Notes

Statistical Methods

Nels Grevstad

Metropolitan State University of Denver ngrevsta@msudenver.edu

October 28, 2019

Nels Grevstad

Topics

Notes

Notes

Objectives

Objectives:

• Carry out Tukey's multiple comparison procedure after a two-factor ANOVA with K>1, and interpret the results.

Nels Grevstad

- Interpret residuals and fitted values.
- Use residuals to check normality and constant standard deviation assumptions.

Two-Factor ANOVA With K > 1 (Cont'd)

Notes

Multiple Comparisons for Two-Factor ANOVA (K > 1) when the Interaction Effect *Isn't* Significant

Nels Grevstad

Nels Grevstad

• When the no-interaction hypothesis H_{0AB} is not rejected and at least one of the two main effect hypotheses H_{0A} and H_{0B} is rejected, we can use **Tukey's procedure** to decide **which** levels of a factor differ. **Tukey's Multiple Comparison Procedure**: If the twofactor ANOVA *F* test fails to reject H_{0AB} , but rejects H_{0A} or H_{0B} :

1. Choose an overall familywise confidence level $100(1-\alpha)\%$ (usually $\alpha=0.05$ for a 95% confidence level).

Two-Factor ANOVA With K > 1 (Cont'd)

Nels Grevstad

2. For Factor A comparisons, compute the I(I-1)/2 confidence intervals:

$$\bar{X}_{i\cdots} - \bar{X}_{i'\cdots} \pm Q_{\alpha,I,IJ(K-1)} \sqrt{\frac{MSE}{JK}}$$

For Factor B comparisons, compute the J(J-1)/2 confidence intervals:

$$\bar{X}_{\cdot j \cdot} - \bar{X}_{\cdot j' \cdot} \pm Q_{\alpha, J, IJ(K-1))} \sqrt{\frac{MSE}{IK}}.$$

3. For any interval that **doesn't contain zero**, deem those levels of the given factor to be **different**.

Two-Factor ANOVA With K > 1 (Cont'd)

Multiple Comparisons for Two-Factor ANOVA (K > 1) when the Interaction Effect *Is* Significant

Nels Grevstad

When the no-interaction hypothesis H_{0AB} is rejected, we can use Tukey's procedure to decide which group means differ.

This can be done by carrying out a *one-factor* **ANOVA** on the *IJ groups* following by the (*one-factor*) **Tukey procedure**.

Two-Factor ANOVA With K > 1 (Cont'd)

Nels Grevstad

Nels Grevstad

Notes

Estimating Parameters (when K > 1)

• Recall (Slides 15) that the *full* **two-factor ANOVA model** is:

$$X_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk}$$

Notes

Notes

Notes

Model Parameter Estimators: We estimate the unknown model parameters μ , α_i , β_j , and σ using the **estimators** $\hat{\mu}$, $\hat{\alpha}_i$, $\hat{\beta}_j$, and $\hat{\sigma}$ defined as:

Model Parameter	Estimator
μ	$\hat{\mu} = \bar{X}$
$\alpha_i = \mu_{i.} - \mu$	$\hat{\alpha}_i = \bar{X}_{i\cdots} - \bar{X}_{\cdots}$
$\beta_j = \mu_{\cdot j} - \mu$	$\hat{\alpha}_i = \bar{X}_{.j.} - \bar{X}_{}$
$\gamma_{ij} = \mu_{ij} - (\mu + \alpha_i + \beta_j)$	$\hat{\gamma}_{ij} = \bar{X}_{ij} - (\hat{\mu} + \hat{\alpha}_i + \hat{\beta}_j)$
	$= \bar{X}_{ij.} - \bar{X}_{i} - \bar{X}_{.j.} + \bar{X}_{}$
σ	$\hat{\sigma} = \sqrt{MSE}$

Two-Factor ANOVA With $K\,>\,1$ (Cont'd)

Nels Grevstad

Fitted Values and Residuals

• The <u>fitted value</u> (or <u>predicted value</u>) for the *k*th individual in the *i*, *j*th cell, \hat{X}_{ijk} , is

$$\begin{split} X_{ij} &= \hat{\mu} + \hat{\alpha}_i + \beta_j + \hat{\gamma}_{ij} \\ &= \bar{X}_{...} + (\bar{X}_{i..} - \bar{X}_{...}) + (\bar{X}_{.j.} - \bar{X}_{...}) \\ &+ (\bar{X}_{ij.} - \bar{X}_{i...} - \bar{X}_{.j.} + \bar{X}_{...}) \\ &= \bar{X}_{ij.} \,. \end{split}$$

 \hat{X}_{ijk} is the value we'd predict, based on the data, for the response of the *k*th individual in the *i*, *j*th cell.

It's just the i, jth group mean \bar{X}_{ij} . (which is also the estimate of the true group mean μ_{ij}).

Nels Grevstad

Two-Factor ANOVA With K > 1 (Cont'd)

 The <u>residual</u> for the kth observation in the i, jth cell, e_{ijk}, is defined as

$$e_{ijk} = X_{ijk} - X_{ijk}$$

= $X_{ijk} - (\hat{\mu} + \hat{\alpha}_i + \hat{\beta}_j + \hat{\gamma}_{ij})$
= $X_{ijk} - \bar{X}_{ij}$.

The **residual** e_{ijk} corresponds to the **random error** term ϵ_{ijk} in the model.

Note that a **residual** is just the **deviation** of an observed response X_{ijk} away from the group mean \bar{X}_{ij} .

Two-Factor ANOVA With K > 1 (Cont'd)

Nels Grevstad

Nels Grevstad

Notes

Notes

Notes

Notes

• Comment: The error sum of squares (Slides 15) is the sum of squared residuals, i.e.

$$\mathsf{SSE} \ = \ \sum_i \sum_j \sum_k e_{ijk}^2 \, .$$

Two-Factor ANOVA With K>1 (Cont'd)

Checking the Model Assumptions

• For the **ANOVA** F test, we assume the ϵ_{ijk} 's are iid $N(0, \sigma)$.

Note that σ is assumed to be ${\bf constant}$ from one group to the next.

- Checking the Normality Assumption: Use a histogram or normal probability plot of the residuals.
- Checking the Constant *σ* Assumption: Plot the residuals versus the fitted values.

Nels Grevstad

Usually, when σ isn't constant, it increases with the group mean.

Two-Factor ANOVA With K > 1 (Cont'd)

Example

For the study of factors affecting programmers' errors in predicting project completion times, a **histogram** and **normal probability plot** of the **residuals** are below.

wo-Factor ANOVA With K > 1 (Cont'd)

The **normality assumption** of the **errors** ϵ_{ijk} appears to be met.

A plot of the **residuals** versus **fitted values** is on the next slide.

vo-Factor ANOVA With K > 1 (Cont'd)

Notes

Notes

Notes

Notes

The amount of spread is roughly the same from group to group, so the **constant standard deviation assumption** appears to be met.

Nels Grevstad

Thus the **ANOVA** *F* test results are valid.

Notes

Notes

Notes

Notes