta@msudenver.edu October 27, 2019	
Nels Grevstad Two-Factor ANOVA with More Than One Observation Per Cell Topics	Notes
Two-Factor ANOVA with More Than One Observation Per Cell	
Nels Grevstad Two-Factor ANOVA with More Than One Observation Per Cell Objectives	Notes
 Objectives: State the treatment effects version of the two-factor ANOVA model when K > 1. Carry out two-factor ANOVA F tests for the interaction effect and main effects of Factors A and B when K > 1. Interpret the interaction effect and main effects in the two-factor ANOVA model. 	
Nets Grevstad Two-Factor ANOVA with More Than One Observation Per Cell Two-Factor ANOVA with $K \geq 2$	Notes
 Two-factor studies usually involve more than one observation per group. 	

Example

A software firm was finding that their programmers tended to underestimate the number of programmer-days needed to complete large-scale programming projects.

A study was carried out to determine if either a programmer's **type of experience** or their **years of experience** influence the accuracy of the predictions.

Twenty-four programmers, classified according to **type** and **years** of **experience**, were asked to predict the number of programmer-days required to complete a large project about to be initiated.

Nels Grevstac

Two-Factor ANOVA with More Than One Observation Per Cel

The table below shows their prediction errors (actual minus predicted programmer-days).

Factor B: Years of Experience

			Less		More	
			than 5	5 to 10	than 10	
			(j = 1)	(j = 2)	(j = 3)	
		Small Sys-	240	110	56	
		tems Only	206	118	60	$\bar{X}_{1} = 129.7$
Factor	A:	(i = 1)	217	103	68	
Type o	of		225	95	58	
Experi	ience .	Small and	71	47	37	
		Large Sys-	53	52	33	$\bar{X}_{2} = 48.6$
		tems $(i = 2)$	68	31	40	
			57	49	45	
		_				
			$\bar{X}_{.1.} = 142.1$	$\bar{X}_{.2.} = 75.6$	$\bar{X}_{\cdot 3} = 49.6$	$\bar{X} = 89.1$

Nels Grevstad

Two-Factor ANOVA with More Than One Observation Per Cel

Here's a different version of the table showing the so-called **group means**.

Factor B: Years of Experience

			than 5	5 to 10	than 10	
			(j = 1)	(j = 2)	(j = 3)	
		Small Sys-				
		tems Only	$\bar{X}_{11.} =$	$\bar{X}_{12} =$	$\bar{X}_{13} =$	$\bar{X}_{1} = 129.7$
actor	A:	(i = 1)	222.0	106.5	60.5	
Гуре о	f					
Experie	ence	Small and				
		Large Sys-	$\bar{X}_{21.} =$	$\bar{X}_{22} =$	$\bar{X}_{23} =$	$\bar{X}_{2} = 48.6$
		tems $(i = 2)$	62.3	44.8	38.8	
		_				_
			$\bar{X}_{.1.} = 142.1$	$\bar{X}_{\cdot 2} = 75.6$	$\bar{X}_{\cdot 3} = 49.6$	$\bar{X} = 89.1$

Nels Grevstad

Two-Factor ANOVA with More Than One Observation Per Cell

The study was designed to find out:

- Does type of experience effect prediction accuracy (i.e. is there a factor A main effect)?
- Does years of experience effect prediction accuracy (i.e. is there a factor B main effect)?
- Is the effect of years of experience different depending on a programmer's type of experience (i.e. is there an interaction effect)?

Notes		
Notes		
Notes		
Notes		

Notation:

I = The number of levels of Factor A.

J = The number of levels of Factor B.

 ${\pmb K}={\sf The}$ number of observations (common sample size) in each of the ${\it IJ}$ treatment groups.

 X_{ijk} = The kth observation at the ith level of Factor A and jth level of Factor B (i.e. in the i, jth group).

Nels Grevsta

Two-Factor ANOVA with More Than One Observation Per Cell

The data can be laid out in a table as below:
 Factor B

		Level $j=1$	Level $j=2$		Level $j = J$	
	_	X_{111}	X_{121}		X_{1J1}	
	Level $i=1$	X_{112}	X_{122}		X_{1J2}	\bar{X}_{1}
		:	:		:	
		X_{11K}	X_{12K}		X_{1JK}	
Factor		X_{211}	X_{221}		X_{2J1}	
Α	Level $i=2$	X_{212}	X_{222}		X_{2J2}	\bar{X}_{2}
		:	:		:	
		X_{21K}	X_{22K}		X_{2JK}	
	: -	:	:	:		-
	_	X_{I11}	X_{I21}		X_{IJ1}	
	Level $i = I$	X_{I12}	X_{I22}		X_{IJ2}	\bar{X}_{I}
		:	:		:	
	_	X_{I1K}	X_{I2K}		X_{IJK}	_
		$ar{X}_{\cdot 1}.$	$ar{X}_{\cdot 2 \cdot}$		$ar{X}_{\cdot J}.$	<i>X</i>

Nels Grevstad

Two-Factor ANOVA with More Than One Observation Per Cel

(cont'd)

 $ar{X}_{i..} = ext{The } \underline{\textit{Factor A level mean}} ext{ of all observations at level } i ext{ of Factor A}.$

 $\bar{X}_{.j.}$ = The <u>Factor B level mean</u> of all observations at level j of Factor B.

 $ar{X}_{ij}.=\operatorname{The} rac{\textit{group mean}}{i,j}$ of the observations in the i,jth group.

 \bar{X} ... = The *grand mean* of *all* IJK observations.

Nels Grevstad

Two-Factor ANOVA with More Than One Observation Per Cel

- \bullet When the sample sizes per group are all the same, the grand mean \bar{X} ... can be obtained as:
 - ullet The average of the IJ group means.
 - $\bullet\,$ The average of the I Factor A level means.
 - ullet The average of the J Factor B level means.

Notes		
Notes		
Notes		
Notes		
140103		

Comments:

- The sample sizes per group don't all have to be the same. But we'll only look at the equal-sample size case.
- ullet The data can be **samples** from IJ populations (representing combinations of the levels of the factors) or responses to treatments in a randomized experiment.

The Two-Factor ANOVA Model

ullet When K>1, we **no longer** have to assume the effects of the factors are **additive** (which did when K=1 to reduce the number of model parameters that needed to be estimated).

Two-factor ANOVA Model:

$$X_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk}, \tag{1}$$

where

 μ is a constant called the *true grand mean*.

 α_i is the <u>effect</u> of the *i*th level of **Factor** \boldsymbol{A} .

 β_j is the <u>effect</u> of the *j*th level of Factor B.

 γ_{ij} is the $\underline{\mathit{interaction effect}}$ for the ith level of

Factor A and jth level of Factor B. ϵ_{ijk} are iid $N(0,\sigma)$ <u>random errors</u>.

(More formal definitions on the next slide.)

ctor ANOVA with More Than One Observation Per Cell

More formally, let

 $\mu_{ij} \,=\, \mathsf{The}$ population mean for the $i\mathsf{th}$ level of **Factor A** and jth level of **Factor B**.

Then:

$$\begin{array}{rcl} \mu &=& \frac{\sum_i \sum_j \mu_{ij}}{IJ}\,, \\ \\ \alpha_i &=& \mu_{i\cdot} - \mu & \quad \text{and} \quad \quad \beta_j \,=\, \mu_{\cdot j} - \mu\,, \end{array}$$

$$\alpha_i = \mu_{i\cdot} - \mu$$
 and $\beta_i = \mu_{\cdot i} - \mu$

where the true factor **A** and **B** levels means, μ_i and $\mu_{i,j}$,

$$\mu_{i\cdot} \,=\, \frac{\sum_j \mu_{ij}}{J} \qquad \text{ and } \qquad \mu_{\cdot j} \,=\, \frac{\sum_i \mu_{ij}}{I} \,,$$

and

$$\gamma_{ij} = \mu_{ij} - (\mu + \alpha_i + \beta_j).$$

Notes			
Notes			
Notes			
Notes			
	 	 	_

• It can be shown that defining the γ_{ij} 's, α_i 's, and β_j 's as on the previous slide is equivalent to imposing the constraints

$$\sum_i \alpha_i \, = \, 0 \quad \text{ and } \quad \sum_j \beta_j \, = \, 0$$

and

$$\sum_{j}\gamma_{ij}=0 \ \ \mbox{(for each fixed i)} \ \ \mbox{and} \ \ \sum_{i}\gamma_{ij}=0 \ \ \mbox{(for each fixed j)}.$$

Nels Grevsta

Two-Factor ANOVA with More Than One Observation Per Cell

Sums of Squares and the ANOVA Partition

- We can partition the total variation in the data into four parts:
 - One reflecting variation between the levels of Factor A.
 - Another reflecting variation between the levels of Factor B.
 - Another reflecting variation due to the interaction between the levels of Factors A and B.
 - The other reflecting variation within the groups.

Nels Grevstad

Two-Factor ANOVA with More Than One Observation Per Cel

- The partition will involve the following sums of squares (shown with their df):
 - SST is the total sum of squares, defined as

$$\mathsf{SST} = \sum_i \sum_j \sum_k (X_{ijk} - \bar{X}_{\cdots})^2$$

$$df = IJK - 1$$

which measures the ${\it total}$ variation in the X_{ij} 's.

Nels Grevsta

Two-Factor ANOVA with More Than One Observation Per Cel

- (cont'd):
 - SSA is the Factor A sum of squares, defined as

$$\begin{split} \text{SSA} &= \sum_{i} \sum_{j} \sum_{k} (\bar{X}_{i\cdot\cdot} - \bar{X}_{\cdot\cdot\cdot})^2 \\ &= JK \sum_{i=1}^{I} (\bar{X}_{i\cdot} - \bar{X}_{\cdot\cdot})^2 \qquad \textit{df} = I-1 \end{split}$$

which measures variation between the **levels** of **Factor A** due to both the **Factor A effect** and **random error**.

Notes	
Notes	
Notes	
Notes	

- (cont'd):
 - SSB is the Factor B sum of squares, defined as

$$\begin{split} \text{SSB} &=& \sum_i \sum_j \sum_k (\bar{X}_{\cdot j \cdot} - \bar{X}_{\cdot \cdot \cdot})^2 \\ &=& IK \sum_{i=1}^I (\bar{X}_{\cdot j} - \bar{X}_{\cdot \cdot})^2 \qquad \textit{df} = \textit{J} - \mathbf{1} \end{split}$$

which measures variation between the **levels** of **Factor B** due to both the **Factor B effect** and **random error**.

Nels Grevstad

- (cont'd):
 - SSAB is the interaction sum of squares, with

$$\begin{split} \text{SSAB} &= \sum_i \sum_j \sum_k (\bar{X}_{ij\cdot} - \bar{X}_{i\cdot\cdot} - \bar{X}_{\cdot j\cdot} + \bar{X}_{\cdot\cdot\cdot})^2 \\ & \textit{d}f = (I-1)(J-1) \end{split}$$

which measures variation due to an **interaction** (i.e. **non-additivity**) of the effects of the two factors and **random error**.

Nels Grevstad

Two-Factor ANOVA with More Than One Observation Per Cel

- (cont'd):
 - SSE is the error sum of squares, defined as

$$\begin{array}{rcl} {\rm SSE} & = & \sum_i \sum_j \sum_k (X_{ijk} - \bar{X}_{ij\cdot})^2 \\ & & d\!f = IJ(K-1) \end{array}$$

which measures variation of the X_{ijk} 's within treatment groups due to random error.

Nels Grevstad

Two-Factor ANOVA with More Than One Observation Per Cell

Proposition

ANOVA Partition for the Full Model: It can be shown that

$$SST = SSA + SSB + SSAB + SSE$$

Notes	
Notes	
Notes	
TVOICES	
Notes	
-	

Additive Property of Degrees of Freedom:

df for SST = df for SSA + df for SSB + df for SSAB + df for SSB + df

Nels Grevstad

Two-Factor ANOVA with More Than One Observation Per Cell

Mean Squares

 The Factor A mean square, Factor B mean square, interaction mean square, and mean squared error are:

$$\mathsf{MSA} \ = \ \frac{\mathsf{SSA}}{I-1}$$

$$\mathsf{MSB} \ = \ \frac{\mathsf{SSB}}{J-1}$$

$$\mathsf{MSAB} \ = \ \frac{\mathsf{SSAB}}{(I-1)(J-1)}$$

$$\mathsf{MSE} \ = \ \frac{\mathsf{SSE}}{IJ(K-1)}$$

Nels Grevstad

Two-Factor ANOVA with More Than One Observation Per Cell

The Two-Factor ANOVA ${\cal F}$ Tests

- We'll want to test three sets of hypotheses:
 - Hypotheses about an interaction effect between the two factors:

$$H_{0AB}: \qquad \gamma_{ij}=0 ext{ for all } i ext{ and } j$$
 (2) $H_{aAB}: \qquad ext{Not all } \gamma_{ij} ext{'s equal zero}$

ullet Hypotheses about a $\it Factor\ A\ main\ effect$:

$$H_{0A}: \qquad \alpha_i = 0 \text{ for all } i$$
 (3)

 H_{aA} : Not all α_i 's equal zero

ullet Hypotheses about a **factor** B **main effect**:

$$H_{0B}: \qquad \beta_j = 0 \; {
m for \; all} \; j \ H_{aB}: \qquad {
m Not \; all} \; eta_j$$
 's equal zero

 m_{aB} . Not all p_j 3 equ

Nels Grevsta

Two-Factor ANOVA with More Than One Observation Per Cell

 In each case, the null hypothesis says there's no effect and the alternative says there is an effect.

Notes			
-			
Notes			
Notes			
Notes			

Torre Franker	ANIONA	COLUMN TO A SECOND	- Th O-	 Observation 	D 0-11	

 We always test for an interaction effect first, and proceed to the tests for main effects only if the interaction effect isn't statistically significant. We'll see why later.

Nels Grevstad

Two-Factor ANOVA with More Than One Observation Per Cell

Two-Factor ANOVA ${\it F}$ Test Statistics:

$$F_{AB} = rac{ extsf{MSAB}}{ extsf{MSE}} \qquad F_A = rac{ extsf{MSA}}{ extsf{MSE}} \qquad F_B = rac{ extsf{MSB}}{ extsf{MSE}}$$

Nels Grevstad

Two-Factor ANOVA with More Than One Observation Per Cel

Large values of F_{AB} provide evidence against H_{0AB} in favor of H_{aAB} : Not all of the γ_{ij} 's are zero.

Large values of F_A provide evidence against H_{0A} in favor of H_{aA} : Not all of the $lpha_i$'s are zero.

Large values of F_B provide evidence against H_{0B} in favor of H_{aB} : Not all of the β_j 's are zero.

Nala Cassatad

Two-Factor ANOVA with More Than One Observation Per Cell

ullet Suppose data in a two-factor study follow the **two-factor** ANOVA model, where the error terms ϵ_{ijk} are iid $N(0,\sigma)$.

Notes			
Notes			
Notes			
. 10100			
Notes			

Sampling Distributions of the Test Statistics Under \mathcal{H}_0 :

1. If ${\cal F}_{AB}$ is the ${\cal F}$ test statistic for the interaction effect, then when

$$H_{0AB}: \gamma_{ij} = 0$$
 for all i and j

is true,

$$F_{AB} \sim F((I-1)(J-1), IJ(K-1)).$$

2. If F_A is the F test statistic for Factor A, then when

$$H_{0A}: \alpha_i = 0$$
 for all i

is true,

$$F \sim F(I-1, IJ(K-1)).$$

Nels Grevstad

Two-Factor ANOVA with More Than One Observation Per Cell

3. If F_B is the the F test statistic for Factor B, then when

$$H_{0B}:\beta_j=0 \text{ for all } j$$

is true,

$$F \sim F(J-1, IJ(K-1)).$$

Nels Grevstad

Two-Factor ANOVA with More Than One Observation Per Cel

- The appropriate *F* curves give us:
 - \bullet The $\it rejection \, regions$ as the extreme largest 100 $\! \alpha\%$ of F values.
 - The p-values as the tail areas to the right of the observed $F_{AB},\,F_{A},\,$ and F_{B} values.

Nels Grevstad

Two-Factor ANOVA with More Than One Observation Per Cell

 Comment: The ANOVA F tests can be used even if the samples are from non-normal populations as long the per-group sample sizes are large.

Notes	
Notes	
Notes	
Notes	

The ANOVA Table

• The results are summarized in an ANOVA table:

Source of		Sum of	Mean		
Variation	df	Squares	Square	f	P-value
Factor A	I-1	SSA	MSA = SSA/(I - 1)	$F_A = MSA/MSE$	р
Factor B	J-1	SSB	MSB = SSB/(J-1)	$F_B = MSB/MSE$	р
Interaction	(I-1)(J-1)	SSAB	MSAB = SSAB/(I-1)(J-1)	$F_{AB} = MSAB/MSE$	p
Error	IJ(K-1)	SSE	MSE = SSE/IJ(K-1)		

Nels Grevstad

Two-Factor ANOVA with More Than One Observation Per Cell

Example

For the study of factors effecting errors in predicting the completion time for a programming project, the **ANOVA table** is:

		Sum of	Mean		
Source	df	Squares	Square	f	P-value
Туре	1	39447.0	39447.0	458.0	0.000
Years	2	36412.0	18206.0	211.4	0.000
Interaction	2	20165.3	10082.7	117.1	0.000
Error	18	1550.3	86.1		
Total	23	97574.6			

(We'll interpret the results in a later example.)

Nels Grevstad

Two-Factor ANOVA with More Than One Observation Per Cel

Interpretation of the Interaction Effects γ_{ij}

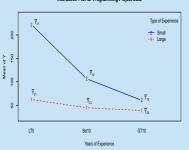
• If the interaction effect $\gamma_{ij}=0$ for all i and j, then the two-factor ANOVA model reduces to the so-called additive effects model

$$X_{ijk} = \mu + \alpha_i + \beta_j + \epsilon_{ijk}$$

Nels Grevstad

Two-Factor ANOVA with More Than One Observation Per Cel

- Under the additive effects model, the effect of each factor, at any fixed level of the other factor, is the same regardless of the level of that other factor.
- By including the interaction term γ_{ij} in the model (and allowing it to be non-zero), we allow the effect of each factor to be *different* depending on the level of the other factor.


Notes	Notes			
Notes				
Notes				
Notes		 	 	
Notes				
Notes	Notes			
	Notes			
Notes		 	 	
Notes				
Notes				
	Votes			
	.5.05			

Interaction Plots

ullet An *interaction plot* is a plot of the **group means** $ar{X}_{ij}$. on the y-axis, **levels** of **one factor** on the x-axis, and **lines** connecting group means at each fixed level of the other factor.

Example

For the data from the study of the effects of type of experience (Factor A) and years of experience (Factor B) on prediction errors, the interaction plot is below.

There appears to be an interaction effect between type and years of experience because the effect of years is different depending on the type of experience.

Interpretation of Interaction Plots

- Interpretation of Interaction Plots: If levels of Factor B are marked on the horizontal axis and levels of Factor A are represented by lines, then:
 - The slope of a line indicates the effect of Factor B for a given level of Factor A.
 - The vertical distance between two lines indicates the effect of Factor A for a given level of Factor B.

Thus:

- Lines effect of Facto tor B, i.e. tha
- Lines intera

_	
rs A is the same req	parallel suggest that the egardless of the level of Facte two factors are additive
•	el suggest that there's an en the two factors.
Nels Grevstad	

Notes	
Notes	
Notes	
Notes	

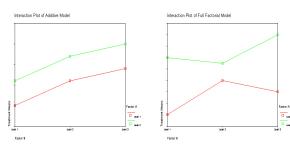


Figure: No interaction between two factors (i.e. their effects are additive) (left). Interactions between the two factors (i.e. the effects are not additive) (center and right).

Nels Grevstad

Two-Factor ANOVA with More Than One Observation Per Cel

Only Test for Main Effects if the Interaction Isn't Significant

• If we reject H_{0AB} , this **automatically** tells us that **both** factors have effects, regardless of whether or not we reject H_{0A} and H_{0B} .

But the **effect** of **each factor** is **different** depending on the **level** of the **other factor**.

Nels Grevstad

Two-Factor ANOVA with More Than One Observation Per Cel

Example

Here's the **ANOVA table** (again) for our running example:

		Sum of	Mean		
Source	df	Squares	Square	f	P-value
Туре	1	39447.0	39447.0	458.0	0.000
Years	2	36412.0	18206.0	211.4	0.000
Interaction	2	20165.3	10082.7	117.1	0.000
Error	18	1550.3	86.1		
Total	23	97574.6			

Nels Grevsta

Two-Factor ANOVA with More Than One Observation Per Cel

We can conclude:

- There is an interaction effect between type of and years of experience (p-value = 0.000).
- There's no need to proceed to the tests for main effects because we know, since there's an interaction, that regardless of what their p-values are, both type and years of experience have effects.

Their effects each differ depending on the level of the other factor.

The **interaction plot** depicts the **nature** of the **interaction effect**.

Notes

Notes

Interaction Plot of Full Fa	actorial Model	
		*
	/	
July 1	B	Factor A
Treatment		Use 1
E Lord 1	leet 2	M UNB 2
Factor 9		

Notes			

-

Main Effects Masked by an Interaction Effect

 We only proceed to tests for main effects if the interaction isn't significant.

When the **interaction** *is* **significant**, the tests for main effects have **little practical meaning**.

Nels Grevstad

Two-Factor ANOVA with More Than One Observation Per Cell

Example

Consider the following data from a two-factor experiment.

Factor B

	_	Level 1	Level 2	_
Factor	Level 1	20 25	10 14	$\bar{X}_{1} = 17.25$
A	Level 2	11 14	21 24	$\bar{X}_{2} = 17.50$
	_	$\bar{X}_{\cdot 1 \cdot} = 17.50$	\bar{X} . ₂ . = 17.25	_

Nels Grevstad

Two-Factor ANOVA with More Than One Observation Per Cel

The resulting ANOVA table is below.


		Sum of	Mean		
Source	df	Squares	Square	f	P-value
Factor A	1	0.12	0.12	0.017	0.9027
Factor B	1	0.13	0.13	0.017	0.9027
Factor A:Factor B	1	210.13	210.13	28.492	0.0059
Error	4	29.50	7.37		
Total	7	239.88			

The interaction is significant, but neither of the main effects is.

Nels Grevsta

Two-Factor ANOVA with More Than One Observation Per Cel

The table and interaction plot below show that the Factor A and B main effects are **masked** by the interaction effect.

Notes	
Notes	
Notes	
Notes	

-Factor ANOVA with More Than One Observation Per Cell	
	Notes
a When the interaction is cignificant, we can investigate	
 When the interaction is significant, we can investigate the effect of each factor separately for each fixed level of 	
the other factor.	
One way to do this is to carry out Tukey's multiple comparison procedure on the IJ group means.	
companson procedure on the 19 group means.	
Nels Grevstad	
	Notes
	Notes
	Notes